
Kleene coalgebra

Alexandra Silva

Promotor:
Prof. Dr. Jan Rutten

Copromotor:
Dr. Marcello Bonsangue

Manuscriptcommissie:
Dr. Luís Barbosa Universidade do Minho, Braga, Portugal
Prof. Dr. Herman Geuvers Radboud University Nijmegen, The Netherlands
Prof. Dr. Bart Jacobs Radboud University Nijmegen, The Netherlands
Prof. Dr. Dexter Kozen Cornell University, Ithaca, New York, USA
Dr. Erik de Vink Technical University Eindhoven, The Netherlands

Preface

iii

CONTENTS

Preface iii

Contents iv

1 Introduction 1

1.1 Coalgebra . 1
1.2 Kleene . 2
1.3 . . . and followers . 2
1.4 Our aim . 3
1.5 Kleene coalgebra . 3
1.6 Thesis outline and summary of the contributions 5
1.7 Related work . 6

2 Preliminaries 9

2.1 Sets . 9
2.2 Coalgebras . 10

3 Automata as coalgebras 15

3.1 Deterministic automata and regular expressions 15
3.1.1 From deterministic automata to regular expressions 21
3.1.2 From regular expressions to deterministic automata 23
3.1.3 Non-deterministic automata and the subset construction 27
3.1.4 Kleene algebras . 31

3.2 Automata on guarded strings and KAT expressions 39

4 Kleene meets Mealy 47

4.1 Mealy machines . 48
4.2 Regular expressions for Mealy machines . 51

4.2.1 Expressions form a Mealy coalgebra 52
4.2.2 A Kleene theorem for Mealy coalgebras 54

4.3 An algebra for Mealy machines . 61
4.4 Discussion . 67

5 Non-deterministic Kleene coalgebras 69

5.1 Non-deterministic coalgebras . 70
5.2 A language of expressions for non-deterministic coalgebras 71

5.2.1 Brzozowski derivatives for non-deterministic expressions 75

iv

5.2.2 From coalgebras to expressions . 78
5.2.3 From expressions to coalgebras . 83

5.3 A sound and complete axiomatization . 90
5.4 Two more examples . 101
5.5 Polynomial and finitary coalgebras . 103
5.6 Discussion . 107

6 Quantitative Kleene coalgebras 111
6.1 The monoidal exponentiation functor . 114
6.2 A non-idempotent algebra for quantitative regular behaviors 118
6.3 Extending the class of functors . 132
6.4 Probabilistic systems . 135
6.5 A slight variation on the functor . 138
6.6 Discussion . 139

7 Further directions 141

Bibliography 143

Chapter 1

Introduction

Computer systems have widely spread since their appearance, and they now play a
crucial role in many daily activities, with their deployment ranging from small home
appliances to safety critical components, such as airplane or automobile control sys-
tems. Accidents caused by either hardware or software failure can have disastrous
consequences, leading to the loss of human lives or causing enormous financial draw-
backs. One of the greatest challenges of computer science is to cope with the fast
evolution of computer systems and develop formal techniques which facilitate the
construction of safe software and hardware systems.
Since the early days of computer science, many scientists have searched for suitable
models of computation and for specification languages that are appropriate for rea-
soning about such models. When devising a model for a particular system, there is a
need to encode different features which capture the inherent behavior of the system.
For instance, some systems have deterministic behavior (a calculator or an elevator),
whereas others have inherently non-deterministic or probabilistic behavior (think of
a casino slot machine). The rapidly increasing complexity of systems demands for
compositional and unifying models of computation, as well as general methods and
guidelines to derive specification languages.

1.1 Coalgebra

In the last decades, coalgebra has arisen as a prominent candidate for a mathemat-
ical framework to specify and reason about computer systems. Coalgebraic model-
ing works, on the surface, as follows: the basic features of a system, such as non-
determinism or probability, are collected and combined in the appropriate way, deter-
mining the type of the system. This type (formally, a functor) is then used to derive
a suitable equivalence relation and a universal domain of behaviors, which allow to
reason about equivalence of systems. The strength of coalgebraic modeling lies in
the fact that many important notions are parametrized by the type of the system. On
the one hand, the coalgebraic framework is unifying, allowing for a uniform study
of different systems and making precise the connection between them. On the other

1

2 Chapter 1. Introduction

hand, it can serve as a guideline to the development of basic notions for new models
of computation.

1.2 Kleene . . .

One of the simplest models of computation is that of a deterministic finite automa-
ton. In his seminal paper in 1956, Kleene [64] described finite deterministic automata
(which he called nerve nets), together with a specification language: regular expres-
sions. One of his most important results is the theorem which states that any finite
deterministic automaton can be characterized by a regular expression and that, con-
versely, every regular expression can be realized by such automaton. This theorem,
which is today referred to as Kleene’s theorem, became one of the cornerstones of
theoretical computer science.

1.3 . . . and followers

In his paper, Kleene left open the question of whether there would exist a finite, sound
and complete, axiomatization of the equivalence of regular expressions, which would
enable algebraic reasoning. The first answer to this question was given in 1966 by
Salomaa [101], who presented two complete axiomatizations. The 1971 monograph
of Conway [39] presents an extended overview of results on regular expressions and
their axiomatizations. Later, in 1990, Kozen [66] showed that Salomaa’s axiomatiza-
tion is non-algebraic, in the sense that it is unsound under substitution of alphabet
symbols by arbitrary regular expressions, and presented an algebraic axiomatization:
Kleene algebras.

McNaughton and Yamada [80] gave algorithms to build a non-deterministic automa-
ton from a regular expression and back, and introduced a notion of extended regular
expression with intersection and complementation operators. This enrichment of the
language of regular expressions was relevant in the context of the most important ap-
plication of regular expressions at that time, in the design of digital circuits, allowing
a more easy conversion of a natural language specification of problems into a regular
expression.

Brzozowski [28,29] introduced the notion of derivative of regular expressions, which
allowed him to prove Kleene’s theorem for the extended set of regular expressions
without having to recur to non-deterministic automata.

Efficient algorithms to compile regular expressions to deterministic and non-determi-
nistic automata became crucial when regular expressions started to be widely used
for pattern matching. One of the fastest (and most beautiful) algorithms to translate
regular expressions into automata was devised by Berry and Sethi [19]. This algo-
rithm became the basis of one of the first compilers of the language Esterel [18], a
synchronous programming language, based on regular expressions, dedicated to em-
bedded systems. Esterel is one of the most successful follow ups of Kleene’s work: it

1.4. Our aim 3

is used as a specification language of control-intensive applications, such as the ones
running in the central units of cars or airplanes. In such systems guaranteeing im-
portant safety properties is of the uttermost importance and, hence, formal models of
computation play a central role.

In 1981, Milner adapted Kleene and Salomaa’s results to labeled transition systems:
a model of computation in which non-determinism is allowed [84]. He introduced
a language for finitely presented behaviors, which can be seen as a fragment of the
calculus of communicating systems (CCS) [83], and a sound and complete axiomati-
zation with respect to bisimilarity. The paper of Milner served as inspiration for many
researchers in the concurrency community. Probabilistic extensions of CCS, together
with sound and complete axiomatizations (with respect to the appropriate notion of
equivalence) have been presented for instance in [41,42,106].

In addition to the models already mentioned, other important models of computa-
tion include Mealy machines [81] (automata with input and output), automata on
guarded strings [69] and weighted automata [104]. These three models have ap-
plications, for instance, in digital circuit design, compiler optimization and image
recognition, respectively.

1.4 Our aim

The aim of this thesis is to make use of the coalgebraic view on systems to devise
a framework where languages of specification and axiomatizations can be uniformly
derived for a large class of systems, which include all the models mentioned above.
As a sanity check, it should be possible to derive from the general framework known
results. More importantly, we should be able to derive new languages and axiomati-
zations.

1.5 Kleene coalgebra

In this thesis, we combine the work of Kleene with coalgebra. The theory of universal
coalgebra [96] provides a standard equivalence and a universal domain of behav-
iors, uniquely based on the type of the system, given by a functor F. It is our main
aim to show how the type of the system also allows for a uniform derivation of both
a set of expressions describing the system’s behavior and a corresponding axioma-
tization, sound and complete with respect to the equivalence induced by F, which
enables algebraic reasoning on the specifications. Furthermore, we want to show the
correspondence of the behaviors denoted by the expressions in the language and the
systems under study, formulating the coalgebraic analogue of Kleene’s theorem.
The class of systems we study (or in other words, the class of functors F) is large
enough to cover finite deterministic automata and labeled transition systems. It in-
cludes also other models, such as Mealy machines, automata on guarded strings,
weighted automata and several types of probabilistic automata, such as Segala, strat-
ified and Pnueli-Zuck systems. From this general framework we will recover known

4 Chapter 1. Introduction

languages and axiomatizations but, more interestingly, we will also derive new ones,
for the so-called stratified and Pnueli-Zuck systems.
To give the reader a feeling of the type of expressions and axiomatizations we will
derive, we show in Figure 1.1 a few examples of systems, together with their type
and examples of valid expressions and axioms.

Deterministic automata Mealy machines

s1

a
b

s2
a

b

s1

a|1
b|0

s2

a|0

b|0

F = 2× IdA
F = (2× Id)A

µx .b(x)⊕ a(µy.b(y)⊕ a(x)⊕ 1) µx .b(x)⊕ a(µy.a(x)⊕ b(y))⊕ a↓1

;⊕ ǫ ≡ ǫ µx .ǫ ≡ ǫ[µx .ǫ/x]

Labeled transition systems Segala systems

s1

aa

s2

b

s3

c c

s4 s5 s6

s1
aa

1/21/2 1/32/3

s2 s3 s4 s5

F = (PωId)A F = (Pω(DωId))A

a({b(;)} ⊕ {c({;}⊕ {;})}) a({1/2 · ; ⊕ 1/2 · ;})⊞ a({1/3 · ; ⊕ 2/3 · ;})

ǫ⊕ ǫ ≡ ǫ p · ǫ⊕ p′ · ǫ ≡ (p+ p′) · ǫ

Figure 1.1: For each of the systems we show a concrete example, the corresponding
functor type, an expression describing the behavior of s1, and an example of a valid
axiom.

1.6. Thesis outline and summary of the contributions 5

1.6 Thesis outline and summary of the contributions

We summarize below the content and main contributions of each chapter.

Chapter 2 introduces basic preliminaries on coalgebra.

Chapter 3 contains material already existing in the literature, collecting the main
results on regular expressions and Kleene algebras, mainly due to Kleene, Brzozowski,
Kozen and Rutten. These results serve as basis for the generalizations presented in the
subsequent chapters. Furthermore, we recall the basics of Kleene algebra with tests
(KAT), an extension, due to Kozen, of the algebra of regular expressions with Boolean
tests. KAT has many applications in compiler optimization, program transformation
and dataflow analysis.
We also recall the Berry-Sethi construction, from regular expressions to non-deter-
ministic automata, mentioned previously in the introduction, and we show how to
generalize it to KAT expressions. This generalization constitutes the original contri-
bution of this chapter.

Chapter 4 introduces a language and axiomatization for Mealy machines. The main
contributions are summarized in the table below.

Kleene meets Mealy
Specification language for Mealy machines Definition 4.2.1

An analogue of Kleene’s theorem Theorems 4.2.7 and 4.2.8

Sound and complete axiomatization Section 4.3

The results in this chapter are subsumed by the ones in the subsequent chapter, but
they can be seen as a concrete example of the coalgebraic approach, illustrating many
of the general principles. This chapter paves the way for the construction of the
general framework which we will present in the subsequent chapters.

This chapter is based on the following paper:
Marcello M. Bonsangue, Jan J. M. M. Rutten, Alexandra Silva: Coalgebraic Logic and

Synthesis of Mealy Machines. FoSSaCS 2008:231-245.

Chapter 5 contains the development of a general framework, parametrized by the
type of the system, a functor, where languages and axiomatizations can be derived
uniformly. The class of functors considered, which we call non-deterministic functors,
covers a number of models, such as deterministic automata, labeled transition sys-
tems and automata on guarded strings. We summarize the main contributions of the
chapter in the table below.

6 Chapter 1. Introduction

Non-deterministic Kleene coalgebras
Specification language for non-deterministic coalgebras Definition 5.2.1

An analogue of Brzozowski derivatives Definition 5.2.11

An analogue of Kleene’s theorem Theorems 5.2.12 and 5.2.14

Sound and complete axiomatization Section 5.3

This chapter is based on the following papers:
Marcello M. Bonsangue, Jan J. M. M. Rutten, Alexandra Silva: A Kleene Theorem for

Polynomial Coalgebras. FOSSACS 2009:122-136.

Marcello M. Bonsangue, Jan J. M. M. Rutten, Alexandra Silva: An Algebra for Kripke

Polynomial Coalgebras. LICS 2009:49-58.
Alexandra Silva, Marcello M. Bonsangue, Jan J. M. M. Rutten: Non-deterministic Kleene

coalgebras. Accepted for publication in Logical Methods in Computer Science.

Chapter 6 extends the framework of the previous chapter to be able to deal with
quantitative systems such as weighted or probabilistic automata. The main technical
challenge is that quantitative systems have an inherently non-idempotent behavior
and thus the proof of Kleene’s theorem and the axiomatization require extra care. In
this chapter, the generality of our approach pays off: we were able to derive a sound
and complete axiomatization for stratified systems, a type of probabilistic automata
for which a language existed but no axiomatization, and a language and axioma-
tization for Pnueli-Zuck systems, another type of probabilistic automata for which
only a modal logic like language existed. The main contributions of the chapter are
summarized in the following table.

Quantitative Kleene coalgebras
Specification language for quantitative systems Definition 6.2.3

An analogue of Kleene’s theorem Theorem 6.2.9

Sound and complete axiomatization Theorems 6.2.11 and 6.2.17

Examples of application to probabilistic systems Section 6.4

This chapter based on the following papers:
Filippo Bonchi, Marcello M. Bonsangue, Jan J. M. M. Rutten, Alexandra Silva: Deriving

Syntax and Axioms for Quantitative Regular Behaviours. CONCUR 2009:146-162.

Filippo Bonchi, Marcello M. Bonsangue, Jan J. M. M. Rutten, Alexandra Silva: Quanti-

tative Kleene coalgebras. Accepted for publication in Information and Computation.

1.7 Related work

The connection between Kleene’s regular expressions, deterministic automata and
coalgebra was first explored in [95, 97]. Rutten explored the coalgebraic structure

1.7. Related work 7

of the set of regular expressions, given by Brzozowski derivatives [29], in order to
show that the coalgebraic semantics coincides with the standard inductive semantics
of regular expressions. He proved the usefulness of the approach by proving equal-
ities by coinduction. The coinductive proofs turned out to be, in many cases, more
concise and intuitive than the alternative algebraic proof using the axioms of Kleene
algebra. Later, Jacobs [61] presented a bialgebraic review on deterministic automata
and regular expressions, which allowed him to present an alternative coalgebraic
proof of Kozen’s result on the completeness of Kleene algebras for language equiva-
lence [66,69]. We took inspiration from all of these papers: the work of Brzozowski
and Rutten led us to the definition of the coalgebraic structure on the set of expres-
sions, whereas the work by Jacobs and Kozen served as a guideline to the proof of
soundness and completeness of the axiomatization we will introduce for the set of
generalized regular expressions.
In the last few years several proposals for specification languages for coalgebras ap-
peared [24,25,36,50,60,75,86,94,103]. The languages presented in this thesis are
similar in spirit to that of Rössiger [94], Jacobs [60], Pattinson and Schröder [103] in
that we use the ingredients of a functor for typing expressions. They differ from the
logics presented in [60,94] because we do not need an explicit "next-state" operator,
as we can deduce it from the type information.
Apart from the logics introduced by Kupke and Venema in [75], the languages men-
tioned above do not include fixed point operators. Our language of generalized regu-
lar expressions is similar to a fragment of the logic presented in [75] and can be seen
as an extension of the coalgebraic logic of [24] with fixed point operators, as well as
the multi-sorted logics of [103]. However, our goal is rather different: we want (1)
a finitary language that characterizes exactly all locally finite coalgebras; (2) a Kleene
like theorem for the language or, in other words, a map (and not a relation) from ex-
pressions to coalgebras and vice-versa. Similar to many of the works above, we also
derive a modular axiomatization, sound and complete with respect to the equivalence
induced by the functor.
The languages studied in this thesis allow for recursive specifications and therefore
formalize potentially infinite computations. This type of computations were studied
also in the context of iterative theories, which have been introduced by Elgot [45].
The main example of an iterative theory is the theory of regular trees, that is trees
which have finitely many distinct subtrees. Adámek, Milius and Velebil have pre-
sented Elgot’s work from a coalgebraic perspective [5, 6], simplified some of his
original proofs, and generalized the notion of free iterative theory to any finitary
endofunctor of every locally presentable category. The language associated with each
functor, which we introduce in this thesis, modulo the axioms is closely related to the
work above: it is an initial iterative algebra. This also shows the connection of our
work with the work by Bloom and Ésik on iterative algebras/theories [20].
Kleene’s theorem has been extended in various ways. Büchi [32] extended it to in-
finite words and ω-automata, introducing an ω operator on languages. Ochman-
ski [87] introduced a concurrent version of the Kleene star operator, which lead him
to define a notion of co-rational languages, obtained as the rational ones by simply

8 Chapter 1. Introduction

replacing the star by the concurrent iteration. He then generalized Kleene’s theorem
showing that the recognizable trace languages are exactly the co-rational languages.
Gastin, Petit and Zielonka [46,47] extended Ochmanski’s results to infinite trace lan-
guages. For weighted automata, Schützenberger [104] has shown that the set of rec-
ognizable formal power series (corresponding to the behavior of weighted automata)
coincides with the set of rational formal power series. For timed automata, there were
several proposals, including the papers by Bouyer and Petit [27], Asarin, Caspi and
Maler [11], and Asarin and Dima [12]. Recently, the results of Bouyer and Petit as
well as those of Schützenberger have been extended to the class of weighted timed
automata by Droste and Quaas [44]. Furthermore, Kozen has extended Kleene’s lan-
guage with Boolean tests as a finitary representation of regular sets of guarded strings
and proved an analogue of Kleene’s theorem for automata on guarded strings [69].
From the aforementioned extensions, only the weighted automata example of Schützen-
berger and the automata on guarded strings of Kozen would fit in the framework we
will present in this thesis. The language we will derive is, however, different from
the ones they proposed. Schützenberger’s and Kozen’s languages had full sequential
composition and star in their syntax, instead of the action prefixing and unique fixed
point operators that we will use in our language.

Chapter 2

Preliminaries

We give the basic definitions on functors and coalgebras and introduce the notion of
bisimulation. We assume the reader is familiar with basic categorical concepts such
as category, functor and natural transformation.

2.1 Sets

First we fix notation on sets and operations on them. Let Set be the category of sets
and functions. Sets are denoted by capital letters X , Y, . . . and functions by lower case
f , g, We write ; for the empty set and the collection of all finite subsets of a set
X is defined as Pω(X) = {Y ⊆ X | Y finite}. The collection of functions from a set X

to a set Y is denoted by Y X . We write idX for the identity function on set X . Given
functions f : X → Y and g : Y → Z we write their composition as g ◦ f . The product of

two sets X , Y is written as X × Y , with projection functions X X × Y
π1 π2

Y .
The set 1 is a singleton set typically written as 1 = {∗} and it can be regarded as the
empty product. We define

X 3+ Y = (X ⊎ Y)∪ {⊥,⊤}

where ⊎ is the disjoint union of sets, with injections X
κ1

X ⊎ Y Y
κ2 , and ⊥

and ⊤ are distinct from the elements of X ⊎ Y . Note that the set X 3+ Y is different
from the classical coproduct of X and Y (which we shall denote by X + Y), because of
the two extra elements ⊥ and ⊤. These extra elements will later be used to represent,
respectively, underspecification and inconsistency in the specification of systems.
For each of the operations defined above on sets, there are analogous ones on func-

9

10 Chapter 2. Preliminaries

tions. Let f : X → Y , f1 : X → Y and f2 : Z →W . We define the following operations:

f1 × f2 : X × Z → Y ×W f1 3+ f2 : X 3+ Z → Y 3+W

(f1× f2)(〈x , z〉) = 〈 f1(x), f2(z)〉 (f1 3+ f2)(c) = c, c ∈ {⊥,⊤}
(f1 3+ f2)(κi(x)) = κi(fi(x)), i ∈ {1,2}

f A : X A→ Y A Pω(f): Pω(X)→ Pω(Y)

f A(g) = f ◦ g Pω(f)(S) = { f (x) | x ∈ S}

Note that here we are using the same symbols that we defined above for the opera-
tions on sets. It will always be clear from the context which operation is being used.
In our definition of non-deterministic functors we will use constant sets equipped with
an information order. In particular, we will use join-semilattices. A (bounded) join-
semilattice is a set B equipped with a binary operation ∨B and a constant ⊥B ∈ B,
such that ∨B is commutative, associative and idempotent. The element ⊥B is neutral
with respect to ∨B. As usual, ∨B gives rise to a partial ordering ≤B on the elements
of B: b1 ≤B b2⇔ b1 ∨B b2 = b2. Every set S gives rise to a join-semilattice by taking
B to be the set of all finite subsets of S with union as join.

