The following table gives the number of respondents who obtained each score.

score	14	13	12	11	10
number	3	10	9	3	4

The numbers in parentheses below show the number of people who missed each question.

Tell whether the following sets are regular or nonregular.

1. $\left\{a^{n} b^{m} \mid n=2 m\right\}$ nonregular (0)
2. $\left\{a^{n} b^{2 m} \mid n \geq 0\right.$ and $\left.m \geq 0\right\}$ regular (4)
3. $\left\{a^{n} b^{m} c^{n} \mid n \geq 0\right.$ and $\left.m \geq 0\right\}$ nonregular (7)
4. $\left\{x \in\{0,1\}^{*} \mid x\right.$ contains more 0's than 1's $\}$ nonregular (1)
5. $\left\{a^{n} b^{m} \mid n \neq m\right\}$ nonregular (1)
6. $\left\{a^{n} b^{n+4810} \mid n \geq 0\right\}$ nonregular (4)

True or false? Every equivalence relation is
7. reflexive true (0)
8. symmetric true (0)
9. antisymmetric false (2)
10. transitive true (0)
11. a partial order false (4)
12. a homomorphism false (7)
13. refined by the identity relation true (8)

Here is a tricky one!
14. One of the following subsets of $\{a, b, c\}^{*}$ is regular and the other is nonregular. Which is which?
(i) $\left\{x y \mid x, y \in\{a, b\}^{*}, \# a(x)=\# b(y)\right\}$
(ii) $\left\{x c y \mid x, y \in\{a, b\}^{*}, \# a(x)=\# b(y)\right\}$

The set (ii) is nonregular: if you intersect with $a^{*} c b^{*}$, then delete the c 's with a homomorphism $h(a)=a$, $h(b)=b, h(c)=\varepsilon$, you get your favorite nonregular set $\left\{a^{n} b^{n} \mid n \geq 0\right\}$.

The set (i) is regular, and in fact is just $\{a, b\}^{*}$. That is, every string $z \in\{a, b\}^{*}$ can be expressed as $x y$ with $\# a(x)=\# b(y)$ for some x, y. Suppose $|z|=n$. Let $f(i)=\# a\left(x_{i}\right)-\# b\left(y_{i}\right)$, where $z=x_{i} y_{i}$ with $\left|x_{i}\right|=i$ and $\left|y_{i}\right|=n-i, 0 \leq i \leq n$. Then $f(0)=\# a(\varepsilon)-\# b(z) \leq 0, f(n)=\# a(z)-\# b(\varepsilon) \geq 0$, and $f(i+1)=f(i)+1,0 \leq i \leq n-1$. There must be an i such that $f(i)=0$, i.e. $\# a\left(x_{i}\right)=\# b\left(y_{i}\right)$.

