The following table gives the number of respondents who obtained each score. 22 of 40 took the quiz.

score	13	12	11	10	9	8
number	1	5	4	6	2	4

The numbers in parentheses below show the number of people who missed each question.

1. Recall:

- A TM is total if it halts on all inputs
- A set is r.e. if it is $L(M)$ for some TM M
- A set is recursive if it is $L(M)$ for some total TM M
- The halting problem is the set

$$
\mathrm{HP}=\{M \# x \mid M \text { is a TM, } x \text { is a string over } M \text { 's input alphabet, } M \text { halts on input } x\} .
$$

True or false?
(i) Every CFL is recursive. true (1)
(ii) There exists a recursive set that is not a CFL. true (1)
(iii) All recursive sets are r.e. true (3)
(iv) $\left\{a^{p} \mid p\right.$ is a prime number $\}$ is a recursive set. true (3)
(v) If $L(M)$ is recursive, then M is total. false (10) A machine can loop and still accept a recursive set. For example, a machine that loops on all inputs accepts \varnothing. For a set to be recursive, there must exist a total machine accepting it.
(vi) If M is total, then $L(M)$ is recursive. true (0)
(vii) TMs with two tapes accept more sets than TMs with one tape. false (1)
(viii) Every Turing machine accepts a nonregular set. false (1)
(ix) It is decidable for a given TM M and string x whether M accepts x. false (6)
(x) It is decidable for a given TM M whether $L(M)=\sim H P$. (\sim denotes set complement.) true (17) ~HP is not r.e., so the answer is always "no".
2. In the following TM, the input alphabet is $\{a, b\}$, the left endmarker is \vdash, and the blank symbol is \sqcup. The transitions are given in the following table.

\[

\]

What language does it accept?
(a) strings beginning with a (1)
(b) strings containing only a 's
(c) strings containing at least one a
3. True or false?
(i) The machine of question 2 is total. false (8) The machine loops on input ε.
(ii) The language accepted by the machine of question 2 is recursive. true (7)