2.2 Coalgebras

An F-coalgebra is a pair (S, f : S → F(S)), where S is a set of states and F : Set→ Set

is a functor. The functor F, together with the function f , determines the transition

structure (or dynamics) of the F-coalgebra [96].
An F-homomorphism h: (S, f) → (T, g), from a F-coalgebra (S, f) to a F-coalgebra
(T, g), is a function h: S → T preserving the transition structure, i.e., such that the
following diagram commute:

S
h

f

T

g g ◦ h= F(h) ◦ f

F(S)
F(h)

F(T)

2.2.1 DEFINITION (Final coalgebra). An F-coalgebra (Ω,ω) is said to be final if for
any F-coalgebra (S, f) there exists a unique F-homomorphism behS : (S, f)→ (Ω,ω):

S
behS

f

Ω

ω ω ◦ behS = F(behS) ◦ f

F(S)
F(behS)

F(Ω)

2.2. Coalgebras 11

♣

The notion of finality will play a key role later in providing semantics to the expres-
sions we will associate with functors in subsequent chapters. For that reason, it is
important to characterize a class of functors for which final coalgebras exist.
A functor is said to be bounded [53, Theorem 4.7] if there exists a natural surjection
η from a functor B × (−)A to F, for some sets B and A. For every bounded functor
there exists a final F-coalgebra (ΩF,ωF) [53,96].

2.2.2 DEFINITION (Subcoalgebra). Given an F-coalgebra (S, f) and a subset V of S

with inclusion map i : V → S we say that V is a subcoalgebra of S if there exists
g : V → F(V) such that i is a F-homomorphism:

V
i

g

S

f f ◦ i = F(i) ◦ g

F(V)
F(i)

F(S)

♣

The transition structure t is unique (this is a consequence of the fact that all Set

functors preserve monos):

2.2.3 THEOREM ([96, Proposition 6.1]). Let (S, f) be an F-coalgebra and let V be
a subset of S with inclusion map i : V → S. If k, l : V → F(V) are such that i is an

F-homomorphism both from (V, k) to (S, f) and from (V, l) to (S, f), then k = l.

Given s ∈ S, 〈s〉 = (T, t) denotes the smallest subcoalgebra generated by s, with T

given by

T =
⋂

{V | V is a subcoalgebra of S and s ∈ V } (2.1)

If the functor F preserves arbitrary intersections, then the subcoalgebra 〈s〉 exists.
This will be the case for every functor considered in this thesis.
We will write Coalg(F) for the category of F-coalgebras together with coalgebra ho-
momorphisms. We also write CoalgLF(F) for the category of F-coalgebras that are
locally finite: F-coalgebras (S, f) such that for each state s ∈ S the state space of the
generated subcoalgebra 〈s〉 is finite.

2.2.4 DEFINITION (Bisimulation). Let (S, f) and (T, g) be two F-coalgebras. A rela-
tion R ⊆ S × T is called a bisimulation [3] if there exists a map e : R→ F(R) such that
the projections π1 and π2 are coalgebra homomorphisms, i.e. the following diagram

12 Chapter 2. Preliminaries

commutes.

S

f

R
π2π1

∃e

T

g

F(S) F(R)
F(π1)F(π2)

F(T)

This is equivalent to the following alternative definition, which is sometimes more
convenient in proofs. A relation R⊆ S× T a bisimulation [58] iff

〈s, t〉 ∈ R⇒ 〈 f (s), g(t)〉 ∈ F(R)

where F(R) is defined as F(R) = {〈F(π1)(x),F(π2)(x)〉 | x ∈ F(R)}. ♣
We write s ∼F t whenever there exists a bisimulation relation containing (s, t) and we
call ∼F the bisimilarity relation. We shall drop the subscript F whenever the functor
F is clear from the context.

2.2.5 DEFINITION (Behavioral equivalence). Let (S, f) and (T, g) be F-coalgebras.
We say that the states s ∈ S and t ∈ T are behaviorally equivalent, written s ∼b t,
if and only if they are mapped into the same element in the final coalgebra, that is
behS(s) = behT (t). ♣
If two states are bisimilar then they are behaviorally equivalent (s ∼ t ⇒ s ∼b t). The
converse implication is only true for certain classes of functors. For instance, if the
functor F preserves weak-pullbacks then we also have s ∼b t ⇒ s ∼ t.
All the functors considered in this thesis, except the ones in Chapter 6, satisfy the
above property.
The main use of bisimulations is their application as a proof principle.

2.2.6 THEOREM (Coinduction). If (Ω,ω) is a final coalgebra and a, b ∈ Ω, then

a ∼ b⇒ a = b

PROOF. Let F be a functor with final coalgebra (Ω,ω) and let a, b ∈ Ω satisfying
a ∼ b. There exists a bisimulation R, with 〈a, b〉 ∈ R such that the following diagram
commutes.

Ω

ω

R
π2π1

∃e

Ω

ω

F(Ω) F(R)
F(π1)F(π2)

F(Ω)

By the properties of the final coalgebra there exist unique F-homomorphisms behΩ
and behR such that:

(Ω,ω)

(Ω,ω)

behΩ

(R, e)

behR

π2π1
(Ω,ω)

behΩ

2.2. Coalgebras 13

Thus, behΩ◦π1 = behR = behΩ◦π2, and since behΩ = idΩ, we can conclude that a = b.

This theorem implies that to prove that two states a and b in a final coalgebra are
equal it is enough to exhibit a bisimulation R containing the pair 〈a, b〉.
The following two theorems will be useful in the proofs of soundness and complete-
ness we shall present later.

2.2.7 THEOREM ([96, Proposition 5.8]). Let S be a set and R an equivalence relation

on S. Then the natural quotient map [−]: S → S/R is the co-equalizer of the projection

morphisms π1,π2 : R→ S. That is, for any other set T and map q : S→ T such that

s1Rs2⇒ q(s1) = q(s2)

there exists a unique morphism u: S/R→ T such that the following diagram commutes:

R
π1

π2

S
q

[−]
S/R

u

T

Moreover if S has a coalgebra structure f : S → F(S), then there exists a unique F-

coalgebra structure α: S/R→ F(S/R) such that [−] is a coalgebra homomorphism:

R
π1

π2

S

f

[−]
S/R

α

F(S)
F([−])

F(S/R)

2.2.8 THEOREM (Epi-mono factorization, [96, Theorem 7.1]). Given an F-homomor-

phism h: (S, f)→ (T, g), there exists a unique F-coalgebra (T , g) and homomorphisms

e : (S, f)→ (T , g) and m: (T , g)→ (T, g):

S

h

e

f

T

g

m
T

g

F(S)

F(h)

F(e)
F(T)

F(m)
F(T)

such that m is a monomorphism and e is an epimorphism.

Chapter 3

Automata as coalgebras

In this chapter we will illustrate many of the general concepts introduced in the pre-
vious chapter in a concrete setting. Thus, in contrast with the universal coalgebra of
the previous chapter we will now encounter concrete coalgebra.
The chapter has two parts: the first on deterministic automata, Kleene’s regular ex-
pressions and Kleene algebras and the second on Kleene algebra with tests (KAT).
Many of the results presented in the first part of the chapter have appeared in the
literature (e.g. in [29,39,61,68,95,97]). For completeness, we will include many of
the proofs of known results and in some cases we will present them in a different way.
This will allow us to introduce results and techniques which we will generalize in the
subsequent chapters. It should be said upfront that there will be a crucial difference
in the generalized languages of regular expressions, which we will introduce later,
and Kleene’s regular expressions, which we recall in this chapter. In the latter, full
sequential composition and star are used, whereas in the languages we shall introduce
we opted to have action prefixing and unique fixed point operators.
The results on KAT expressions are mostly due to Kozen [69, 70]. We follow up on
those results and present a new automata model for KAT expressions and a construc-
tion from expressions to automata. This part of the chapter will not play any role
later on the thesis, but we include it since KAT is one of the most basic extensions of
Kleene algebras, with various applications.
Most of the material in this chapter can be read without much knowledge of universal
coalgebra.

3.1 Deterministic automata and regular expressions

Let A be a set of input letters (or symbols). A deterministic automaton with inputs in A

is a pair (S, 〈oS , tS〉) consisting of a set of states S and a pair of functions 〈oS , tS〉, where
o : S→ 2 is the output function, which determines if a state s is final (oS(s) = 1) or not
(oS(s) = 0), and t : S → SA is the transition function, which, given an input letter a

determines the next state. We will frequently write sa to denote tS(s)(a) and refer to
sa as the derivative of s for input a. Moreover, when depicting deterministic automata

15

16 Chapter 3. Automata as coalgebras

we will draw a single circle around non-final states and a double circle around final
ones.
We illustrate the notation we will use in the representation of deterministic automata
in the following example.

s1

a
b

s2

b

a

oS(s1) = 0 oS(s2) = 1

(s1)a = s2 (s1)b = s1

(s2)a = s1 (s2)b = s2

Deterministic automata are coalgebras for the functor D(X) = 2× X A. The classical
notion of automata homomorphism will instantiate precisely to the definition of coal-
gebra homomorphism for the functor D: given two deterministic automata (S, 〈oS , ts〉)
and (T, 〈oT , tT 〉), a function h: S → T is a homomorphism if it preserves outputs and
input derivatives, that is oT (h(s)) = oS(s) and h(s)a = tT(h(s))(a) = tS(s)(a) = sa, for
any a ∈ A. These equations correspond to the commutativity of the following diagram.

S
h

〈oS ,tS〉

T

〈oT ,tT 〉

2× SA

id×hA 2× T A

The input derivative sa of a state s for input a ∈ A can be extended to the word
derivative sw of a state s for input w ∈ A∗ by defining, by induction on the length of w,
sε = s and saw′ = (sa)w′ , where ε denotes the empty word and aw′ the word obtained
by prefixing w′ with the letter a. This enables an easy definition of the semantics of a
state s of a deterministic automaton: the language L(s) ∈ 2A∗ recognized by s, that is
the language containing all words w for which L(s)(w) = 1, is given by:

L(s)(w) = oS(sw) (3.1)

For instance, the language recognized by state s1 of the automaton above is the
set of all words with an odd number of a’s. It is easy to check that, for example,
L(s1)(bab) = oS((s1)bab) = oS(s2) = 1 and L(s1)(aab) = oS((s1)aab) = oS(s1) = 0.

Given two deterministic automata (S, 〈oS , tS〉) and (T, 〈oT , tT 〉) a relation R ⊆ S × T is
a bisimulation if 〈s, t〉 ∈ R implies

oS(s) = oT (t) and 〈sa , ta〉 ∈ R for all a ∈ A

We will write s ∼ t whenever there exists a bisimulation R containing 〈s, t〉. This
concrete definition of bisimulation can be recovered as a special case of the gen-
eral definition of bisimulation for F-coalgebras (Definition 2.2.4) by instantiating the
functor F to D(X) = 2× X A. The following theorem guarantees that the definition
above is a valid proof principle for language equivalence of deterministic automata.

3.1. Deterministic automata and regular expressions 17

3.1.1 THEOREM (Coinduction). Given two deterministic automata (S, 〈oS , tS〉) and

(T, 〈oT , tT 〉), s ∈ S and t ∈ T :

s ∼ t ⇒ L(s) = L(t)

PROOF. Let R be a bisimulation relation containing 〈s, t〉. We prove, by induction on
the length of words w ∈ A∗, that, for all 〈s, t〉 ∈ R, w ∈ L(s)⇔ w ∈ L(t).

L(s)(ε) = oS(s)
s∼t
= oT (t) = L(t)

L(s)(aw′) = oS(saw′) = oS((sa)w′) = oT ((ta)w′) = L(t)

The one but last step follows using the induction hypothesis and the fact that 〈sa , ta〉 ∈
R.

To determine whether two states s and t of two deterministic automata (S, 〈oS , tS〉)
and (T, 〈oT , tT 〉) (over the same alphabet) recognize the same language we can now
use coinduction: it is enough to construct a bisimulation containing 〈s, t〉.

3.1.2 EXAMPLE. Let (S, 〈oS , tS〉) and (T, 〈oT , tT 〉) be the deterministic automata over
the alphabet {a, b} given by

s1

b

a s2 a

b

t1

a

b
t2 a,b

s3 a,b

The relation R = {〈s1, t1〉, 〈s2, t1〉, 〈s3, t2〉} is a bisimulation:

oS(s1) = oS(s2) = 0= oT (t1) oS(s2) = 1= oT (t2)

(s1)a = s2 R t1 = (t1)a (s2)a = s2 R t1 = (t1)a (s3)a = s3 R t2 = (t2)a

(s1)b = s3 R t2 = (t1)b (s2)b = s2 R t2 = (t1)b (s3)b = s3 R t2 = (t2)b

Thus, L(s1) = L(t1) = L(s2) and L(s3) = L(t3). ♠

The language recognized by a state s is the behavior (or semantics) of s. Thus, the
set of languages 2A∗ over A can be thought of as the universe of all possible behaviors
for deterministic automata. We now turn 2A∗ into a deterministic automaton (with
inputs in A) and then show that such automaton has the universal property of being
final, which will connect the coalgebraic semantics induced by the functor with the
classical language semantics we have just presented.
For an input letter a ∈ A, the input derivative la of a language l ∈ 2A∗ on input a is
defined by la(w) = l(aw). The output of l is defined by l(ε). These notions determine
a deterministic automaton (2A∗ , 〈oL , t L〉) defined, for l ∈ 2A∗ and a ∈ A, by oL(l) = l(ε)

and t L(l)(a) = la.

18 Chapter 3. Automata as coalgebras

3.1.3 THEOREM. The automaton (2A∗ , 〈oL , t L〉) is final. That is, for any deterministic

automaton (S, 〈oS , tS〉), there is a unique homomorphism L : S → 2A∗ which makes the

following diagram commute.

S
L

〈oS ,tS〉

2A∗

〈oL ,t L〉

2× SA

id×LA
2× (2A∗)A

Given a state s, the language L(s) is precisely the language recognized by s (as defined in

equation (3.1)).

PROOF. We have to prove that the diagram commutes and that L is unique. First the
commutativity:

oL(L(s)) = L(s)(ε) = oS(s)

t L(L(s))(a) = L(s)a = λw.L(s)(aw) = λw.L(sa)(w) = L(sa)

For the one but last step, note that, by definition of L (equation (3.1))

L(s)(aw) = oS(saw) = oS((sa)w) = L(sa)(w)

For the uniqueness, suppose there is another morphism h: S→ 2A∗ such that, for every
s ∈ S and a ∈ A, oL(h(s)) = oS(s) and h(s)a = h(sa).
We prove by induction on the length of words w ∈ A∗ that h(s) = L(s).

h(s)(ε) = oL(h(s)) = oS(s) = L(s)(ε)

h(s)(aw) = (h(s)a)(w) = h(sa)(w)
(IH)
= L(sa)(w) = L(s)(aw)

The semantics induced by the unique map L into the final coalgebra coincides, in the
case of deterministic automata, with the bisimulation semantics we defined above,
that is s ∼ t⇔ L(s) = L(t) (the implication in Theorem 3.1.1 is actually an equiva-
lence). This phenomenon is an instance of the general fact we presented in the last
chapter that behavioral equivalence coincides with bisimilarity for many functors, in-
cluding the deterministic automata functor D = 2× IdA. This fact will actually be true
for most functors we consider in this thesis, apart from some of the ones considers in
Chapter 6.

We will now recall the basic definitions and results on regular expressions. The set
R(A) of regular expressions over a finite input alphabet A is given by the following
syntax:

r1, r2::= 1 | 0 | a ∈ A | r1+ r2 | r1r2 | r∗1

3.1. Deterministic automata and regular expressions 19

The semantics of regular expressions is given in terms of languages1 and it is defined
by induction on the syntax as follows:

L(1) = {ε} L(0) = ; L(a) = {a}
L(r1+ r2) = L(r1)∪ L(r2) L(r1r2) = L(r1) · L(r2) L(r∗1) = L(r1)

∗ (3.2)

where, given languages l, l1 and l2, l1 · l2 = {w1w2 | w1 ∈ l1 and w2 ∈ l2}; l∗ =
⋃

n∈N ln,
and, for n ∈ N, ln is inductively defined by l0 = {ε} and ln+1 = l · ln.
Here, we have intentionally used L(r) to represent the language denoted by a reg-
ular expression r ∈ R(A) (recall that we had used L(s) to represent the language
recognized by a state s of a deterministic automaton). This is because we shall prove
later that the languages recognized by deterministic automata are precisely the ones
denoted by regular expressions.
We now equip the set R(A) with a deterministic automaton structure. This definition
was first proposed by Brzozowski in his paper Derivatives of regular expressions [29]
and, for that reason, it is sometimes referred to as Brzozowski derivatives. We define
the output oR(r) of a regular expression r by

oR(0) = 0 oR(r1 + r2) = oR(r1)∨ oR(r2)

oR(1) = 1 oR(r1r2) = oR(r1)∧ oR(r2)

oR(a) = 0 oR(r
∗) = 1

and the input derivative tR(r)(a) = ra by

(0)a = 0 (r1+ r2)a = (r1)a + (r2)a

(1)a = 0 (r1r2)a =

¨

(r1)a r2 if oR(r1) = 0

(r1)a r2 + (r2)a otherwise

(a)a′ =

¨

1 if a = a′

0 if a 6= a′
(r∗)a = ra r∗

In the definition of oR we use the fact that 2 = {0,1} can be given a lattice structure
({0,1},∨,∧, 0, 1) (0 is neutral with respect to ∨ and 1 with respect to ∧).
Similarly to what happened in deterministic automata, the input derivative ra of a
regular expression r for input a can be extended to the word derivative rw of r for
input w ∈ A∗ by defining rε = r and raw = (ra)w .

1Here, we represent languages as subsets of A∗, rather than functions 2A∗ . Although we prefer the
latter view on languages, the traditional semantics of regular expressions was presented as sets of words
and we recall it here unchanged. We will only use the set view on languages when referring to the classical
semantics of regular expressions.

20 Chapter 3. Automata as coalgebras

We have now defined a deterministic automaton (R(A), 〈oR, tR〉) and thus, by Theo-
rem 3.1.3, we have a unique map L which makes the following diagram commute.

R(A)
L

〈oR ,tR〉

2A∗

〈oL ,t L〉

2× (R(A))A
id×LA

2× (2A∗)A

(3.3)

We now prove that, for any r ∈ R(A), the semantics defined inductively in (3.2) is
the same as the one given by the unique map into the final coalgebra L : R(A)→ 2A∗ .
More precisely, we prove, by induction on the structure of r, that

w ∈ L(r)⇔ oR(rw) = 1

where L(r) is the inductively defined semantics from equation (3.2).

L(0) = ;
L(1) = {ε} and oR((1)ε) = 1

L(a) = {a} and oR((a)a) = 1

w ∈ L(r1+ r2)⇔ w ∈ L(r1) or w ∈ L(r2)

(IH)
⇔ oR((r1)w) = 1 or oR((r2)w) = 1⇔ oR((r1+ r2)w) = 1

w ∈ L(r1r2)⇔ w = w1w2, with w1 ∈ L(r1) and w2 ∈ L(r2)

(IH)
⇔ oR((r1)w) = 1 and oR((r2)w) = 1⇔ oR((r1r2)w) = 1

w ∈ L(r∗)⇔ w ∈ L(r)n, for some n ∈ N⇔ w = w1 . . . wn with wi ∈ L(r)

(IH)
⇔ w = w1 . . . wn with oR(rwi

) = 1⇔ oR((r
∗)w) = 1

We have now proved that the classical semantics of both deterministic automata and
regular expressions coincides with the coalgebraic semantics. In the sequel, we will
say that a regular expression r and a state s of a deterministic automaton are equiva-
lent if L(s) = L(r).
Next, we present Kleene’s theorem, which states the equivalence between the class
of languages recognized by finite deterministic automata (finite here means that the
set of states S and the input alphabet A are finite) and the one denoted by regular
expressions.

