The following table gives the number of respondents who obtained each score.

score	11	10	9	8	7	6
number	8	12	6	4	4	1

The numbers in parentheses below show the number of people who missed each question.

Tell whether the statements below make sense (not whether they are true or false).

1. $\{a, b\}^{*}$ is of infinite length. nonsense (12)

Sets have size or cardinality, not length. Strings have length.
2. $\{a, b\}\{a, b\}\{a, b\}$ contains 8 elements. sense (6)

The expression $\{a, b\}\{a, b\}\{a, b\}$ denotes a set, namely the set $\{a a a, a a b, a b a, b a a, a b b, b a b, b b a, b b b\}$, which in fact has 8 elements.
3. The string $a a b a b$ is an element of the automaton M. nonsense (4)

A string cannot be an element of an automaton. It can be an element of the set of strings accepted by an automaton. It would make sense to say $a a b a b$ is an element of $L(M)$, or that $a a b a b$ is accepted by M.
4. M is an automaton with start state $\{q\}$. sense (12)

The states of an automaton can be any finite set, including sets of states of another automaton. In fact, this happens in the subset construction (K , Lectures 5,6).
5. $L(M)=\varnothing$. sense (5)
6. Any single string x is regular. nonsense (11)

Strings cannot be regular. Sets of strings can be regular. It would be proper to say that any singleton set $\{x\}$ is regular.

Tell whether the given strings match the given regular expressions.
7. $a a b a a^{*}+b^{*}$ does not match (1)
8. $a b b b b(\varepsilon+a)^{*} b^{*}$ matches (0)
9. $\quad a b b \quad b^{*}+(a+b)^{*} b$ matches (6)
10. babab $b(a b)^{*}$ matches (0)
11. $a b b(a+b)(a+b)^{*} a(a+b)^{*}$ does not match (0)

