The following table gives the number of respondents who obtained each score.

score	14	13	12	11	10
number	3	10	9	3	4

The numbers in parentheses below show the number of people who missed each question.

Tell whether the following sets are regular or nonregular.

- 1. $\{a^n b^m \mid n = 2m\}$ nonregular (0)
- 2. $\{a^n b^{2m} \mid n \ge 0 \text{ and } m \ge 0\}$ regular (4)
- 3. $\{a^n b^m c^n \mid n \ge 0 \text{ and } m \ge 0\}$ nonregular (7)
- 4. $\{x \in \{0,1\}^* \mid x \text{ contains more 0's than 1's} \text{ nonregular (1)}$
- 5. $\{a^n b^m \mid n \neq m\}$ nonregular (1)
- 6. $\{a^n b^{n+4810} \mid n \ge 0\}$ nonregular (4)

True or false? Every equivalence relation is

- 7. reflexive true (0)
- 8. symmetric true (0)
- 9. antisymmetric false (2)
- 10. transitive true (0)
- 11. a partial order false (4)
- 12. a homomorphism false (7)
- 13. refined by the identity relation true (8)

Here is a tricky one!

14. One of the following subsets of $\{a, b, c\}^*$ is regular and the other is nonregular. Which is which? (15)

- (i) $\{xy \mid x, y \in \{a, b\}^*, \ \#a(x) = \#b(y)\}$
- (ii) $\{xcy \mid x, y \in \{a, b\}^*, \ \#a(x) = \#b(y)\}$

The set (ii) is nonregular: if you intersect with a^*cb^* , then delete the c's with a homomorphism h(a) = a, h(b) = b, $h(c) = \varepsilon$, you get your favorite nonregular set $\{a^nb^n \mid n \ge 0\}$.

The set (i) is regular, and in fact is just $\{a, b\}^*$. That is, every string $z \in \{a, b\}^*$ can be expressed as xy with #a(x) = #b(y) for some x, y. Suppose |z| = n. Let $f(i) = \#a(x_i) - \#b(y_i)$, where $z = x_iy_i$ with $|x_i| = i$ and $|y_i| = n - i$, $0 \le i \le n$. Then $f(0) = \#a(\varepsilon) - \#b(z) \le 0$, $f(n) = \#a(z) - \#b(\varepsilon) \ge 0$, and f(i+1) = f(i) + 1, $0 \le i \le n - 1$. There must be an i such that f(i) = 0, i.e. $\#a(x_i) = \#b(y_i)$.