3.1.4 THEOREM (Kleene’s Theorem). Let l ∈ 2A∗ . The following are equivalent.

1. l = L(r), for some regular expression r ∈ R(A).

2. l = L(s), for state s ∈ S of a finite deterministic automaton (S, 〈oS , tS〉).

3.1. Deterministic automata and regular expressions 21

The proof of this theorem amounts to constructing an equivalent regular expression
from a state of a deterministic automaton and, conversely, to constructing a determi-
nistic automaton which has a state that is equivalent to a given regular expression.
We will sketch these constructions in the next two sections.

3.1.1 From deterministic automata to regular expressions

To present the construction of a regular expression from a state of a deterministic
automaton we need to introduce some algebraic laws to simplify regular expressions.
For regular expressions r1, r2, if L(r1) = L(r2) we say that r1 and r2 are equivalent and
we write r1 ≡ r2. The relation ≡⊆ R(A)×R(A) is an equivalence relation. Moreover,
if r1 ≡ r2, one can substitute r1 for r2, or vice versa, in any regular expression and the
result will be equivalent to the original expression.
Below are a few laws that can be used to simplify regular expressions.

r1 + (r2 + r3) ≡ (r1 + r2) + r3

r1 + r2 ≡ r2 + r1

r + r ≡ r

r + 0 ≡ r

r1(r2r3) ≡ (r1r2)r3

(r2+ r3)r1 ≡ r2r1 + r3r1

r1 ≡ r ≡ 1r

r0 ≡ 0 ≡ 0r

r r∗ + 1 ≡ r∗

r1 + r2 x ≤ x ⇒ r∗2 r1 ≤ x

where ≤ refers to subset inclusion: r1 ≤ r2 ⇔ L(r1) ⊆ L(r2)⇔ r1 + r2 ≡ r2. The
last law above is not an equation but it will allow the derivation of equations: it
states that the inequality r1 + r2 x ≤ x has r∗2 r1 as least solution. Below we will make
use of this fact to solve equations of the form x ≡ r1 + r2 x . Note that using the
laws above we can prove that r∗2 r1 is also the least solution of the latter equation
(r∗2 r1 ≡ (r2r∗2 + 1)r1 ≡ r2(r

∗
2 r1) + r1). If ε 6∈ L(r2) then r∗2 r1 is actually the unique

solution [101].
Let (S, 〈oS , tS〉) be a finite deterministic automaton. We associate with each s ∈ S an
equation

rs ≡
∑

a∈A

arsa
+ oS(s) (3.4)

Note that the sum here is well defined because A is finite. In this way, we build a
system with n equations and n variables, where n is the size of S. We can solve it by
using the laws above. The fact that the resulting rs is equivalent to s is an easy proof
by coinduction. The relation

R= {〈r, s〉 | r ≡ rs, s ∈ S}

is a bisimulation: for any r ≡ rs, we have that oR(r) = oR(rs) = oS(s), ra ≡ (rs)a ≡ rsa

and 〈rsa
, sa〉 ∈ R.

22 Chapter 3. Automata as coalgebras

We will first illustrate the construction with an example and then we will present a
formal definition of the solution of a system of equations of the same form as (3.4)
using matrices.

3.1.5 EXAMPLE. Consider the following deterministic automaton over the alphabet
A= {a, b}:

s1

a
b

s2

b

a

Let r1 and r2 denote rs1
and rs2

, respectively. The system of the equations arising from
the automaton is the following:

r1 ≡ (ar2 + br1) + 0 r2 ≡ (ar1 + br2) + 1

Using the laws above we can rewrite the second equation to r2 ≡ (ar1 + 1) + br2 and
then solve it which yields r2 ≡ b∗(ar1 + 1) or, simplified, r2 ≡ b∗ar1 + b∗. We then
replace r2 in the first equation and simplify it:

r1 ≡ (a(b∗ar1+ b∗) + br1) + 0≡ (ab∗a+ b)r1+ ab∗

Solving it and then replacing it in the equation for r2 results in the following two
expressions

r1 ≡ (ab∗a+ b)∗ab∗ r2 ≡ b∗a(ab∗a+ b)∗ab∗ + b∗

which satisfy L(r1) = L(s1) and L(r2) = L(s2). ♠

We will conclude this section by recalling from [67] a formalization of a system of n

equations of the form

x i ≡ ai1 x1+ . . .+ ain xn + oi 1≤ i ≤ n

Constructing an n× n matrix T with all the ai j , an n× 1 vector O with all the oi and
an n× 1 vector X with all the x i , we obtain the matrix-vector equation

X = T X +O (3.5)

Moreover, we define, for an n × n matrix R, with entries r ∈ R(A), a matrix R∗, by
induction on n.
If n= 1, then the matrix R is reduced to a single entry r and R∗ = r∗.
If n≥ 1, we divide the matrix into four submatrices

R =

�

A B

C D

�

with A and D are square with dimensions, respectively, m×m (for some m< n) and
(n−m)× (n−m). By induction hypothesis, we can use A∗, B∗, C∗ and D∗. This allows
us to define

R∗ =

�

(A+ BD∗C)∗ (A+ BD∗C)∗BD∗

(D+ CA∗B)∗CA∗ (D+ CA∗B)∗

�

3.1. Deterministic automata and regular expressions 23

Now, one can show that the vector T ∗O is the least (with respect to the pointwise
order ≤ of regular expressions) solution to the system in (3.5) [67, Theorem A.3].
Let us revisit the example above using this method. First, we construct the matrices
X , T and O:

X =

�

r1

r2

�

T =

�

b a

a b

�

O =

�

0
1

�

Now we compute T ∗

T ∗ =

�

(b+ ab∗a)∗ (b+ ab∗a)∗ab∗

(b+ ab∗a)∗ab∗ (b+ ab∗a)∗

�

and T ∗O

T ∗O =

�

((b+ ab∗a)∗)0+ ((b+ ab∗a)∗ab∗)1
((b+ ab∗a)∗ab∗)0+ ((b+ ab∗a)∗)1

�

≡
�

(b+ ab∗a)∗ab∗

(b+ ab∗a)∗

�

In the last step we used some of the equations to simplify regular expressions. Now
note that the expression computed for r1 is (almost) the same as the one we obtained
in the example above, whereas the one for r2 is quite different (syntactically), but still
equivalent. We will show the proof of this equivalence later in Example 3.1.17.

3.1.2 From regular expressions to deterministic automata

Given a regular expression r we want to construct a finite deterministic automa-
ton with an equivalent (that is, bisimilar) state to r. We have shown that the set
R(A) of regular expressions over A carries a deterministic automata structure given by
〈oR, tR〉. Hence, an obvious way of constructing an automaton with a state equivalent
to a regular expression r is to consider the subcoalgebra 〈r〉 generated by r in 〈oR, tR〉
(this idea goes back to Brzozowski [29], the state r of the constructed automaton will
equivalent to the regular expression r). However, even for very simple expressions
〈r〉 might not be finite. Take, for example, the expression (a∗)∗. Computing the input
derivative for a yields:
((a∗)∗)a = (1a∗)(a∗)∗

((1a∗)(a∗)∗)a = (0a∗ + 1a∗)(a∗)∗ + (1a∗)(a∗)∗

((0a∗ + 1a∗)(a∗)∗ + (1a∗)(a∗)∗)a = ((0a∗ + 0a∗ + 1a∗)(a∗)∗ + (1a∗)(a∗)∗) + ((1a∗)(a∗)∗)a
...

Now note that all the derivatives are above equivalent. However, they are syntacti-
cally different and therefore they will not be identified as denoting the same state,
which results in 〈(a∗)∗〉 having an infinite state space. In order to achieve finite-
ness, it is enough to remove double occurrences of expressions r in sums of the form
. . . + r + . . . + r + This uses the laws for associativity, commutativity and idem-
potency of + (ACI), but note that it does not amount to take the quotient of R(A)

with respect to the equivalence induced by the laws ACI, which would also guarantee
finiteness [29,39] but would identify more expressions. For instance, the expressions
a+ b and b+ a for a, b ∈ A with a 6= b will not be identified in our procedure.

24 Chapter 3. Automata as coalgebras

The following proposition provides a syntactic characterization of the derivative rw ,
for a word w ∈ A+ and r ∈ R(A).

3.1.6 PROPOSITION. Let w ∈ A∗ and r, r1, r2 ∈ R(A). Then, the word derivatives of

(r1+ r2), r1r2 and r∗ are of the form:

(r1 + r2)w = (r1)w + (r2)w

(r1r2)w = (r1)w1
r2 + · · ·+ (r1)wk

r2 + (r2)w′1 + · · ·+ (r2)w′
l

(r∗)w = rw1
r∗ + · · ·+ rwm

r∗

for k, l, m ≥ 0, wi , w′
i
∈ A∗.

PROOF. By induction on the length of w ∈ A∗. For w = ε, the equalities hold trivially.
For w = aw′, we have:

(r1+ r2)aw′ = ((r1)a + (r2)a)w′
(IH)
= (r1)aw′ + (r2)aw′

(r1r2)aw′ =

¨

((r1)a r2)w′ if oR(r1) = 0

((r1)a r2)w′ + (r2)aw′ otherwise

(IH)
=

(

(r1)aw1
r2 + · · ·+ (r1)awk

r2+ (r2)w′1 + · · ·+ (r2)w′
l

if oR(r1) = 0

(r1)aw1
r2 + · · ·+ (r1)awk

r2+ (r2)w′1 + · · ·+ (r2)w′
l
+ (r2)aw′ otherwise

(r∗)aw′ = (rar∗)w′ = raw1
r∗ + · · ·+ rawk

r∗ + (r∗)w′1 + · · ·+ (r
∗)w′

l

(IH)
= ru1

r∗ + · · ·+ rum
r∗

Using Proposition 3.1.6, we can now prove that the number of word derivatives of
a regular expression is finite, if double occurrences of expressions r1 in sums of the
form . . .+ r1 + . . .+ r1 + . . . are removed.

3.1.7 THEOREM. Let r ∈ R(A). The number of word derivatives rw is finite, as long
as double occurrences of expressions r1 in sums of the form . . .+ r1 + . . .+ r1 + . . . are

removed.

PROOF. By induction on the structure of the expression. The base cases are trivial:
they have either one, two or three distinct word derivatives. The sum r1 + r2 has as
upper-bound for the number of derivatives, once we remove the double occurrences
in the sum, N ×M ; the concatenation r1r2 has as bound 2N+M ; and the star (r1)

∗ has
2N , where N and M are the inductive bounds for r1 and r2.

We now illustrate the construction of an automaton using the procedure described
above.

3.1. Deterministic automata and regular expressions 25

3.1.8 EXAMPLE. Let A = {a, b} and r = (ab + b)∗ba. We compute derivatives incre-
mentally, marking with Ø the derivatives that are not new and numbering the new
ones:

rε = (ab+ b)∗ba 1

ra = (1b+ 0)(ab+ b)∗ba+ 0a 2

rb = (0b+ 1)(ab+ b)∗ba+ 1a 3

raa = (0b+ 0)(ab+ b)∗ba+ 0a 4

rab = (0b+ 1+ 0)(ab+ b)∗ba+ 0a 5

rba = (0b+ 0)(ab+ b)∗ba+ (1b+ 0)(ab+ b)∗ba+ 0a+ 0a+ 1= raa + ra + 1 6

rbb = (0b+ 0)(ab+ b)∗ba+ (0b+ 1)(ab+ b)∗ba+ 1a+ 0a+ 0= raa + rb + 0 7

raaa = (0b+ 0)(ab+ b)∗ba+ 0a = raa Ø

raab = (0b+ 0)(ab+ b)∗ba+ 0a = raa Ø

raba = (0b+ 0)(ab+ b)∗ba+ (1b+ 0)(ab+ b)∗ba+ 0a+ 0a = raa+ ra 8

rabb = (0b+ 0)(ab+ b)∗ba+ (0b+ 1)(ab+ b)∗ba+ 1a+ 0a = raa+ rb 9

rbaa = raa+ 0 10

rbab = raa+ rab+ 0 11

rbba = raa+ rba+ 0= raa+ ra+ 1+ 0 12

rbbb = raa+ rbb+ 0= rbb Ø

rabaa = raa Ø

rabab = raa + rab 13

rabba = raa + rba = rba Ø

rabbb = raa + rbb = rbb Ø

rbaaa = rbaa Ø

rbaab = rbaa Ø

rbaba = raa + raba + 0= raa+ ra+ 0 14

rbabb = raa + rabb + 0= raa + rb + 0= rbb Ø

rbbaa = raa + 0= rbaa Ø

rbbab = raa + rab + 0= rbab Ø

rababa = raa+ raba = raba Ø

rababb = raa+ rabb = rabb Ø

rbabaa = raa+ 0= rbaa Ø

rbabab = raa+ rab+ 0= rbab Ø

26 Chapter 3. Automata as coalgebras

The resulting automaton will have 14 states (note also that only rba and rbba have
output value 1):

raa

a,b

ra
b

a

rab
a

b

raba

a

b

r

a

b

rbb b

a

rabab

a

b

rb

b

a

rabb
a

b

rba

a

b rbab

a

b

rbba

a

b

rbaa

a,b

rbabaa

b

In the above calculations, we strictly followed the procedure described above. The
goal was to construct a finite deterministic automaton with a state equivalent to the
regular expression r and we did not worry about its size. It is however obvious that
by allowing the simplification of certain expressions the resulting automaton would
be much smaller. For instance, let us add to the procedure the following three rules:
0r can be replaced by 0; 1r can be replaced by r and 0 can be eliminated from sums.
The calculations for r would then be much more simplified (and easier to read):

rε = (ab+ b)∗ba 1

ra = b(ab+ b)∗ba 2

rb = (ab+ b)∗ba+ a 3

raa = 0 4

rab = (ab+ b)∗ba = r Ø

rba = b(ab+ b)∗ba+ 1 5

rbb = (ab+ b)∗ba+ a = rb Ø

raaa = 0= raa Ø

raab = raa Ø

rbaa = 0= raa Ø

rbab = (ab+ b)∗ba = r Ø

3.1. Deterministic automata and regular expressions 27

The resulting automaton would then have 5 states:

r

a

b rb

b

a

ra

b

a
raa

a,b

rba

b

a

♠
In fact, this is the minimal automaton recognizing the language denoted by r. Note
that the axioms we considered to simplify r are not always enough to get the minimal
automaton (for that one would have to consider the complete set of axioms we will
present later in this chapter). However, in many cases the automata computed is
minimal: an empirical study about this phenomenon appears in [88].

3.1.3 Non-deterministic automata and the subset construction

A non-deterministic automaton (NDA) is similar to a deterministic automaton but
the transition function gives a set of next-states for each input letter instead of a
single state. NDA’s often provide compacter representations of regular languages than
deterministic automata. For that, they are computationally very interesting and much
research has been devoted to constructions compiling a regular expression into an
NDA [9, 19, 34, 49, 80, 111] (we will show an example of such construction below).
Surprisingly, in what concerns language acceptance NDA’s are not more powerful than
deterministic automata. For every NDA there exists a deterministic automaton with
a state equivalent to a given state of the NDA. Such deterministic automaton can be
obtained from a given NDA by the so-called subset (or powerset) construction [93],
which we will show below coalgebraically.
Formally, an NDA over the input alphabet A is a pair (S, 〈o,δ〉), where S is a set of
states and 〈o,δ〉: S→ 2× (Pω(S))A is a pair of functions with o as before and where δ
determines for each input letter a a set of possible next states.
As an example of the compactness of NDA’s, consider the following regular language
(taken from [67]):

{w ∈ {a, b}∗ | the fifth symbol from the right is a}

One can intuitively construct a NDA with a state s recognizes this language (which
could be, for instance, denoted by the regular expression (a+ b)∗a(a+ b)(a+ b)(a+

b)(a+ b)):

s

a,b

a
5

a,b
4

a,b
3

a,b
2

a,b
1

28 Chapter 3. Automata as coalgebras

A deterministic automaton recognizing the same language will have at least 25 = 32
states.
In order to formally compute the language recognized by a state x of an NDA A, it
is usual to first determinize it, constructing a deterministic automaton det(A) where
the state space is Pω(S), and then compute the language recognized by the state {x}
of det(A). Next, we describe in coalgebraic terms how to construct the automaton
det(A) [96].
Given an NDA A = (S, 〈o,δ〉), we construct det(A) = (Pω(S), 〈o,δ〉), where, for all
Y ∈ Pω(S), a ∈ A, the functions o : Pω(S)→ 2 and δ : Pω(S)→ Pω(S)

A are

o(Y) =

¨

1 if ∃y∈Y o(y) = 1

0 otherwise
δ(Y)(a) =

⋃

y∈Y

δ(y)(a).

The automaton det(A) is such that the language L({x}) recognized by {x} is the same
as the one recognized by x in the original NDA A (more generally, the language
recognized by state X ∈ Pω(S) of det(A) is the union of the languages recognized by
each state x ∈ X of A).
We summarize the situation above with the following commuting diagram:

S

〈o,δ〉

{·}
Pω(S)

〈o,δ〉

L
2A∗

〈oL ,t L〉

2×Pω(S)
A 2× (2A∗)A

We note that the language semantics of NDA’s, presented in the above diagram, can
alternatively be achieved by using λ-coinduction [16,61].

From regular expressions to non-deterministic automata: the Berry-Sethi
construction

There are several algorithms to construct a non-deterministic automaton from a reg-
ular expression. We will show here the one presented in [19] by Berry and Sethi.
We shall generalize this algorithm in the next section in order to deal with the ex-
pressions of Kleene algebra with tests. The basic idea behind the algorithm is that
of marking: all input letters in a regular expression are marked (with subscripts)
in order to make them distinct. As an example, a marked version of (ab + b)∗ba is
(a1 b2 + b3)

∗b4a5, where a1 and a5 are considered different letters. The choice we
made for the subscripts are the positions of the letters in the expression. For that
reason the Berry-Sethi construction is often referred to as position automata.
We will explain the algorithm with an example (taken from [19]) and then state the
results that justify its correctness.

3.1.9 EXAMPLE. Let r = (ab + b)∗ba and let r = (a1 b2 + b3)
∗b4a5 be its marked

version. We define ci = (r)a1 ...ai
and call it the continuation i of r. We then construct

an automaton from r in the following way:

3.1. Deterministic automata and regular expressions 29

1. The automaton will have a state i ∈ {1,2,3,4,5} for each distinct symbol in r

plus an extra state 0 which will be equivalent to r.

2. A state i has a transition to state j, labeled by a j , if (ci)a j
= c j . A state i is final

if oR(ci) = 1.

The automaton resulting from r = (a1 b2 + b3)
∗b4a5 is the following

0

a1
b3

b4

1

b2

3
b4

a1
b3

4
a5

5

c0 = (r) = (a1 b2 + b3)
∗b4a5

c1 = (r)a1
= b2(a1 b2 + b3)

∗b4a5

c2 = (r)a1 b2
= (c1)b2

= (a1 b2 + b3)
∗b4a5

c3 = (r)a1 b2 b3
= (c2)b3

= (a1 b2 + b3)
∗b4a5

c4 = (r)a1 b2 b3 b4
= (c3)b4

= a5

c5 = 1

2

b4

a1
b3

Note that to compute the transition structure we had to compute all input derivatives
for each ci . This can be overcome by using some of the properties of derivatives of
expressions with distinct symbols (more below). Now, note that by deleting all the
marks in the labels of the automaton above the state 0 of the resulting NDA accepts
precisely the language denoted by (ab+ b)∗ba (all words that finish with ba and all
other occurrences of a are followed by one or more b’s).

0

a
b

b

1

b

3
b

a
b

4
a

5

2

b

a
b

(3.6)

♠

The algorithm above works as expected due to the properties of derivatives of expres-
sions with distinct letters. We summarize the crucial properties for the correctness of
the algorithm.

3.1.10 THEOREM ([19, Proposition 3.2 and Theorem 3.4]). Let r be the regular expres-

sion obtained from r by marking all symbols to make them distinct. Then, the following

holds:

30 Chapter 3. Automata as coalgebras

1. If A′ is an automaton with a state s such that L(s) = L(r), then the state s of

the automaton A, obtained from A′ by unmarking all the labels, is such that

L(s) = L(r).

2. Given any symbol a and word w, the derivative (r)aw is either 0 or unique modulo

associativity, commutativity and idempotency.

Starting from a regular expression r ∈ R(A), we can then obtain a non-deterministic
automaton by first marking the symbols, then apply the algorithm above and finally
unmarking the labels. If wanted, a deterministic automaton can then be obtained
via the subset construction (the complexity of this construction for position automata
was studied in [33]).
In [19], the authors presented also a more efficient way of computing the position
automaton, based on the fact that each continuation is uniquely determined by an
input symbol. We briefly recall it here, since this is precisely the version we will later
generalize for KAT expressions. Let pos(r) denote the positions (distinct symbols) in
the regular expression r. For any regular expression r and i ∈ pos(r) we define:

first(r) = {i | pi w ∈ L(r)}
follow(r, i) = { j | upi p j v ∈ L(r)}
last(r) = {i | wpi ∈ L(r)}

This sets can be computed efficiently from the expression: we recall [19, Proposition
4.3].

3.1.11 PROPOSITION ([19, Proposition 4.3]). Let r be a regular expression with distinct

symbols. F, defined by the rules below, is such that F(r, {!}) yields a set of pairs of the

form 〈ai , follow(r!, ai)〉, where ! is a symbol distinct from all symbols in r. The rules are:

F(r1 + r2,S) = F(r1,S)∪ F(r2,S)
F(r1r2,S) = F(r1,first(r2)∪ oR(r2).S)∪ F(r2,S)
F(r∗1 ,S) = F(r1,first(r1)∪ S)

F(a,S) = {〈a,S〉}
F(1,S) = F(0,S) = ;

Here, for a set S, 1.S = S and 0.S = ;. Note that in F also the set last(r) is computed:

i ∈ last(r)⇔! ∈ follow(r!, i).

The position automaton corresponding to a given regular expression r ∈ R(A) is then
given by

Apos(r) = ({0} ∪ pos(r),A, 〈o,δ〉)
where r is the marked version of r and o and δ are defined as follows:

oS(0) = oR(r) δ(0)(a) = { j | j ∈ first(r),unmark(a j) = a}

oS(i) =

¨

1 if i ∈ last(r)

0 otherwise
δ(i)(a) = { j | j ∈ follow(r, i),unmark(a j) = a} i 6= 0

3.1. Deterministic automata and regular expressions 31

We show an example of the algorithm above. We consider again r = (ab+ b)∗ba and
its marked version r = (a1 b2 + b3)

∗b4a5.

first(r) = {1,3,4} first(a1 b2 + b3) = {1,3} first(a1b2) = {1} first(b4a5) = {4}
F(r, {!}) = F((a1b2 + b3)

∗, {4})∪ F(b4a5, {!})
= F(a1 b2 + b3, {1,3,4}) ∪ F(b4, {5})∪ F(a5, {!})
= F(a1 b2, {1,3,4}) ∪ F(b3, {1,3,4}) ∪ {〈b4, {5}〉, 〈a5, {!}〉}
= F(a1, {2})∪ F(b2, {1,3,4}) ∪ {〈b3, {1,3,4}〉, 〈b4 , {5}〉, 〈a5, {!}〉}
= {〈a1, {2}〉, 〈b2, {1,3,4}〉, 〈b3 , {1,3,4}〉, 〈b4 , {5}〉, 〈a5, {!}〉}

The position automaton Apos(r) constructed is the same as the one presented above
in (3.6).
It should be remarked that the construction of the position automaton from a regular
expression does not always extend to additional operators, such as intersection or
complement.

3.1.4 Kleene algebras

In Section 3.1.1, we showed a set of algebraic laws that allow for a sound simplifi-
cation of regular expressions with respect to language equivalence. In this section,
we will show a set of laws (which includes the aforementioned ones) that is sound
and complete: all true equations between regular expressions can be proved purely
algebraically using only the equations included in this set.

3.1.12 DEFINITION (Kleene algebra). A Kleene algebra K= (Σ,+, ·, (−)∗, 0, 1) consists
of a nonempty set Σ with two distinguished elements 0 and 1, two binary operations
+ and · (usually omitted when writing the expressions) and a unary operation (−)∗
satisfying the following axioms, for e, e1, e2, e3 ∈ Σ:

e1 + (e2+ e3) ≡ (e1 + e2) + e3 (associativity of +)
e1 + e2 ≡ e2 + e1 (commutativity of +)
e+ e ≡ e (idempotency of +)
e+ 0 ≡ e (0 is an identity of +)

e1(e2e3) ≡ (e1e2)e3 (associativity of ·)
e1 ≡ e ≡ 1e (1 is an identity of ·)
e0 ≡ 0 ≡ 0e (0 is an annihilator of ·)

(e2 + e3)e1 ≡ e2e1 + e3e1 (right distributivity)
e1(e2 + e3) ≡ e1e2 + e1e3 (left distributivity)
e∗e+ 1 ≡ e∗

ee∗ + 1 ≡ e∗

e1 + e2 x ≤ x ⇒ e∗2e1 ≤ x

e1 + xe2 ≤ x ⇒ e1e∗2 ≤ x

where ≤ is defined by e ≤ f ⇔ e+ f ≡ f . ♣

32 Chapter 3. Automata as coalgebras

The first group of rules, which summarizes the properties of +, essentially says that K

is a join-semilattice. Together with the second group, which contains the properties
of · and its interaction with +, it states that K is an idempotent semiring. The last
group of rules axiomatizes the star operator. It follows quite easily from the axioms
that ≤ is a partial order. Moreover, all the operators are monotone with respect to ≤:
if e1 ≤ e2 then e1e ≤ e2e, ee1 ≤ ee2, e1 + e ≤ e2 + e and e∗1 ≤ e∗2.
Typical examples of Kleene algebras are [67]:

– The set 2A∗ of languages over an input alphabet A with constants ; and {ε} and
operations ∪, · and ∗. In 2A∗ , ≤ is just set inclusion.

– The family of all binary relations over a set X with the empty relation for 0, the
identity relation for 1, union for +, relational composition for · and the reflexive
transitive closure operator for (−)∗.

– The family of n× n matrices over a Kleene algebra K = (Σ,+, ·, (−)∗, 0, 1). We
show the operations and identity elements for the case n = 2. The identity
elements for + and · are

�

0 0
0 0

� �

1 0
0 1

�

respectively, and the operations +, · and (−)∗ are given by
�

e1 e2

e3 e4

�

+

�

e5 e6

e7 e8

�

=

�

e1+ e5 e2 + e6

e3+ e7 e4 + e8

�

,

�

e1 e2

e3 e4

�

·
�

e5 e6

e7 e8

�

=

�

e1e5+ e2e7 e1e6 + e2e8

e3e5+ e4e7 e3e6 + e4e8

�

,

and
�

e1 e2

e3 e4

�∗
=

�

(e1+ e2e∗4e3)
∗ (e1+ e2e∗4e3)

∗e2e∗4
(e4+ e3e∗1e2)

∗e3e∗1 (e4 + e3e∗1e2)
∗

�

,

respectively. The sum and product operations are just standard matrix sum and
multiplication.

Two regular expressions r1 and r2 are equivalent (that is, they denote the same lan-
guage) if and only if r1 ≡ r2 is derivable from the axioms of Kleene algebra. We will
present below a coalgebraic proof of this result (which states the soundness and com-
pleteness of the Kleene algebra axioms for regular expressions). But before that let
us show a few typical equalities derivable using the axioms above.

3.1.13 EXAMPLE. The following equalities hold in Kleene algebras:

e∗ ≡ e∗ + 1
e∗e∗ ≡ e∗

e∗∗ ≡ e∗

(e+ f)∗ ≡ (e∗ f)∗e∗ denesting rule
e(f e)∗ ≡ (e f)∗e shifting rule

3.1. Deterministic automata and regular expressions 33

The first equality follows easily:

e∗ ≡ 1+ ee∗ ≡ 1+ 1+ ee∗ ≡ 1+ e∗

For the second equality, we have:

e∗e∗ ≡ (1+ ee∗)e∗ ≡ e∗ + ee∗e∗ ≥ e∗

and, using the fact that e∗e∗ is the least solution of ex + e∗ ≤ x

ee∗ + e∗ ≤ 1+ ee∗ + e∗ ≡ e∗ + e∗ ≡ e∗⇒ e∗e∗ ≤ e∗

For the third equality we use first that e∗∗ is the least solution of e∗x + 1≤ x:

e∗ ≡ e∗ + 1≡ e∗e∗ + 1⇒ e∗∗ ≤ e∗

and then that e∗ is the least solution of ex + 1≤ x:

e∗∗ ≡ e∗e∗∗ + 1≡ (1+ ee∗)e∗∗+ 1≡ e∗∗ + ee∗e∗∗ + 1≤ ee∗∗ + 1⇒ e∗ ≤ e∗∗

For the denesting rule, first observe that

(e∗ f)∗e∗ ≤ ((e+ f)∗(e+ f))∗(e+ f)∗ (by monotonicity)
≤ ((e+ f)∗)∗(e+ f)∗ ((e+ f)∗(e+ f)≤ (e+ f)∗

≡ (e+ f)∗(e+ f)∗

≡ (e+ f)∗

Then we use the fact that (e+ f)∗ is the least solution of x(e+ f) + 1≤ x:

(e∗ f)∗e∗(e+ f) + 1
≡ (e∗ f)∗e∗e+ (e∗ f)∗e∗ f + 1
≤ (e∗ f)∗e∗ + (e∗ f)∗e∗ + 1 (e∗e ≤ e∗ end (e∗ f)∗e∗ f ≤ (e∗ f))
≤ (e∗ f)∗e∗ (1≤ (e∗ f)∗e∗)

⇓
(e+ f)∗ ≤ (e∗ f)∗e∗

For the shifting rule we use the facts that e(f e)∗ and (e f)∗e are the least solutions of,
respectively, x(f e) + e ≤ x and (e f)x + e ≤ x:

(e f)∗e f e+ e ≡ ((e f)∗e f + 1)e ≡ (e f)∗e⇒ e(f e)∗ ≤ (e f)∗e
e f e(f e)∗ + e ≡ e(f e(f e)∗ + 1) ≡ e(f e)∗⇒ (e f)∗e ≤ e(f e)∗(e f)∗e

♠

We next present an alternative proof of a result originally due to Brzozowski [29,
Theorem 6.4].

34 Chapter 3. Automata as coalgebras

3.1.14 THEOREM (Fundamental theorem for regular expressions). Every regular ex-

pression r ∈ R(A) satisfies the following equality

r ≡ oR(r) +
∑

a∈A

ara

This theorem is closely related to the proof of Kleene’s theorem, namely the construc-
tion of a regular expression from a deterministic automaton (cf. equation (3.4)). In
the subsequent chapters we will generalize (and make extensive use of) this equality.
Note that the intended reading of the equality above is syntactic: the left side of the
equation can be derived from the right side using the axioms of Kleene algebra. If
the goal would be to prove equivalence, that is L(r) = L(oR(r) +

∑

a∈A ara), then the
proof would be straightforward using coinduction.
The name Fundamental Theorem is borrowed from [97], where an analogue theorem
is stated for formal power series (functions f : A∗ → k, for a semiring k). As it is
explained there, the name is chosen in analogy to analysis. Viewing prefixing with
the letter a as a kind of integration, the theorem tells us that regular expression
derivation and integration are inverse operations: the equality above gives a way of
obtaining r from the a-derivatives ra (and the initial value oR(r)).

PROOF (Theorem 3.1.14). By induction on the structure of r.
The base cases are direct consequences of the fact that 1 is the identity for . and 0 is
an annihilator for . and the identity for +.

1≡ 1+ 0≡ 1+
∑

a∈A

a0

0≡ 0+
∑

a∈A

a0

a ≡ 0+ a1+
∑

a′∈A\{a}
a′0

The cases r1 + r2 and r1r2 follow by induction and using several of the semiring laws
(we remark that in the second case the induction hypotheses are applied subsequently
and not at the same time):

r1+ r2
IH≡

�

oR(r1) +
∑

a∈A

a(r1)a

�

+

�

oR(r2) +
∑

a∈A

a(r2)a

�

≡ oR(r1) + oR(r2) +
∑

a∈A

a((r1)a + (r2)a)

≡ oR(r1+ r2) +
∑

a∈A

a((r1+ r2)a)

r1r2
IH≡

�

oR(r1) +
∑

a∈A

a(r1)a

�

r2

≡ oR(r1)r2 +
∑

a∈A

a(r1)a r2

3.1. Deterministic automata and regular expressions 35

IH≡ oR(r1)

�

oR(r2) +
∑

a∈A

a(r2)a

�

+
∑

a∈A

a(r1)a r2

≡ oR(r1r2) +
∑

a∈A

a((r1)a r2+ oR(r1)(r2)a)

≡ oR(r1r2) +
∑

a∈A

a(r1r2)a

For r∗ we distinguish between the cases oR(r) = 0 and oR(r) = 1. For oR(r) = 0, it
follows easily by induction:

r∗ ≡ 1+ r r∗
IH≡ 1+

�

oR(r) +
∑

a∈A

ara

�

r∗ ≡ 1+
∑

a∈A

a(ra r∗)

For oR(r) = 1, a bit more of work is needed:

r∗ ≡ 1+ r r∗
IH≡ 1+

oR(r) +
∑

a∈A

ara

!

r∗ ≡ r∗ +

1+
∑

a∈A

a(ra r∗)

!

From this equation, we can conclude that r∗ ≥ 1+
∑

a∈A

a(rar∗). It remains to prove that

r∗ ≤ 1+
∑

a∈A

a(rar∗). We do that by showing that x ≡ 1+ x r, where x = 1+
∑

a∈A

a(ra r∗).

Using the second star inequality rule this implies that 1r ≤ x which is precisely the
inequality we want to prove.

x = 1+
∑

a∈A

a(ra r∗) ≡ 1+
∑

a∈A

ara(1+ r∗r)

≡ 1+ 1+
∑

a∈A

ara +
∑

a∈A

arar∗r

IH≡ 1+ r +
∑

a∈A

ara r∗r

≡ 1+ (1+
∑

a∈A

ara r∗)r = 1+ x r

Soundness and completeness

It is the goal of this section to prove that the axiomatization is sound and complete
with respect to language equivalence (recall that L(r1) = L(r2)⇔ r1 ∼ r2), that is

r1 ∼ r2⇔ r1 ≡ r2

The original proof of soundness and completeness of Kleene algebras is due to Kozen [66],
who later presented an alternative proof [68]. A coalgebraic proof of soundness and

36 Chapter 3. Automata as coalgebras

completeness was presented by Jacobs [61]2. The proof we present here is a slight
variation on [61,68].
For soundness, the right to left implication, it is enough to prove that ≡ is a bisimula-
tion relation.

3.1.15 THEOREM (Soundness). The equivalence relation ≡ is a bisimulation, that is,

for every r1, r2 ∈ R(A), if r1 ≡ r2 then

oR(r1) = oR(r2) and (r1)a ≡ (r2)a

In other words, the Kleene algebra axiomatization of regular expressions is sound: for

all r1, r2 ∈ R(A), if r1 ≡ r2 then r1 ∼ r2.

PROOF. By induction on the length of derivations for ≡.
For the cases of length zero everything follows from unwinding the definitions of oR

and tR. We show the proof for the equations r1 + r2 ≡ r2 + r1 and r r∗+ 1≡ r∗.

oR(r1+ r2) = oR(r1)∨ oR(r2) = oR(r2 + r1)

oR(r r∗+ 1) = 1= oR(r
∗)

(r1+ r2)a = (r1)a + (r2)a ≡ (r2)a + (r1)a = (r2+ r1)a

(r r∗+ 1)a ≡ ra r∗+ oR(r)(r
∗)a + 0 =

¨

(r∗)a + 0(r∗)a + 0 if oR(r1) = 0

(r∗)a + 1(r∗)a + 0 otherwise

≡ (r∗)a

For the inductive cases, we illustrate the case r1+ r2x ≤ x ⇒ r∗2 r1 ≤ x . The other case
is proved precisely in the same way. Suppose we have just derived r∗2 r1 ≤ x , using
r1 + r2 x ≤ x as a premise. We want to prove that oR(r

∗
2 r1) ≤ oR(x) and (r∗2 r1)a ≤ xa.

The first, which simplifies to oR(r1) ≤ oR(x), follows from the induction hypothesis
oR(r1) + oR(r2x) ≤ oR(x). For the second inequality, we calculate:

(r∗2 r1)a = (r2)a r∗2 r1+ (r1)a
≡ (r2)a x + (r1)a (r∗2 r1 ≤ x)
≤ (r2)a x + oR(r2)xa + (r1)a
≡ (r2 x)a + (r1)a
≡ (r1+ r2 x)a
≤ xa (induction hypothesis)

Let R(A)/≡ denote the set of expressions modulo ≡. The equivalence relation ≡ in-
duces the equivalence map [−]: R(A)→ R(A)/≡ given by [r] = {r ′ | r ≡ r ′}.

2The paper by Jacobs was of great inspiration for us to formulate the proof of soundness and complete-
ness of the generalized language of regular expressions we will present in the subsequent chapters.

3.1. Deterministic automata and regular expressions 37

Theorem 3.1.15 guarantees the existence of a unique map (by Theorem 2.2.7)

〈oR, tR〉: R(A)/≡→ 2× (R(A)/≡)A

which makes [−] a coalgebra homomorphism:

R(A)

〈oR ,tR〉

[−]
R(A)/≡

〈oR ,tR〉

2× (R(A))A 2× (R(A)/≡)A

oR([r]) = oR(r) and [r]a = [ra]

In order to prove completeness (that is, r1 ∼ r2 ⇒ r1 ≡ r2), we recall the main steps
of the coalgebraic proof of completeness of Kleene algebras, given by Jacobs [61],
which can be seen as a coalgebraic review of Kozen’s proof [68].
1 First, the unique map into the final coalgebra is factorized into an epimorphism

followed by a monomorphism.

R(A)/≡

L

e

〈oR ,tR〉

I
m

〈oI ,t I 〉

2A∗

2× (R(A))A 2× IA 2× (2A∗)A

2 The map e is proved to be an isomorphism. The key idea behind the proof is that
both coalgebras (R(A)/≡, 〈oR, tR〉) and (I , 〈oI , t I〉) are final among the locally finite
coalgebras: coalgebras for which the smallest subcoalgebra generated by a point is
always finite.
To prove that (R(A)/≡, 〈oR, tR〉) is final, the following facts are needed:

(i) For any locally finite automaton (S, 〈oS , tS〉), there exists a coalgebra homomor-
phism ⌈−⌉S : (S, 〈oS , tS〉)→ (R(A)/≡, 〈oR, tR〉).

(ii) For any homomorphism f : (S, 〈oS , tS〉) → (T, 〈oT , tT 〉), it holds that ⌈ f (s) ⌉T =
⌈ s ⌉S .

(iii) The homomorphism ⌈−⌉R(A)/≡ is the identity.

Points (i)-(iii) above imply that for any finite automaton (S, 〈oS , tS〉), there exists a
unique coalgebra homomorphism ⌈−⌉S : (S, 〈oS , tS〉)→ (R(A)/≡, 〈oR, tR〉). Hence, the
coalgebra (R(A)/≡, 〈oR, tR〉) is final among the locally finite ones.
For the finality of (I , 〈oI , t I 〉), we need to observe that:

(i) For any locally finite automaton (S, 〈oS , tS〉), there exists a coalgebra homomor-
phism e ◦ ⌈−⌉S : (S, 〈oS , tS〉)→ (I , 〈oI , t I 〉).

(ii) If there exist two homomorphisms f , g : (S, 〈oS , tS〉) → (I , 〈oI , t I〉), then f = g:
by finality, we have that m ◦ f = m ◦ g and, since m is a monomorphism, f = g.

38 Chapter 3. Automata as coalgebras

3 From 1 and 2 , it follows that L : R(A)/≡ → 2A∗ is injective, which is the key to
prove completeness.

3.1.16 THEOREM (Completeness). For all r1, r2 ∈ R(A), if r1 ∼ r2 then r1 ≡ r2.

PROOF. For all r1, r2 ∈ R(A), if r1 ∼ r2 then we have that they are mapped into the
same element in the final coalgebra: L(r1) = L(r2). Since [−] is a homomorphism,
this implies that L([r1]) = L([r2]) (here we are using L to denote the map into the
final coalgebra both from R(A) and R(A)/≡). By 3 , L is injective and thus we can
conclude that [r1] = [r2], that is r1 ≡ r2.

Completeness now enables the use of coinduction to prove that expressions are prov-
ably equivalent using the axioms of Kleene algebra.

3.1.17 EXAMPLE. Let us illustrate the proof of the denesting rule – (a+ b)∗ ≡ (a∗b)∗a∗
– which we proved using the axioms in Example 3.1.13.
We construct the relation

R= {〈(a+ b)∗, (a∗b)∗a∗〉, 〈(a+ b)∗, (a∗b)(a∗b)∗a∗ + a∗〉}

and observe that it is a bisimulation (in the calculations below we use some simplifi-
cations, which is no problem, given the fact that ≡ is a bisimulation; this means that
actually the relation R above is formally a bisimulation up to a finite set of (sound)
axioms):

((a+ b)∗)a = (a+ b)∗ ((a+ b)∗)b = (a+ b)∗

((a∗b)∗a∗)a = (a
∗b)(a∗b)∗a∗ + a∗ ((a∗b)∗a∗)b = (a

∗b)∗a∗

((a∗b)(a∗b)∗a∗ + a∗)a = (a
∗b)(a∗b)∗a∗ + a∗ ((a∗b)(a∗b)∗a∗ + a∗)b = (a

∗b)∗a∗

Thus, (a + b)∗ ∼ (a∗b)∗a∗ which implies, by completeness, (a + b)∗ ≡ (a∗b)∗a∗. For
another example, take the expressions (b+ ab∗a)∗ and b∗a(ab∗a+ b)∗ab∗ + b∗. The
relation

R = {〈(b+ ab∗a)∗, b∗a(ab∗a+ b)∗ab∗ + b∗〉, 〈b∗a(b+ ab∗a)∗, (ab∗a+ b)∗ab∗〉}

is a bisimulation. It is very easy to check: we show the automaton structure underly-
ing each expression:

(b+ ab∗a)∗

a

b

b∗a(ab∗a+ b)∗ab∗ + b∗

b

a

b∗a(b+ ab∗a)∗

a

b

(ab∗a+ b)∗ab∗

b

a

3.2. Automata on guarded strings and KAT expressions 39

The algebraic proof requires a bit more of ingenuity, using the denesting and shifting
rule which we proved in Example 3.1.13:

(b+ ab∗a)∗ ≡ (b∗ab∗a)∗b∗ (denesting rule)
≡ b∗(ab∗a∗b∗)∗ (shifting rule)
≡ b∗(ab∗a∗b∗(ab∗a∗b∗)∗ + 1) (r∗ ≡ 1+ r r∗)
≡ b∗ab∗a∗b∗(ab∗a∗b∗)∗ + b∗ (left distributivity and r1= r)
≡ b∗a(b∗a∗b∗a)∗b∗a∗b∗ + b∗ (shifting rule)
≡ b∗a(b+ ab∗a)∗a∗b∗ + b∗ (denesting rule)
≡ b∗a(ab∗a+ b)∗a∗b∗ + b∗ (commutativity of +)

♠

3.2 Automata on guarded strings and KAT expressions

Kleene algebra with tests (KAT) is an equational system that combines Kleene and
Boolean algebra. One can model basic programming constructs and assertions in KAT,
which allowed for its application in compiler optimization, program transformation
or dataflow analysis [8,70,72]. In this section, we will recall the basic definitions on
KAT and we will show how to generalize the Berry-Sethi construction (Section 3.1.3)
in order to (efficiently) obtain an automaton from a KAT expression.

3.2.1 DEFINITION (Kleene algebra with tests). A Kleene algebra with tests is a two-
sorted structure (Σ, B,+, ·, (−)∗, ,0,1) where

– (Σ,+, ·, (−)∗,0,1) is a Kleene algebra,

– (B,+, ·, ,0,1) is a Boolean algebra, and

– (B,+, ·, ,0,1) is a subalgebra of (Σ,+, ., (−)∗,0,1).

♣

Given a set P of (primitive) action symbols and a set B of (primitive) test symbols, we
can define the free Kleene algebra with tests on generators P∪ B as follows. Syntacti-
cally, the set BExp of Boolean tests is given by:

BExp ∋ b:: = b ∈ B | b1 b2 | b1 + b2 | b | 0 | 1

The set At of atoms is given by At= 2B (an atom α ∈ At is a minimal nonzero element
of the free Boolean algebra B on B). The set of KAT expressions is given by

Exp ∋ e, f ::= p ∈ P | b ∈ BExp | e f | e+ f | e∗

The free Kleene algebra with tests on generators P∪B is obtained by quotienting BExp

by the axioms of Boolean algebra and Exp by the axioms of Kleene algebra.
Guarded strings were introduced in [63] as an abstract interpretation for program
schemes. They are like ordinary strings over an input alphabet P, but the symbols in

40 Chapter 3. Automata as coalgebras

P alternate with the atoms of the free Boolean algebra generated by B. We define the
set GS of guarded strings by

GS = (At× P)∗At

Kozen [69] showed that the regular sets of guarded strings plays the same role in
KAT as regular languages play in Kleene algebra. He showed an analogue of Kleene’s
theorem: automata on guarded strings, which are non-deterministic automata over
the alphabet P∪ B, recognize precisely the regular sets of guarded strings.

3.2.2 DEFINITION (Regular sets of guarded strings). Each KAT expression e denotes
a set G(e) of guarded strings define inductively on the structure of e as follows:

G(p) = {αpβ | α,β ∈ At}
G(b) = {α | α ≤ b}
G(e+ f) = G(e)∪G(f)

G(e f) = G(e) ⋄G(f)

G(e∗) =
⋃

n≥0 G(e)n

where, given two guarded strings x = α0p0 . . .pn−1αn and y = β0q1 . . .qn−1βn, we
define the fusion product of x and y by x ⋄ y = α0p0 . . .αnq1 . . .qn−1βn, if αn = β0,
otherwise x ⋄ y is undefined. Then, given X , Y ⊆ GS, X ⋄ Y is the set containing all
existing fusion products x ⋄ y of x ∈ X and y ∈ Y and X n is defined inductively as
X 0 = X and X n+1 = X ⋄ X n.
A set of guarded strings is regular if it is equal to G(e) for some KAT expression e.
Note that a guarded string is itself a KAT expression and G(x) = {x}. ♣

3.2.3 EXAMPLE. Consider the KAT expression e = b1 + b2p over B = {b1,b2} and
P= {p}. We compute the set G(e):

G(e) = G(b1)∪ (G(b2) ⋄G(p))

= {α | α≤ b1} ∪
�

{α | α ≤ b2} ⋄ {αpβ | α,β ∈ At}
�

= {α | α≤ b1} ∪ {αpβ | α ≤ b2,β ∈ At}

We will now show an example of an automaton on guarded strings. As mentioned
above such automaton is just a non-deterministic automaton over the alphabet A =

P ∪ B, that is (S, 〈oS , tS〉) with o : S → 2 and t : S → Pω(S)
A. State s0 of the following

automaton would recognize (we shall explain the precise meaning of this below) the
same set of guarded string as e:

s1

ps0

b2

b1

s0

3.2. Automata on guarded strings and KAT expressions 41

Let us now explain how to compute G(s), the set of guarded strings accepted by a
state s of an automaton A on guarded strings. A guarded string x is accepted by A

if x ∈ GS(e) for some e ∈ L(s), where L(s) ⊆ (P ∪ B)∗ is just the language accepted
by s, as defined in 3.1.3. In the example above, we have L(s) = {b1,b2p} and thus
G(s) = G(b1)∪G(b2p) = G(b1 + b2p). ♠

Later in [71], Kozen showed that the deterministic version of automata on guarded
strings (already defined in [69]) fits neatly in the coalgebraic framework: two expres-
sions are bisimilar if and only if they recognize the same set of guarded strings.
A deterministic automaton on guarded strings is a pair (S, 〈oS , tS〉) where o : S → B

(recall that B is the free Boolean algebra on B, satisfying B ∼= 2At) and t : S→ SAt×P.
We can obtain a deterministic automaton by using the following generalization of
Brzozowski derivatives for KAT expressions (modulo ACI, as before).

3.2.4 DEFINITION (Brzozowski derivatives for KAT expressions). Given a KAT expres-
sion e ∈ Exp, we define E : Exp→B∼= 2At and D : Exp→ ExpAt×P by induction on the
structure of e. First, E(e) is given by:

E(p) = ; E(b) = {α ∈ At | α ≤ b} E(e f) = E(e)∩E(f) E(e+ f) = E(e)∪E(f) E(e∗) = At

Next, we define eαq = D(e)(〈α,q〉) by

pαq =

¨

1 if p = q

0 if p 6= q
bαq = 0 (e f)αq =

¨

eαq f + fαq if α ∈ E(e)

eαq f if α 6∈ E(e)

(e+ f)αq = eαq+ fαq (e∗)αq = eαqe∗

♣

The functions 〈E, D〉 provide Exp with a deterministic automata structure, which
leads, by finality, to the existence of a unique homomorphism

Exp
G

〈E,D〉

(2At)(At×P)
∗ ∼= 2GS

2At × ExpAt×P 2At × (2GS)At×P

which assigns to each expression the language of guarded strings that it denotes.

42 Chapter 3. Automata as coalgebras

3.2.5 EXAMPLE. The deterministic automaton of e = b1 + b2p, which is the determi-
nistic counterpart of the automaton in Example 3.2.3, would be

b1 1

e
〈b1b2,p〉,〈b1b2,p〉

〈b1b2,p〉,〈b1b2,p〉

1

〈α,p〉

0

〈α,p〉
0

since, for B= {b1,b2}, At = {b1b2,b1b2,b1b2,b1b2} and

eb1b2 ,p = 0+ (b2p)b1b2,p = pb1b2,p = 1 eb1b2 ,p = 0+ (b2p)b1b2 ,p = pb1b2,p = 1

eb1b2 ,p = 0+ (b2p)b1b2,p = 0 eb1b2 ,p = 0

E(e) = {α | α≤ b1}= {b1b2,b1b2} E(0) = ; E(1) = At

Above we represent the output oS(s) of a state by b where b ∈ B is the element
corresponding to the set oS(s) coming from the isomorphism 2At ∼=B. ♠

In short, there are two types of automata recognizing regular sets of guarded strings:

S→ 2× (Pω(S))P∪B S→B× SAt×P

The non-deterministic version has the advantage that it is very close to the expression,
that is, one can easily compute the automaton from a given KAT expression and back,
but its semantics is not coalgebraic. The deterministic version fits neatly into the
coalgebraic framework, but it has the disadvantage that constructing the automaton
from an expression inherits the same problems as in the Brzozowski construction: the
number of equivalences that need to be decided increase exponentially. We propose
here yet another type of automaton to recognize guarded strings: the construction
from an expression to an automaton will be inspired by the Berry-Sethi construction
presented in Section 3.1.3 and it is linear in the size of the expression.
Note that since KAT expressions can be interpreted as regular expressions over the
extended alphabet B∪ P, the Berry-Sethi construction could be applied directly.

3.2.6 THEOREM. Let e be a KAT expression and Apos(e) be the corresponding position

automaton. Then, G(e) = G(Apos(e)).

PROOF. We know that L(Apos(e)) = L(e). Now the result follows by using Kozen’s
observation in [69] that given a guarded string e and an automaton A such that
L(A) = L(e), one has G(e) = G(A).

3.2. Automata on guarded strings and KAT expressions 43

The resulting automaton would have precisely the same type as the non-deterministic
version of automata on guarded strings. However, there would be one state for each
input symbol in P∪B. The construction we will show next includes only states for each
atomic action in P, yielding smaller automata. From a given KAT expression e, we will
construct an automaton (S, t)where t : S→B×Pω(S)

B×P. This automaton type can be
regarded as a compromise between the non-deterministic and deterministic versions
of Kozen’s automata.
We will start by generalizing the sets first, follow and last.

first(e) = {〈b,p〉 | b1b2 . . .bnpx ∈ L(e) , b =
∨

(b1 ∧ b2 ∧ . . .bn)}
follow(e,p) = {〈b,q〉 | xpb1b2 . . .bnpqy ∈ L(e) , b=

∨

(b1 ∧ b2 ∧ . . .bn)}
last(e) = {〈b,p〉 | xpb1b2 . . .bn ∈ L(e) , b =

∨

(b1 ∧ b2 ∧ . . .bn)}

Note that the empty disjunction is 1 (and the empty conjunction is 0). Below, we
will use expressions of the form e!, where ! is a special end-marker, to avoid the
computation of the last symbols that can be generated in e: 〈b,p〉 ∈ last(e)⇔〈b, !〉 ∈
follow(e!,p).
Given a KAT expression e with all action symbols distinct we construct the automaton
Ae = (Pos(e)∪ {0}, 〈oS , tS〉) where Pos(e) is the number of distinct action symbols in e

and

oS(i) =

E(e) if i = 0

b if i > 0 and 〈b, !〉 ∈ follow(e!, pi)

0 otherwise

and t is given by the following rules

0
〈b,p j〉

j iff 〈b, p j〉 ∈ first(e)

i
〈b,p j〉

j iff 〈b, p j〉 ∈ follow(e!, pi)

The way the automaton is defined, state i will only have incoming transitions labeled
by 〈b, pi〉. Moreover, the fact that e has distinct symbols implies that the constructed
automaton is deterministic, that is, t : S→B× SB×P. Only after unmarking the labels
pi non-determinism will be introduced, as we will observe in an example below.
The guarded strings recognized by a state s ∈ S of the automaton (S, t) where t : S→
B×Pω(S)

B×P are now defined by the following rule

x ∈ G(s) ⇔ x = α with α ≤ E(s)

or x = αpx ′ with x ′ ∈ G(s′) for some s′ ∈ tS(s)(〈b,p〉)
and for some b s.t.α ≤ b

3.2.7 THEOREM. Let e be a guarded string, with all action symbols distinct, and let

Ae = (Pos(e)∪{0}, 〈oS, tS〉) be the corresponding automaton constructed as above. Then,

G(e) = G(0).

44 Chapter 3. Automata as coalgebras

PROOF. By induction on the structure of e.
If e = b then GS(b) = {α | α ≤ b} and Ae is a one state automaton with no transitions.
Thus, G(0) = {α | α ≤ E(b)} = {α | α ≤ b} = G(b).
If e = p then GS(p) = {αpβ | α,β ∈ At} and Ae is a two state automaton with only
one transition from state 0 (with output E(p) = 0) to state 1 (with output 1) labeled
by 〈1,p〉. Thus,

G(0) = {α | α ≤ E(p)} ∪ {αpβ | α ≤ 1,β ≤ 1} = {αpβ | α,β ∈ At} = G(p)

For e = e1 + e2, we have

G(0)

= {α | α≤ E(e1+ e2)} ∪ {αpx ′ | x ′ ∈ G(tS(0)(〈b,p〉)),α≤ b}
= {α | α≤ E(e1)} ∪ {α | α ≤ E(e1)} ∪
{αpx ′ | x ′ ∈ tS(0)(〈b,p〉),α ≤ b,b1b2 . . .bnpx ∈ L(e1+ e2) , b=

∨

(b1 ∧ b2 ∧ . . .bn)}
= {α | α≤ E(e1)} ∪ {α | α ≤ E(e1)} ∪
{αpx ′ | x ′ ∈ tS(0)(〈b,p〉),α ≤ b,b1b2 . . .bnpx ∈ L(e1) , b=

∨

(b1 ∧ b2 ∧ . . .bn)} ∪
{αpx ′ | x ′ ∈ tS(0)(〈b,p〉),α ≤ b,b1b2 . . .bnpx ∈ L(e2) , b=

∨

(b1 ∧ b2 ∧ . . .bn)}
IH
= G(e1)∪G(e2)

= G(e1 + e2)

Note that b1b2 . . .bnpx ∈ L(ei), for i = 1,2, if and only if the state 0 of the automaton
Aei

has a transition labeled by 〈b,p〉 into some state.
For e = e1e2, things get slightly more complicated. Let us start by the easy bit:

α ∈ G(0)⇔ α≤ E(e1e2)⇔ α ≤ E(e1) and α ≤ E(e2)⇔ α ∈ G(e1e2)

Now take α1p1 . . .pn−1αn ∈ G(0). This means that there exists a sequence of transi-
tions:

0
〈b1 ,p1〉 • 〈b2,p2〉 . . .

〈bn−1 ,pn−1〉 •

bn

such that αi ≤ bi , for all i = 1, . . . , n. Because all the symbols in e1e2 are distinct
we can divide the above sequence of transitions as follows. Let pk be the last action
symbol in belonging to e1. We have

0
〈b1 ,p1〉 • 〈b2,p2〉 . . . 〈bk ,pk〉 •

〈bk+1 ,pk+1〉

•
〈bk+2 ,pk+2〉

•
〈bk+3 ,pk+3〉

. . .
〈bn−1 ,pn−1〉

•

bn

3.2. Automata on guarded strings and KAT expressions 45

and we observe that bk+1 is such that xpkbk+1pk+1 y ∈ L(e1e2). Thus, bk+1 = b1
k+1b

2
k+1

such that xpkb
1
k+1 ∈ L(e1) and b2

k+1pk+1 y ∈ L(e2) and, as a consequence,

〈b1
k+1, pk〉 ∈ last(e1) and 〈b2

k+1, pk+1〉 ∈ first(e2)

Now we can conclude using the induction hypothesis since α1p1 . . .αkpkαk+1 ∈ G(01),
where 01 is the state 0 of Ae1

, and αk+1pk+1 . . .αn−1pn−1αn ∈ G(02), where 02 denotes
the state 0 of Ae2

, and therefore:

α1p1 . . .αkpkαk+1 ∈ G(e1) and αk+1pk+1 . . .αn−1pn−1αn ∈ G(e2)

⇔ α1p1 . . .αkpkαk+1pk+1 . . .αn−1pn−1αn ∈ G(e1e2)

The case e∗ follows a similar reasoning as in e1e2 and is left to the reader.

This theorem refers to marked expressions. Note however that unmarking the labels
of the automaton only changes the action symbols and it will also yield G(0) = G(0),
where G(0) denotes the set of guarded strings recognized by state 0 of the unmarked
automaton and G(0) the unmarking of the set of guarded strings recognized by state
0 of the marked automaton.
Next, we present an algorithm to compute the sets first, follow and last .

3.2.8 PROPOSITION. Let e be a KAT expression with distinct symbols. F, defined by the

rules below, is such that F(e, {〈1, !〉}) yields a set of pairs of the form 〈pi , follow(e!, pi)〉.
The rules are:

F(e1+ e2,S) = F(e1,S)∪ F(e2,S)
F(e1.e2,S) = F(e1,first(e2)∪ E(e2).S)∪ F(e2,S)
F(e∗1,S) = F(e1,first(e1)∪ S)

F(p,S) = {〈p,S〉}
F(b,S) = ;

where
first(e1+ e2) = first(e1)∪ first(e2)

first(e1.e2) = first(e1)∪ E(e1).first(e2)

first(e∗1) = first(e1)

first(p) = {〈1,p〉}
first(b) = ;

Note the similarities between Propositions 3.2.8 and 3.1.11. The fact that the Boolean
algebra B generalizes the two element Boolean algebra of classical regular expres-
sions is reflected in the clause for the concatenation in the following way. The test
for empty word oR is replaced by the Boolean value of a KAT expression e and the
multiplication is now redefined to propagate the tests:

b.S =

�

; if b = 0

{〈bb′,p〉 | 〈b′,p〉 ∈ S} otherwise

46 Chapter 3. Automata as coalgebras

3.2.9 EXAMPLE. We show now two examples of the algorithm above. We start by
applying to the expression e = b1 + b2p, which we already used in Examples 3.2.3
and 3.2.5. This expression already has all action symbols distinct so no marking is
needed. First, we compute F(e, {〈1, !〉}):

F(b1 + b2p, {〈1, !〉}) = F(b1, {〈1, !〉})∪ F(b2p, {〈1, !〉}) = F(p, {〈1, !〉}) = {〈p, {〈1, !〉}〉}

Thus, because first(e) = {〈b2,p〉} and E(e) = b1, we have that Ae is given by

e
〈b2,p〉

1

b1 1

Next, we consider the expression e1 = b1(pqb2 + ppb3 + b4). We have E(e1) = b1 b4,
e1 = b1(p1q2b2 + p3p4b3 + b4) and

first(e1)

= first(b1)∪ E(b1).first((p1q2b2 + p3p4b3 + b4))

= b1.{〈1,p1〉, 〈1,p3〉}= {〈b1,p1〉, 〈b1,p3〉}
F(e1, {〈1, !〉})

= F(p1q2b2 + p3p4b3 + b4, {〈1, !〉})
= F(p1q2b2, {〈1, !〉})∪ F(p3p4b3, {〈1, !〉})
= F(p1, {〈q2,1〉})∪ F(q2, E(b2).{〈1, !〉})∪ F(p3, {〈1,p4〉})∪ F(p4, E(b3).{〈1, !〉})
= {〈p1, {〈1,q2〉}〉, 〈q2, {〈b2, !〉}〉, 〈p3, {〈1,p4〉}〉, 〈p4, {〈b3, !〉}〉}

The automaton Ae1
, after unmarking, is then given by:

0 b1b4 0

1

〈1,q〉

0
〈b1,p〉 〈b1,p〉

3

〈1,p〉

2 4

b2 b3

The non-deterministic version of Kozen’s automata on guarded strings would have
7 states and 8 transitions, whereas the (minimal) deterministic version would have
5 states (same as the automaton above), but 8 × 8 = 64 transitions since for B =

{b1, b2, b3} the set At has 8 elements. ♠

Chapter 4

Kleene meets Mealy

Regular expressions were first introduced by Kleene [64] to study the properties of
neural networks. They are an algebraic description of languages, offering a declara-
tive way of specifying the strings to be recognized and they define exactly the same
class of languages accepted by deterministic (and non-deterministic) finite state au-
tomata: the regular languages. The fundamental correspondence between regular
expressions and deterministic automata has been formalized in Kleene’s theorem:
each regular expression denotes a language that can be recognized by a determinis-
tic automaton and, vice-versa, the language accepted by a deterministic automaton
can be specified by a regular expression. Languages denoted by regular expressions
are called regular. Two regular expressions are called (language) equivalent if they
denote the same regular language. Algebraic reasoning on equivalence of regular ex-
pressions was made possible by the sound and complete axiomatization introduced
by Salomaa [101], which was later refined by Kozen, who showed that Salomaa’s
axiomatization is non-algebraic, in the sense that it is unsound under substitution of
alphabet symbols by arbitrary regular expressions, and who presented an algebraic
axiomatization in [66].
A Mealy machine (S,α) is a pair consisting of a set S of states and a transition function
α: S → (B × S)A assigning to each state s ∈ S and input symbol a ∈ A a pair 〈b, s′〉,
containing an output symbol b ∈ B and a next state s′ ∈ S. Mealy machines can
be seen as a slight variation of deterministic automata, where each input is now
associated with an output. The semantics of Mealy machines is given by BA+ , which
is the counterpart of formal languages (the set 2A∗). Alternatively, and equivalently,
the semantics of Mealy machines is given by the set of causal functions from infinite
sequences of inputs Aω to infinite sequences of outputs Bω. A function is causal if the
n-th output depends only on the first n inputs.
One of the most important applications of Mealy machines is their use in the spe-
cification of sequential digital circuits. Taking binary inputs and outputs, there is a
well-known correspondence between such binary Mealy machines, on the one hand,
and sequential digital circuits built out of logical gates and some kind of memory
elements, on the other. In present day text books on logic design [79] — on the

47

48 Chapter 4. Kleene meets Mealy

construction of sequential digital circuits — Mealy machines are still the most impor-
tant mathematically exact means for the specification of the intended behaviour of
circuits. There does not seem to exist, however, a generally accepted way of formally
specifying Mealy machines themselves. They are typically “defined” in a natural lan-
guage such as English. This obviously leads to ambiguities, inconsistencies and plain
errors [37].
Kleene’s regular expressions were proposed in [28, 80] as unambiguous descriptions
of circuits. However, since regular expressions were tailor made for deterministic
automata, the conversion between regular expressions and Mealy machines is not the
most natural one. Moreover, they can only be used as a specification for binary Mealy
machines.
It is the aim of the present chapter to introduce a simple but expressive language
for the specification of Mealy machines, in the same spirit of the language Kleene
introduced for deterministic automata. We present the counterpart of Kleene’s theo-
rem: we show that every finite Mealy machine can be represented by an expression
in the language and, conversely, from every expression a (behaviorally equivalent)
Mealy machine can be constructed. Furthermore, we introduce a sound and com-
plete axiomatization of the language, allowing for algebraic reasoning on equivalence
of specifications.
Our approach is coalgebraic: Mealy machines are a basic and well-understood family
of coalgebras, of the Set functor M(S) = (B × S)A. The functor, which determines
the transition type, induces a natural semantics (the so-called final coalgebra) and
equivalence. We will fit our language in the coalgebraic framework and we will profit
from known coalgebraic techniques along the way in the proofs. Although in this
chapter the generality of the approach might not be fully clear, we will show in the
next chapter how the coalgebraic approach taken in this chapter paves the way to lift
all the results and techniques described here to a much more general class of systems.

Organization of the chapter. Section 4.1 recalls the basic definitions on Mealy ma-
chines, including the notion of bisimilarity. We introduce a set of expressions ExpM to
specify (behaviours of) Mealy machines and we prove the analogue of Kleene’s theo-
rem in Section 4.2. In Section 4.3 we present a sound and complete axiomatization,
with respect to bisimilarity, of ExpM. Section 4.4 presents concluding remarks and
discusses related work.

4.1 Mealy machines

We give the basic definitions on Mealy machines and introduce the notion of bisimu-
lation.
First we recall the following definition. A (bounded) join-semilattice is a set B equip-
ped with a binary operation ∨B and a constant ⊥B ∈ B, such that ∨B is commutative,
associative and idempotent. The element ⊥B is neutral with respect to ∨B. As usual,

4.1. Mealy machines 49

∨B gives rise to a partial ordering ≤B on the elements of B:

b1 ≤B b2⇔ b1 ∨B b2 = b2

We use semilattices to represent data structures equipped with an information order:
b1 ≤B b2 means that b1 is less concrete than b2.
Now let A be a finite set and let B be a join-semilattice. A Mealy machine (S,α) with
inputs in A and outputs in B consists of a set of states S together with a function

α: S→ (B× S)A

For a given state s ∈ S and an input a ∈ A, the function α returns a pair α(s)(a) = 〈b, s′〉,
consisting of an output value b ∈ B and a state s′ ∈ S. Typically we will write

α(s)(a) = 〈s[a], sa〉

and call s[a] the (initial) output on input a and sa the next state on input a. We will
also sometimes refer to sa as the a-derivative of s. We shall also use the following
convention for the representation of Mealy machines:

α(s)(a) = 〈b, s′〉⇔ s
a|b

s′

The usual definition of Mealy machines takes B to be a set instead of a join-semilattice.
This minor variation on the output set will play an important role in defining the
semantics of the expressions that we will associate with Mealy machines. This is
similar to what happens with deterministic automata and regular expressions, where
the set 2 of outputs in the automaton is in fact considered implicitly to be a join-
semilattice. This fact becomes evident looking at any of the axiomatizations of regular
expressions.
Mealy machines where A is the two-element set {0,1} and B is the two-element join-
semilattice {0,1} (with ⊥B = 0) are called binary.
For an example, consider the following binary Mealy machine with S = {s1, s2} and
the transition function defined by the following picture.

s1
1|1

0|0

s2

1|0,0|1

This machine (or more precisely, state s1) computes the two’s complement of a given
binary number.
In coalgebraic terms, a Mealy machine is a coalgebra of the functor M: Set → Set

which is defined, for any set X , as M(X) = (B× X)A and, for a function h: X → Y ,
M(h): (B× X)A→ (B× Y)A, is given by

M(h)(ψ)(a) = 〈b,h(x)〉 where 〈b, x〉 =ψ(a)

50 Chapter 4. Kleene meets Mealy

4.1.1 DEFINITION. A homomorphism from a Mealy machine (S,α) to a Mealy machine
(T,β) is a function h: S→ T preserving initial outputs and next states:

S
h

α

T

β h(s)[a] = s[a] and h(sa) = h(s)a

(B× S)A
(id×h)A

(B× T)A

Note that the output (−)[a] and next state (−)a functions in the left and right side of
the equations above refer to α and β , respectively. ♣

Next we define the notion of bisimulation, which plays an important role in the min-
imization of Mealy machines and in defining a notion of equivalence for expressions.

4.1.2 DEFINITION (Bisimulation for Mealy). Let (S,α) and (T,β) be two Mealy ma-
chines. We call a relation R⊆ S× T a bisimulation if for all 〈s, t〉 ∈ S× T and a ∈ A

s R t ⇒ (s[a] = t[a] and sa R ta)

♣

We write s ∼ t whenever there exists a bisimulation relation containing 〈s, t〉; and
we call ∼ the bisimilarity relation. It is worth to remark that this notion of bisim-
ulation is precisely the notion one gets by instantiating the more general notion of
F-bisimulation (Definition 2.2.4) to the functor M(X) = (B × X)A determining the
transition type of Mealy machines.
As an example, consider the following binary Mealy machine:

q1
1|1

0|0

q2
1|0,0|1

q3

1|0,0|1

Observe that q3 and q2 are bisimilar, since R = {(q2,q3), (q3,q3)} is a bisimulation.
A minimal machine is obtained by identifying all bisimilar states, yielding the two’s
complement machine presented above.

Next we recall the construction of a final Mealy machine with inputs in A and outputs
in B. A Mealy machine (Ω,ω) is said to be final if for any Mealy machine (S,α) there
is a unique homomorphism [[−]]S : (S,α)→ (Ω,ω). Finality plays an important role
in providing semantics to the expressions as well as in the proof of soundness and
completeness of the axiomatization (in Section 4.2).
Let Aω = {σ | σ : N→ A}, the set of all infinite streams over A. For a ∈ A and σ ∈ Aω,
we define:

a:σ = (a,σ(0),σ(1),σ(2), . . .) σ′ = (σ(1),σ(2),σ(3), . . .)

4.2. Regular expressions for Mealy machines 51

We call a function f : Aω → Bω causal if for all σ ∈ Aω and n ≥ 0, the n-th output
value f (σ)(n) depends only on the first n input values (σ(0), . . . ,σ(n− 1)). Formally,
a function f : Aω→ Bω is causal if, for all σ,τ ∈ Aω and for all n ∈ N,

if σ(k) = τ(k), for all k ≤ n, then f (σ)(n) = f (τ)(n).

Let Φ = { f : Aω→ Bω | f is causal }, f ∈ Φ and a ∈ A. The initial output of f , on input
a, is defined as

f [a] = f (a:σ)(0) (where σ is arbitrary).

The derivative of f , on input a, is the function fa defined, for all σ ∈ Aω, as

fa(σ) = (f (a:σ))′.

The set Φ can be turned into a Mealy machine (Φ,ϕ) by defining ϕ(f)(a) = 〈 f [a], fa〉.
Note that, by causality, the value of f (a:σ)(0) depends only on a and thus the output
f [a] is well-defined. Moreover, the derivative fa of a causal function f is again a
causal function: take any σ,τ ∈ Aω and n ∈ N; if σ(k) = τ(k), for all k ≤ n, then:

fa(σ)(n) = f (a:σ)(n+ 1) = f (a:τ)(n+ 1) = fa(τ)(n)

where the one but last step follows by causality of f .
Rutten [99] showed that the coalgebra (Φ,ϕ) is final.

4.1.3 THEOREM (Finality of (Φ,ϕ) [99, Proposition 2.2]). For every Mealy machine

(S,α) there exists a unique homomorphism [[−]]S : S→ Φ.

From the finality of (Φ,ϕ) it follows that the subcoalgebra 〈 f 〉 generated by a causal
function f is a minimal Mealy coalgebra [99, Corollary 2.3].
The final coalgebra of the Mealy functor M(X) = (B× X)A can alternatively be char-
acterized in the following manner. Observe that (B× X)A ∼= BA× X A and thus every
Mealy machine is isomorphic to a Moore automaton with inputs in A and outputs
in BA. In [97], it was proved that the final coalgebra of this automaton (type) is
(BA)A

∗ ∼= BA+ . Since final coalgebras are unique up to isomorphism, the set of casual
functions is then isomorphic to the set of functions from A+ to B.

4.2 Regular expressions for Mealy machines

We present a language for Mealy machines and define its semantics in terms of causal
functions. We prove the analogue of Kleene’s theorem for this language: every state of
a Mealy machine can be assigned to an expression in the language denoting the same
behaviour and, conversely, every expression in the language can be transformed into
an equivalent Mealy machine. In Section 4.3, we shall introduce an axiomatization
of the language and prove it sound and complete with respect to bisimulation.

4.2.1 DEFINITION (Mealy expressions). Let A be a set of input actions and let B be a
join-semilattice of output actions. Furthermore, let X be a set of (recursion or) fixed

52 Chapter 4. Kleene meets Mealy

point variables. The set Exp of expressions is given by the following BNF syntax. For
a ∈ A, b ∈ B, and x ∈ X :

ǫ::= ; | x | a(ǫ) | a↓b | ǫ⊕ ǫ | µx .γ

where γ ∈ Expg , the set of guarded expressions, which is given by:

γ::= ; | a(ǫ) | a↓b | γ⊕ γ | µx .γ

The set ExpM of Mealy expressions contains the closed and guarded expressions ǫ in
Exp. An expression is closed if a variable x always occurs under the scope of the
binder µx . ♣

Intuitively, a(φ) represents a state that for input a has a transition to the state speci-
fied by φ, whereas a↓b represents a state that outputs b for input a. Combining both
expressions with ⊕ – a(φ)⊕ a↓b – yields a state which is fully specified for input a.
Here, we start seeing the need for the join-semilattice structure on B: if the output
of a state, for a certain input, is not specified we can associate with that transition
output ⊥. This will become clearer below in the examples.

Notation: For an ordered set E = {ǫ1, . . . ,ǫn} of expressions we will define
⊕

E = ǫ1⊕ (ǫ2 ⊕ (· · ·))

The ordering convention is not important, as we will soon observe (Lemma 4.2.4).
Later, we will axiomatize ⊕ to be an associative, commutative and idempotent oper-
ation.

4.2.1 Expressions form a Mealy coalgebra

We turn the set ExpM into a Mealy machine (coalgebra)

δ : ExpM→ (B×ExpM)
A

by defining δ as follows.

4.2.2 DEFINITION. For a ∈ A and ǫ ∈ ExpM, we write δ(ǫ) = 〈ǫ[a], ǫa〉 and we define
ǫ[a] and ǫa by

;[a] = ⊥B

a(ǫ)[a′] = ⊥B (for any a′ ∈ A)

(a↓b)[a′] =

�

b if a = a′

⊥B otherwise
(ǫ1⊕ ǫ2)[a] = ǫ1[a]∨B ǫ2[a]

(µx .γ)[a] = (γ[µx .γ/x])[a]

(;)a = ;

(a(ǫ))a′ =

�

ǫ if a = a′

; otherwise
(a↓b)a′ = ; (for any a′ ∈ A)
(ǫ1 ⊕ ǫ2)a = (ǫ1)a ⊕ (ǫ2)a
(µx .γ)a = (γ[µx .γ/x])a

Here, γ[µx .γ/x] denotes syntactic substitution, replacing in γ every free occurrence
of x by µx .γ. ♣

4.2. Regular expressions for Mealy machines 53

Note the similarities between this definition and the definition of Brzozowski deriva-
tives for regular expressions, presented in the previous chapter.
The above definition uses induction on the following complexity measure, which is
based on the number of nested unguarded occurrences of µ expressions.

4.2.3 DEFINITION. For any ǫ ∈ Expg , we define, by induction on the structure of ǫ,
the following complexity measure:

N(;) = N(a↓b) = N(a(ǫ)) = 0
N(ǫ1 ⊕ ǫ2) = max{N(ǫ1), N(ǫ2)}+ 1
N(µx .γ) = 1+ N(γ)

♣
In order to see that the definitions of ǫ[a] and ǫa in Definition 4.2.2 are well-formed,
note that in the case of µx .γ, we have N(µx .γ)> N(γ[µx .γ/x]), since:

N(γ) = N(γ[µx .γ/x])

This can easily be proved by (standard) induction on the syntactic structure of γ, since
γ is guarded (in x).
The coalgebra structure on ExpM enables us to use the notion of bisimulation for
Mealy machines (Definition 4.1.2) to prove the following lemma, which shows that
the definition of

⊕

above yields bisimilar expressions independently of the order
chosen.

4.2.4 LEMMA. Let E be an ordered set and E′ a set obtained as a permutation of E.

Then, the following holds:
⊕

E ∼
⊕

E′

PROOF. Let E = {ǫ1, . . . ,ǫn} and E′ = {ǫσ(1), . . . ,ǫσ(n)}, where σ is a permutation func-
tion. We prove that the relation

R = {〈
⊕

Ew ,
⊕

E′
w
〉 | w ∈ A∗}

is a bisimulation. Here, Ew (respectively E′
w
) denote the pointwise application to the

elements of E (respectively E′) of the word derivative ǫw defined inductively on the
length of w ∈ A∗ by ǫε = ǫ and ǫaw′ = (ǫa)w′ .
To prove that R is a bisimulation, we observe that, for any w ∈ A∗ and a ∈ A, we have

(
⊕

Ew)[a]

= ((ǫ1)w ⊕ ((ǫ2)w ⊕ (· · ·)))[a] (def.
⊕

)
= (ǫ1)w[a]∨B ((ǫ2)w[a]∨B (· · ·)) (def. (−)[a])
= (ǫσ(1))w[a]∨B ((ǫσ(2))w[a]∨B (· · ·)) (∨B is associative and commutative)
= (

⊕

E′
w
)[a]

(
⊕

Ew)a
= (ǫ1)wa ⊕ ((ǫ2)wa ⊕ (· · ·)) (def.

⊕

and (−)a)
R (ǫσ(1))wa ⊕ ((ǫσ(2))wa ⊕ (· · ·)) (definition of R)
= (

⊕

E′
w
)a

54 Chapter 4. Kleene meets Mealy

4.2.2 A Kleene theorem for Mealy coalgebras

Having a Mealy coalgebra structure on ExpM provides us, by finality of Φ, directly
with a natural semantics because of the existence of a (unique) homomorphism:

ExpM

[[·]]

δ

Φ

ϕ

(B×ExpM)
A

(id×[[·]])A
(B×Φ)A

[[ǫ]][a] = ǫ[a] and [[ǫ]]a = [[ǫa]]

Here, we drop the subscript in [[−]] (recall that [[−]]S : (S,α)→ (Φ,ϕ) denoted the
unique homomorphism into the final coalgebra): we will only use [[−]], without
subscript, to refer to [[−]]ExpM

. The map [[−]] assigns to every expression ǫ a causal
stream function [[ǫ]]: Aω→ Bω.
This is completely analogous to what happens with deterministic automata and reg-
ular expressions. The latter are provided with a deterministic automaton structure,
given by the Brzozowski derivatives, and then each regular expression is mapped, via
the final homomorphism, to the language that it denotes (see diagram (3.3)). Intu-
itively, one can think of δM as the analogue of Brzozowski derivatives [29] and causal
functions as the counterpart of languages in the Mealy setting.

4.2.5 EXAMPLE. Let A= {a, b}, let B= {1,0} (with ⊥B = 0) and let ǫ = µx .a↓1⊕a(x).
The semantics of ǫ is given by the causal function f = [[ǫ]], defined by:

f (a:σ) = 1: f (σ′)
f (b:σ) = (0,0,0, . . .)

♠
We can now define when a state s ∈ S of a Mealy machine (S,α) is equivalent to an
expression ǫ ∈ ExpM. We say that s is equivalent to ǫ if and only if [[s]]S = [[ǫ]].
Keeping in mind the parallel with deterministic automata, this is the analogue of
saying that the language recognized by a state in a deterministic automata is equal to
the language denoted by a regular expression.
This is equivalent to saying that s ∼ ǫ and, thus, proving the equivalence of s and
ǫ amounts to the construction of a bisimulation relation R ⊆ S × ExpM between the
Mealy coalgebras (S,α) and (ExpM,δ) such that 〈s,ǫ〉 ∈ R.
Given two Mealy coalgebras (S,α) and (T,β), the following fact holds, for s ∈ S

and t ∈ T : s ∼ t ⇔ [[s]]S = [[t]]T . As mentioned in Chapter 2, the notion of
bisimulation and the equivalence induced by the final coalgebra coincide for many
functors, including the Mealy one, but, unfortunately, this is not always the case.
Since we are in safe ground in this chapter we will use both notions indistinctly. In
Chapter 6, where we consider functors for which this fact does not hold, the subtlety
behind this issue will become clearer.

4.2. Regular expressions for Mealy machines 55

4.2.6 EXAMPLE. Let A= {a, b}, let B= {1,0} (with ⊥B = 0) and let (S,α) be the Mealy
coalgebra depicted in the following picture

s1

b|0
a|0

s2

b|0

a|1

The expression ǫ1 = µx .a(x)⊕ b(µy.a(y)⊕ a↓1⊕ b(x)) is equivalent to s1. To prove
this, first define ǫ2 = µy.a(y)⊕ a↓1⊕ b(µx .a(x)⊕ b(y)), ǫ3 = µy.a(y)⊕ a↓1⊕ b(ǫ1)

and ǫ4 = µx .a(x)⊕ b(ǫ2). Next, note that

ǫ1[a] = 0 ǫ1[b] = 0 (ǫ1)a = ǫ1 (ǫ1)b = ǫ3

ǫ2[a] = 1 ǫ2[b] = 0 (ǫ2)a = ǫ2 (ǫ2)b = ǫ4

ǫ3[a] = 1 ǫ3[b] = 0 (ǫ3)a = ǫ3 (ǫ3)b = ǫ1

ǫ4[a] = 0 ǫ4[b] = 0 (ǫ4)a = ǫ4 (ǫ4)b = ǫ2

and, thus, the relation

R= {〈s1,ǫ1〉, 〈s2,ǫ2〉, 〈s2,ǫ3〉, 〈s1,ǫ4〉}

is a bisimulation, which yields s1 ∼ ǫ1. ♠

At this point we are ready to state half of the analogue of Kleene’s theorem: for every
state s of a finite Mealy machine we can construct an equivalent expression ǫs, that is
an ǫs is such that s ∼ ǫs.

4.2.7 THEOREM (Kleene’s theorem for Mealy machines (part I)). Let (S,α) be a Mealy

machine. If S is finite then there exists for any s ∈ S an expression ǫs ∈ ExpM such that

s ∼ ǫs.

PROOF. Let S = {s1, . . . , sn}. We construct for a given s ∈ S an expression ǫs with s ∼ ǫs.
To this end, we associate with every state si ∈ S a variable x i ∈ X and an expression
Ai = µx i .ψi , with ψi defined by

ψi =
⊕

a∈A

(a(x(si)a
)⊕ a↓si[a])

Then we define A1
i
= Ai , Ak+1

i
= Ak

i
{Ak

k+1/xk+1} and we set ǫi = An
i
. Here, A{A′/x}

denotes syntactic replacement (that is, substitution without renaming of bound vari-
ables in A which are free in A′). This seemingly complicated definition is the analogue
of computing the regular expression denoting the language recognized by a state of
a deterministic automaton from a system of equations (Section 3.1.1). Below, in an
example, the similarities between the system of equations we solve here (using fixed
points) in the Mealy case and the one for deterministic automata will become more
evident. It should be remarked that above we are implicitly considering the argu-
ment set of

⊕

to be ordered. As remarked above (Lemma 4.2.4) the ordering is not
important.

56 Chapter 4. Kleene meets Mealy

Note that the term An
i
= (µx i .ψi){A0

1/x1} . . . {An−1
n
/xn} is closed, due to the fact that,

for every j = 1, . . . , n, the term A
j−1
j

contains at most n− j free variables in the set
{x j+1, . . . , xn}. Moreover, An

i
[a] = si[a] and (An

i
)a = An

j
where s j = (si)a. Both equations

are proved in a similar fashion. We prove the second:

(An
i
)a

= ((µx i .ψi){A0
1/x1} . . . {An−1

n
/xn})a

= (µx i .ψi{A0
1/x1} . . . {Ai−2

i−1/x i−1}{Ai
i+1/x i+1} . . . {An−1

n
/xn})a

= (ψi{A0
1/x1} . . . {Ai−2

i−1/x i−1}{Ai
i+1/x i+1} . . . {An−1

n
/xn}[An

i
/x i])a (def. of (−)a)

= (ψi{A0
1/x1} . . . {Ai−2

i−1/x i−1}{Ai
i+1/x i+1} . . . {An−1

n
/xn}{An

i
/x i})a ([An

i
/x i] = {An

i
/x i})

= (ψi{A0
1/x1} . . . {Ai−2

i−1/x i−1}{An
i
/x i}{Ai

i+1/x i+1} . . . {An−1
n
/xn})a (†)

=
�
⊕

a∈A(a(x(si)a
)⊕ a↓si[a])

�

a
{A0

1/x1} . . . {Ai−2
i−1/x i−1}{An

i
/x i}{Ai

i+1/x i+1} . . . {An−1
n
/xn}

= x j{A
j−1
j
/x j} . . . {An−1

n
/xn}

= An
j

Here, note that [An
i
/x i] = {An

i
/x i}, because An

i
has no free variables. The step marked

by (†) follows because x i is not free in Ai
i+1, . . . ,An−1

n
. The one but last step is a

consequence of the definition of (−)a and:

{An
i
/x i}{Ai

i+1/x i+1} . . . {An−1
n
/xn}

= {Ai−1
i
{Ai

i+1/x i+1} . . . {An−1
n
/xn}/x i}{Ai

i+1/x i+1} . . . {An−1
n
/xn}

= {Ai−1
i
/x i}{Ai

i+1/x i+1} . . . {An−1
n
/xn} (4.1)

Equation (4.1) uses the syntactic identity

A{B{C/y}/x}{C/y} = A{B/x}{C/y} (4.2)

As a consequence of An
i
[a] = si[a] and (An

i
)a = An

j
we have that the relation

R = {〈s,ǫs〉 | s ∈ S}

is a bisimulation and thus s ∼ ǫs, for all s ∈ S.

Let us illustrate the construction above. Recall the Mealy machine presented before
in Example 4.2.6:

s1

b|0
a|0

s2

b|0

a|1

4.2. Regular expressions for Mealy machines 57

We associate with s1 and s2 the variables x1 and x2, respectively, and we define the
expressions A1 = µx1.ψ1 and A2 = µx2.ψ2, where ψ1 and ψ2 are given by

ψ1 = a(x1)⊕ a↓0⊕ b(x2)⊕ b↓0 ψ2 = a(x2)⊕ a↓1⊕ b(x1)⊕ b↓0

Then, we compute A1
1 = A0

1 = A1, A2
1 = A1

1{A1
2/x2}, A1

2 = A0
2{A0

1/x1} = A2{A1/x1} and
A2

2 = A1
2. This yields the expressions

ǫ1 = A2
1 = µx1. a(x1)⊕ 0↓0⊕ 1(ǫ2)⊕ 1↓1

ǫ2 = A2
2 = µx2. a(x2)⊕ a↓1⊕ b(µx1. a(x1)⊕ a↓0⊕ b(x2)⊕ b↓0)⊕ b↓0

By construction we have s1 ∼ ǫ1 and s2 ∼ ǫ2.

The coalgebra structure (ExpM,δ) also provides us with a way of constructing a
Mealy machine from an expression ǫ ∈ ExpM, by considering the subcoalgebra 〈ǫ〉
(recall that 〈ǫ〉 denotes the smallest subcoalgebra generated by ǫ as defined in (equa-
tion (2.1)). The synthesis of a Mealy machine from an expression ǫ ∈ ExpM is the
first step to be able to state and prove the second half of Kleene’s theorem for Mealy
machines. Note however that 〈ǫ〉 will in general be infinite, similarly to what hap-
pened in the case of regular expressions and Brzozowski derivatives (Section 3.1.2).
Consider for instance the expression ǫ = µx .a(x ⊕ x) and note that ǫa = ǫ ⊕ ǫ,
(ǫa)a = (ǫ ⊕ ǫ) ⊕ (ǫ ⊕ ǫ) and so on. This means that 〈ǫ〉 will be the following infi-
nite Mealy coalgebra:

ǫ
a|0

ǫ⊕ ǫ a|0
(ǫ⊕ ǫ)⊕ (ǫ⊕ ǫ) a|0 . . .

Fortunately, this drawback can easily be solved in the same way as for regular ex-
pressions. We just need to remove double occurrences of ǫ in sums of the form
. . .⊕ǫ⊕ . . .⊕ǫ⊕ In what follows, we will consider expressions modulo the axioms
for associativity, commutativity and idempotency (ACI). It is worth to remark that
considering expressions modulo these axioms equates more expressions than what it
is in fact needed to guarantee finiteness (yielding smaller automata).
We will use the following definitions in order to consider subcoalgebras generated
modulo ACI. We start by defining the relation ≡ACI⊆ ExpM × ExpM, written infix, as
the least equivalence relation containing the identities

(Associativity) ǫ1 ⊕ (ǫ2⊕ ǫ3)≡ACI (ǫ1⊕ ǫ2)⊕ ǫ3

(Commutativity) ǫ1 ⊕ ǫ2 ≡ACI ǫ2 ⊕ ǫ1

(Idempotency) ǫ⊕ ǫ ≡ACI ǫ

We denote by ExpM/≡ACI
the set of expressions modulo ACI. The equivalence relation

≡ACI induces the equivalence map [−]ACI : ExpM→ ExpM/≡ACI
. Moreover, it is easy to

prove that
ǫ1 ≡ACI ǫ2⇒ ǫ1[a] = ǫ2[a] and (ǫ1)a ≡ACI (ǫ2)a

58 Chapter 4. Kleene meets Mealy

and, hence, ≡ACI is a bisimulation. This guarantees, by Theorem 2.2.7, that there is a
unique function δ : ExpM/≡ACI

→ (B×ExpM/≡ACI
)A which turns [−]ACI into a coalgebra

homomorphism (and thus ǫ ∼ [ǫ]ACI):

ExpM

δ

[−]ACI
ExpM/≡ACI

δ

(B× ExpM)
A

(id×[−]ACI)
A
(B×ExpM/≡ACI

)A

4.2.8 THEOREM (Kleene’s theorem for Mealy machines (part II)). For every ǫ ∈ ExpM,

there exists a finite Mealy coalgebra (S,α) and s ∈ S such that s ∼ ǫ.
PROOF. Let ǫ ∈ ExpM. We define (S,α) = 〈[ǫ]ACI〉, where 〈[ǫ]ACI〉 denotes the smallest
subcoalgebra (equation (2.1)) generated by [ǫ]ACI. We just need to prove that S is
finite, since we already know that ǫ ∼ [ǫ]ACI. In what follows, we denote [−]ACI by
[−]. We prove that S is contained in a finite set, namely:

C = {[ǫ1⊕ . . .⊕ ǫk] | ǫ1, . . . ,ǫk ∈ cl(ǫ) and ǫ1, . . . ,ǫk all distinct}
In the above, we take the empty sum to be equal to ; and the closure cl(ǫ) of ǫ is the
set containing all subexpressions and unfoldings of ǫ, which is defined as the smallest
set satisfying

cl(;) = {;}
cl(ǫ1 ⊕ ǫ2) = {ǫ1 ⊕ ǫ2} ∪ cl(ǫ1)∪ cl(ǫ2)

cl(a(ǫ)) = {a(ǫ)} ∪ cl(ǫ)

cl(a↓b) = {a↓b}
cl(µx .ǫ) = {µx .ǫ} ∪ cl(ǫ[µx .ǫ/x])

The set cl(ǫ) is finite, because the guardedness of the expressions guarantees that
the number of different unfoldings of µ-expressions is finite. The closure set has the
properties ǫ ∈ cl(ǫ) and

ǫ′ ∈ cl(ǫ)⇒ cl(ǫ′)⊆ cl(ǫ) (4.3)

In order to prove that S ⊆ C, we observe that (C ,δ) (here δ is actually the restriction
of δ to C) is a subcoalgebra of (ExpM/≡ACI

,δ) with [ǫ] ∈ C (since ǫ ∈ cl(ǫ)). Thus,
S ⊆ C, since S is the state space of the smallest subcoalgebra generated by [ǫ].
We only need to prove that for any [ǫ1⊕ . . .⊕ ǫk], with ǫ1, . . . ,ǫk ∈ cl(ǫ) and ǫ1, . . . ,ǫk

all distinct, and a ∈ A

[ǫ1⊕ . . .⊕ ǫk]a ∈ C

We observe that, for a ∈ A, [(ǫi)a] ∈ C, for any ǫi ∈ cl(ǫ) (easy proof by induction on
ǫ1, using equation (4.3)). Hence,

[ǫ1 ⊕ . . .⊕ ǫk]a = [(ǫ1)a ⊕ . . .⊕ (ǫk)a] ∈ C

because, using the axioms (Associativity), (Commutativity) and (Idempotency), we can
rewrite any sum u1⊕. . .⊕un, with all ui ∈ cl(ǫ) as ǫ′1⊕· · ·⊕ǫ′k, with all ǫ′1⊕· · ·⊕ǫ′k ∈ cl(ǫ)

distinct.

4.2. Regular expressions for Mealy machines 59

Let us illustrate the construction of the theorem above.

4.2.9 EXAMPLE. Let A= {a, b} and B= {0,1} (with ⊥B = 0). In what follows, we will
frequently denote equivalence classes [ǫ] by their representative ǫ, without any risk
of confusion.
For the expression ǫ1 = a(µx .b(x))⊕ a↓1 presented above, we have 〈[ǫ1]〉 = (S,α),
where S = {ǫ1,;,µx .b(x)} and:

ǫ1[a] = 1 and (ǫ1)a = µx .b(x)
ǫ1[b] = 0 and (ǫ1)b = ;

We now repeat the process for µx .b(x) and ;, which yields

(µx .b(x))[a] = 0 and (µx .b(x))a = ;
(µx .b(x))[b] = 0 and (µx .b(x))b = µx .b(x)

Thus, the transition function α is given by

ǫ1
a|1

b|0

µx .b(x)

b|0

a|0

;

a|0,b|0

Note that the Mealy machine above is not minimal: it is easy to see that the states ;
and µx .b(x) are bisimilar and could therefore be identified.
The (special) output value ⊥B = 0 allows us to define underspecified machines: if a
given expression ǫ does not contain information about the output value for a given
input a, then ǫ[a] = ⊥B. Being able to deal with underspecification is particularly
important in the main context of application of Mealy machines: the design of digital
circuits. If information about a particular input is not present, then a special mark
should be output in order to signal the missing information. In [26], we also showed
how to deal with overspecification, that is specifications with inconsistent information.
There, the set of output values had, in addition to ⊥B, also a special value ⊤B.
For another example, consider ǫ2 = a(a↓1)⊕ (µx .a(x)). We have:

ǫ2[a] = 0 and (ǫ2)a = a↓1⊕ (µx .a(x))
ǫ2[b] = 0 and (ǫ2)b = ;

We now repeat the process for a↓1⊕ (µx .a(x)), which yields

(ǫ2)a[a] = 1 and ((ǫ2)a)a = µx .a(x)
(ǫ2)a[b] = 0 and ((ǫ2)a)b = ;

60 Chapter 4. Kleene meets Mealy

The complete Mealy machine is represented in the following diagram:

ǫ2
a|0

b|0

a↓1⊕ (µx .a(x))

a|1b|0

;

a|0,b|0

µx .a(x)

a|0

b|0

Now, take ǫ3 = µx .a(a↓1)⊕ a(x). Because a(a↓1) has no x ’s one could be tempted
to assume that the automaton for ǫ3 would be equivalent to the one for ǫ2. However,
that is not the case. The subcoalgebra generated by ǫ3 (modulo ACI) is quite different
than the one presented above for ǫ2:

ǫ3
a|0

b|0

a↓1⊕ ǫ3

b|0

a|1

;

a|0,b|0

In the state ǫ2 of the automaton above, for any input sequence, the output 1 will occur
at most once, whereas in the state ǫ3 there will be n− 1 occurrences of 1 for every
input sequence starting with n a’s.
As a last example, let ǫ4 = µx .a(x ⊕ (µy.a(y)⊕ a↓1)). We have:

ǫ4[a] = 0 and (ǫ4)a = ǫ4 ⊕ (µy.a(y)⊕ a↓1)
(ǫ4⊕ (µy.a(y)⊕ a↓1))[a] = 1

and (ǫ4 ⊕ (µy.a(y)⊕ a↓1))a = (ǫ4⊕ (µy.a(y)⊕ a↓1))⊕ µy.a(y)

and

[ǫ4 ⊕ (µy.a(y)⊕ a↓1)]ACI = [(ǫ4⊕ (µy.a(y)⊕ a↓1))⊕µy.a(y)]ACI

Note that without ACI, the resulting state (ǫ4 ⊕ (µy.a(y)⊕ a↓1))⊕ µy.a(y) would be
regarded as a new state, even though it is equivalent to (the already existing state)
ǫ4 ⊕ (µy.a(y)⊕ a↓1). Moreover, the derivative of this state (for input a) would yield
again an equivalent but (syntactically) different state, namely ((ǫ4⊕(µy.a(y)⊕a↓1))⊕
µy.a(y)) ⊕ µy.a(y). This illustrates that without ACI the subcoalgebra generated
from an expression is in general infinite. In this particular example the subcoalgebra

4.3. An algebra for Mealy machines 61

generated by ǫ4 without ACI (that is, in the coalgebra (ExpM,δ)) would be infinite:

ǫ4
a|0

b|0

ǫ4⊕ (µy.a(y)⊕ a↓1)

b|0

a|1
(ǫ4 ⊕ (µy.a(y)⊕ a↓1))⊕ (µy.a(y)⊕ a↓1)

b|0
a|1

;

a|0,b|0

...

whereas the one generated with ACI has only 3 states:

ǫ4
a|0

b|0

ǫ4⊕ (µy.a(y)⊕ a↓1)

b|0

a|1

;

a|0,b|0

♠

4.3 An algebra for Mealy machines

In this section, we introduce an equational axiomatization of the language ExpM for
specifying Mealy machines, introduced in Section 4.2. We then prove it sound and
complete with respect to bisimulation.
We define the relation ≡⊆ ExpM ×ExpM, written infix, as the least equivalence rela-
tion containing the following identities:

1. (ExpM,⊕,;) is a join-semilattice.

ǫ⊕ ǫ ≡ ǫ (Idempotency)

ǫ1 ⊕ ǫ2 ≡ ǫ2 ⊕ ǫ1 (Commutativity)

ǫ1 ⊕ (ǫ2 ⊕ ǫ3) ≡ (ǫ1⊕ ǫ2)⊕ ǫ3 (Associativity)

;⊕ ǫ ≡ ǫ (Empty)

2. µ is the unique fixed point.

γ[µx .γ/x]≡ µx .γ (FP)

γ[ǫ/x]≡ ǫ⇒ µx .γ ≡ ǫ (Unique)

62 Chapter 4. Kleene meets Mealy

3. The join-semilattice structure propagates through the expressions.

; ≡ a↓⊥B (B−;) a↓b1 ⊕ a↓b2 ≡ a↓(b1 ∨B b2) (B−⊕)
a(;)≡ ; (−A− ;) a(ǫ1 ⊕ ǫ2) ≡ a(ǫ1)⊕ a(ǫ2) (−A−⊕)

4. ≡ is a congruence.

ǫ1 ≡ ǫ2⇒ ǫ[ǫ1/x] ≡ ǫ[ǫ2/x] if x is free in ǫ (Cong)

5. α-equivalence

µx .γ≡ µy.γ[y/x] if y is not free in γ (α− equiv)

We denote by ExpM/≡ the set of expressions modulo ≡. The equivalence relation ≡
induces the equivalence map [−]: ExpM→ ExpM/≡ given by [ǫ] = {ǫ′ | ǫ ≡ ǫ′}.

4.3.1 EXAMPLE. Consider the following two expressions:

ǫ = µx .b(x)⊕ a(a(x)⊕ b(x)) ǫ′ = µy.a(x)⊕ b(x)

To get an intuition for their semantics note that they would be bisimilar to the states
q1 and s1 below (A= {a, b} and B= {0,1} with ⊥B = 0).

q1

a|0
b|0

q2

a|0,b|0

s1

a|0,b|0

We now show that they are provably equivalent:

ǫ ≡ ǫ′
⇐ b(ǫ′)⊕ a(a(ǫ′)⊕ b(ǫ′))≡ ǫ′ (axiom (Unique))
⇔ b(ǫ′)⊕ a(ǫ′) ≡ ǫ′ (axioms (FP) and (Cong))
⇔ a(ǫ′)⊕ b(ǫ′) ≡ ǫ′ (axioms (Commutativity))
⇔ ǫ′ ≡ ǫ′ (axiom (FP))

♠

Also as an example of applicability of the axioms above we prove the following the-
orem (the analogue of [29, Theorem 6.4], also presented as Theorem 3.1.14 in the
previous chapter), which will be useful later in the proof of completeness.

4.3.2 THEOREM (Fundamental theorem for Mealy expressions). For all ǫ ∈ ExpM,

ǫ ≡
⊕

a∈A

a(ǫa)⊕ a↓ǫ[a] (4.4)

4.3. An algebra for Mealy machines 63

PROOF. By induction on the complexity measure N(ǫ) (Definition 4.2.3).
For the base case, when N(ǫ) = 0, we need to consider ǫ ∈ {;, a↓b, a(ǫ)}.
For ǫ = ;, one has ǫa = ; and ǫ[a] = ⊥B, for any a ∈ A. Using the axioms (B− ;) and
(−A− ;) then yields ; ≡

⊕

a∈A

a(;)⊕ a↓⊥B.

For ǫ = a↓b, ǫa′ = ;, for any a′ ∈ A, ǫ[a′] = ⊥B⇔ a′ 6= a and ǫ[a] = b. Thus, again

using (B− ;) and (−A−;), one has a↓b ≡ a↓b⊕ a(;)⊕
�

⊕

a′ 6=a

a′(;)⊕ a′↓⊥B

�

.

For a(ǫ), we have that a(ǫ)[a′] = ⊥B, for any a′ ∈ A, a(ǫ)a = ǫ and, for any other
a′ ∈ A with a′ 6= a, a(ǫ)a′ = ;. The result then follows as for a↓b.
For the inductive case, when N(ǫ) ≥ k + 1, we need to consider ǫ ∈ {ǫ1 ⊕ ǫ2,µx .ǫ}.
For ǫ1 ⊕ ǫ2, we first observe that (ǫ1 ⊕ ǫ2)[a] = (ǫ1)[a] ∨B (ǫ2)[a] and (ǫ1 ⊕ ǫ2)a =

(ǫ1)a ⊕ (ǫ2)a. Then we calculate:

ǫ1 ⊕ ǫ2

≡
�

⊕

a∈A

a((ǫ1)a)⊕ a↓ǫ1[a]

�

⊕
�

⊕

a∈A

a((ǫ2)a)⊕ a↓ǫ2[a]

�

(induction hypothesis)

≡
⊕

a∈A

a((ǫ1)a ⊕ (ǫ2)a)⊕ a↓(ǫ1[a]∨B ǫ2[a]) ((−A−⊕) and (B−⊕))

=
⊕

a∈A

a((ǫ1⊕ ǫ2)a)⊕ a↓((ǫ1⊕ ǫ2)[a])

Finally, if ǫ = µx .γ, we observe that ǫ[a] = (γ[µx .γ/x])[a] and ǫa = (γ[µx .γ/x])a
and thus:

µx .γ

≡ γ[µx .γ/x] (axiom (FP))

≡
⊕

a∈A

a((γ[µx .γ/x])a)⊕ a↓((γ[µx .γ/x])[a]) (induction hypothesis)

=
⊕

a∈A

a((µx .γ)a)⊕ a↓((µx .γ)[a])

The goal is now to prove that the axiomatization presented above is sound and com-
plete with respect to bisimilarity, that is, for all ǫ1,ǫ2 ∈ ExpM:

ǫ1 ≡ ǫ2⇔ ǫ1 ∼ ǫ2

To prove soundness (ǫ1 ≡ ǫ2 ⇒ ǫ1 ∼ ǫ2), we need the following lemma, which guar-
antees that the relation ≡ is a bisimulation.

4.3.3 LEMMA. Let ǫ1,ǫ2 ∈ ExpM and suppose that ǫ1 ≡ ǫ2. Then,

ǫ1[a] = ǫ2[a] and (ǫ1)a ≡ (ǫ2)a

PROOF. By induction on the length of derivations of ≡.

64 Chapter 4. Kleene meets Mealy

The derivations of length 0 include all axioms apart from (Unique) and (Cong). We
illustrate the proof for a couple of them.

(;⊕ ǫ)[a] =⊥B ∨B (ǫ[a]) = ǫ[a] and (;⊕ ǫ)a = (;)a ⊕ ǫa = ;⊕ ǫa ≡ ǫa

(a(;))[a′] = ⊥B = (;)[a′] and (a(;))a′ = ; = (;)a

(a↓b1 ⊕ a↓b2)[a
′] =

¨

b1 ∨B b2 if a = a′

⊥B if a 6= a′
= (a↓(b1 ∨B b2))[a

′]

and (a↓b1 ⊕ a↓b2)a′ = ;⊕ ; ≡ ;= (a↓(b1 ∨B b2))a′

For the derivations of length greater than 0 we show the proof for (Unique), which
uses (Cong). For the congruence axiom an auxiliary (easy) proof (by induction on the
structure of ǫ) would be needed. Suppose we have proved γ[ǫ/x]≡ ǫ, which gives us
as induction hypothesis (γ[ǫ/x])[a] = ǫ[a] and (γ[ǫ/x])a ≡ ǫa. Now, we calculate:

(µx .γ)[a] = (γ[µx .γ/x])[a]
(Cong)
= (γ[ǫ/x])[a]

(IH)
= ǫ[a]

(µx .γ)a = (γ[µx .γ/x])a
(Cong)
≡ (γ[ǫ/x])a

(IH)
= ǫa

4.3.4 THEOREM (Soundness). Let ǫ1,ǫ2 ∈ ExpM and suppose that ǫ1 ≡ ǫ2. Then,

ǫ1 ∼ ǫ2.

PROOF. Direct consequence of Lemma 4.3.3.

To prove completeness, we need two extra things. First, we need to observe that
Lemma 4.3.3 guarantees that the set ExpM/≡ carries a coalgebra structure which
makes [−] a coalgebra homomorphism, since ≡ is a bisimulation and, by Theo-
rem 2.2.7, this guarantees the existence of a unique function ∂ : ExpM/≡ → (B ×
ExpM/≡)

A which makes the following diagram commute.

ExpM

[−]

δ

ExpM/≡

∂

(B× ExpM)
A

(id×[−])A
(B× ExpM/≡)

A

[ǫ][a] = ǫ[a] and [ǫ]a = [ǫa]

Secondly, we will use (point 3. of) the following auxiliary lemma.

4.3.5 LEMMA.

1. The map ∂ : ExpM/≡→ (B× ExpM/≡)
A is an isomorphism.

2. There is a unique homomorphism h: (S,α)→ (ExpM/≡,∂).

3. The unique map into the final coalgebra [[−]]ExpM/≡
: ExpM/≡→ Φ is injective.

4.3. An algebra for Mealy machines 65

PROOF. For point 1., define ∂ −1 : (B×ExpM/≡)
A→ ExpM/≡, for f : A→ (B×ExpM/≡),

by

∂ −1(f) =

⊕

a∈A

f [a]⊕ a(r(fa))

 where r([ǫ]) = ǫ

Note that ∂ −1 will give the same result, independently of the representative of fa:
take two different elements ǫ1 and ǫ2 of the equivalence class fa; ǫ1 and ǫ2 satisfy
ǫ1 ≡ ǫ2 and thus

⊕

a∈A f [a]⊕ a(ǫ1)≡
⊕

a∈A f [a]⊕ a(ǫ2).

It is easy to check that (∂ −1 ◦ ∂)([ǫ]) = [ǫ]:

∂ −1(∂ ([ǫ])) = ∂ −1(λa.〈ǫ[a], [ǫa]〉) ([−] is a coalgebra homomorphism)

=
�⊕

a∈A ǫ[a]⊕ a(ǫa)
�

(definition of ∂ −1)

= [ǫ] (Fundamental theorem)

For the converse, we need to prove, for f : A→ (B× ExpM/≡), that (∂ ◦ ∂ −1)(f) = f :

∂ (∂ −1(f))(a) = ∂ (
�⊕

a∈A f [a]⊕ a(r(fa))
�

) (def. ∂ −1)
= 〈 f [a], [r(fa)]〉 ([−] is a coalgebra homomorphism)

= 〈 f [a], [fa]〉 = f (a)

For point 2., for the existence we define h: (S,α)→ (ExpM/≡,∂) by h(s) = [ǫs], where
ǫs is the expression constructed for every s ∈ S in the first part of Kleene’s theorem for
Mealy machines (Theorem 4.2.7). Recall that ǫs satisfies ǫs[a] = s[a] and (ǫs)a = ǫsa

.
We prove that h is a homomorphism:

h(s)[a]

= ([ǫs])[a]

= ǫs[a] ([−] is a homomorphism)
= s[a] (ǫs[a] = s[a])

h(s)a
= ([ǫs])a
= [(ǫs)a] ([−] is a homomorphism)
= [ǫsa

] ((ǫs)a = ǫsa
)

To prove the uniqueness, suppose we have another homomorphism

f : (S,α)→ (ExpM/≡,∂)

We shall prove that f (s) = h(s). Let, for any s ∈ S, fs denote any representative of
f (s) (that is, f (s) = [fs]). First, we observe that because f is a homomorphism the
following holds for every s ∈ S:

fs ≡ (∂ −1 ◦ (id× f)A ◦ α)(s)⇔ fs ≡
⊕

a∈A

s[a]⊕ a(fsa
) (4.5)

where ∂ −1 was defined above, in the proof of item 1..
We now prove that fsi

≡ ǫsi
, which yields the intended result f = h (since h(s) = [ǫs]).

We show the case when S = {s1, . . . , sn} for n = 3; the general case is completely
analogous but notationally heavier. The key point of this proof is the use of the axiom
(Unique) stating the uniqueness of fixed points.

66 Chapter 4. Kleene meets Mealy

First, we prove that fs1
≡ A1[fs2

/x2][fs3
/x3].

fs1
≡
⊕

a∈A

s1[a]⊕ a(xsa
)[fs1

/x1][fs2
/x2][fs3

/x3] (by (4.5))

⇔ fs1
≡
⊕

a∈A

s1[a]⊕ a(xsa
)[fs2

/x2][fs3
/x3][fs1

/x1] (all fsi
are closed)

⇒ fs1
≡ µx1.

⊕

a∈A

s1[a]⊕ a(xsa
)[fs2

/x2][fs3
/x3] (by uniqueness)

⇔ fs1
≡ A1[fs2

/x2][fs3
/x3] (def. of A1)

Now, using what we have computed for fs1
we prove that fs2

≡ A1
2[fs3

/x3].

fs2
≡
⊕

a∈A

s2[a]⊕ a(xsa
)[fs1

/x1][fs2
/x2][fs3

/x3] (by (4.5))

fs2
≡
⊕

a∈A

s2[a]⊕ a(xsa
)[A1/x1][fs2

/x2][fs3
/x3] (expr. for fs1

and (4.2))

⇔ fs2
≡
⊕

a∈A

s2[a]⊕ a(xsa
)[A1/x1][fs3

/x3][fs2
/x2] (all fsi

are closed)

⇒ fs2
≡ µx2.

⊕

a∈A

s2[a]⊕ a(xsa
)[A1/x1][fs3

/x3] (by uniqueness)

⇔ fs2
≡ A1

2[fs3
/x3] (def. of A1

2)

At this point we substitute fs2
in the expression for fs1

by A1
2[fs3

/x3] which yields:

fs1
≡ A1[A

1
2[fs3

/x3]/x2][fs3
/x3]≡ A1[A

1
2/x2][fs3

/x3]

Finally, we prove that fs3
≡ A2

3:

fs3
≡
⊕

a∈A

s3[a]⊕ a(xsa
)[fs1

/x1][fs2
/x2][fs3

/x3] (by (4.5))

⇔ fs3
≡
⊕

a∈A

s3[a]⊕ a(xsa
)[A1/x1][A

1
2/x2][fs3

/x3] (expr. for fsi
and (4.2))

⇒ fs3
≡ µx3.

⊕

a∈A

s3[a]⊕ a(xsa
)[A1/x1][A

1
2/x2] (by uniqueness)

⇔ fs3
≡ A2

3 (def. of A2
3)

Thus, we have:

fs1
≡ A1[A

1
2/x2][A

2
3/x3] fs2

≡ A1
2[A

2
3/x3] fs3

≡ A2
3

Note that A1
2[A

2
3/x3] ≡ A1

2{A2
3/x3} since x2 is not free in A2

3. Similarly, it also holds
[A1

2/x2][A
2
3/x3]≡ {A1

2/x2}{A2
3/x3}. Thus fsi

≡ ǫsi
, for all i = 1,2,3.

For point 3., take the factorization of [[−]]ExpM/≡
into a surjective followed by an

injective map.

[[−]]ExpM/≡
= (ExpM/≡

e
I

m
Ψ)

By Theorem 2.2.8 we have that I carries a coalgebra structure ϕ which makes e

and m coalgebra homomorphisms. We can now show that the coalgebra (I ,ϕ) is
isomorphic to (ExpM/≡,∂), which will yield the intended result that [[−]]ExpM/≡

is
injective (since it is the composition of an isomorphism with a monomorphism).

4.4. Discussion 67

To show the aforementioned isomorphism we observe that (I ,ϕ) and (ExpM/≡,∂)
are final among the locally finite Mealy coalgebras: Mealy machines (S,α) for which
the subcoalgebra 〈s〉 generated by any s ∈ S is finite. The fact that the coalgebra
(ExpM/≡,∂) is locally finite is a direct consequence of the second part of Kleene’s
theorem (Theorem 4.2.8), where we proved that the subcoalgebra 〈ǫ〉, when taken
modulo ACI, is finite. Point 2. above now guarantees that (ExpM/≡,∂) is final (among
the locally finite1). The Mealy machine (I ,ϕ) is locally finite because it is the image
of a locally finite one. Moreover, it is final: the existence of a homomorphism is given
by Kleene’s theorem and e : ExpM/≡ → I ; the uniqueness follows by finality of Φ.
Indeed, take any two homomorphisms f , g : (S,α) → (I ,ϕ); by finality we have that
m ◦ f = m ◦ g and, since m is a monomorphism, f = g.
Final objects are unique up to isomorphism and hence e : ExpM/≡ → I is an isomor-
phism, which implies that [[−]]ExpM/≡

= m ◦ e is injective.

We have all we need to prove that the axiomatization is complete with respect to
bisimulation.

4.3.6 THEOREM (Completeness). For all ǫ1,ǫ2 ∈ ExpM, if ǫ1 ∼ ǫ2 then ǫ1 ≡ ǫ2.

PROOF. Let ǫ1,ǫ2 ∈ ExpM and suppose that ǫ1 ∼ ǫ2, that is, [[ǫ1]] = [[ǫ2]]. Since [−]
is a homomorphism, we have [[[ǫ1]]]ExpM/≡

= [[[ǫ2]]]ExpM/≡
. Because [[−]]ExpM/≡

is injective, the latter equality implies that [ǫ1] = [ǫ2] and hence ǫ1 ≡ ǫ2.

4.4 Discussion

In this chapter, we have explored the extension of Kleene’s results to another par-
ticular type of automata, Mealy machines. We showed that, in the spirit of regular
expressions, it is possible to define a language which denotes precisely the behaviours
of finite Mealy machines. Moreover, analogous to Kleene’s theorem, we proved that
each expression in the language is equivalent to a finite Mealy machine and, con-
versely, each state of a finite Mealy machine is equivalent to an expression in the
language. Finally, we provided an equational system, sound and complete with re-
spect to bisimilarity, which allows for syntactic reasoning on the expressions in the
same way that Kleene algebras allow for Kleene’s regular expressions.
Both Mealy machines and deterministic automata are instances of F-coalgebras, for
a functor F : Set→ Set. An F-coalgebra is a pair (S, f) where S is a set of states and
f : S→ F(S) is the transition function, which determines the dynamics of the system.
Mealy machines are coalgebras for the functor (B× Id)A, whereas deterministic auto-
mata are coalgebras for the functor 2× IdA. Many systems can be obtained by varying
the functor under consideration. We will show in the next two chapters how all the
results presented in this chapter can be extended to a large class of functors.

1Note that the proof of item 2. above, as well as the one of Kleene’s theorem, was for finite Mealy
machines, but it is easily adapted for locally finite ones: everywhere where we consider S we must then
consider 〈s〉, for a given s ∈ S. The use of finiteness was just for convenience.

68 Chapter 4. Kleene meets Mealy

In his seminal paper [64], S. Kleene introduced an algebraic description of regular
languages: regular expressions. This was the precursor of many research, including
the one presented in this chapter. The connection between Kleene’s work (and the
work of some researchers who followed up on his work) and the research presented
in this thesis has been discussed in the introduction.
The connection between regular expressions (and deterministic automata) and coal-
gebras was first explored in [95]. There deterministic automata, the set of formal lan-
guages and regular expressions are all presented as coalgebras of the functor 2× IdA

(where A is the alphabet, and 2 is the two element set). It is then shown that the stan-
dard semantics of language acceptance of automata and the assignment of languages
to regular expressions both arise as the unique homomorphism into the final coalge-
bra of formal languages. The coalgebra structure on the set of regular expressions is
determined by their so-called Brzozowski derivatives [29]. In the present chapter, the
definition of a coalgebra structure on the set of expressions is very much inspired by
both [29,95].
The second part of Kleene’s theorem provides a synthesis algorithm to produce a
Mealy machine from an expression. Automata synthesis is a popular and very active
research area [37, 54, 74, 90, 112]. Most of the work done on synthesis has as main
goal to find a proper and sufficiently expressive type of automata to encode a spe-
cific type of logic (such as LTL [112] or µ-calculus [74]). Technically, the synthesis
from a µ-calculus formula ϕ consists in translating ϕ into an alternating automa-
ton Aϕ, reducing Aϕ into a non-deterministic automaton which is then checked for
non-emptiness [74]. The same process has been recently generalized to F-coalgebras
in [75]. In this paper, we use a different approach. We construct a deterministic
Mealy machine for a formula directly, by considering the formula as a state of the
automaton containing enough information about its successors.
The logic most similar to our language of expressions is the one presented in [37].
There a logic for formal specification of hardware protocols is presented, and an al-
gorithm for the synthesis of a Mealy machine is given. Their logic corresponds to
the conjunctive fragment of LTL. Their synthesis process is standard: first a non-
deterministic Büchi automaton is synthesized, secondly a powerset construction is
used to make the automaton deterministic and, finally, the propositions on the states
are used to determine the inputs and outputs for each state of the Mealy machine.
Because of our coalgebraic approach, the set of expressions comes with an equational
system that is sound and complete with respect to bisimilarity. Further, our synthesis
process remains within standard Mealy machines and the behaviour of the synthe-
sized automata is exactly characterized by the original expression.
Apart from [54,99], where synthesis for a special case of 2-adic arithmetic is treated,
we did not find any other work on the direct synthesis of deterministic Mealy ma-
chines. From these papers we inherit the basic coalgebraic approach, that we use
here to derive our expressive specification language for Mealy machines.
The modal fragment of our language (that is, the set of expressions ǫ ∈ ExpM without
the µ operator) is a special case of the coalgebraic logic obtained by a Stone-type
duality [24,25].

Chapter 5

Non-deterministic Kleene coalgebras

In the previous chapter, we presented a language to describe the behavior of Mealy
machines and a sound and complete axiomatization thereof. The defined language
and axiomatization can be seen as the analogue of classical regular expressions [64]
and Kleene algebra [66], for deterministic finite automata (DFA), or the process alge-
bra and axiomatization for labeled transition systems (LTS) [84].
We now extend the previous approach and devise a framework wherein languages
and axiomatizations can be uniformly derived for a large class of systems, including
DFA, LTS and Mealy machines. The key point of our framework is to model systems
as coalgebras.
Coalgebras provide a general framework for the study of dynamical systems such as
DFA, Mealy machines and LTS. For a functor G:Set→ Set, a G-coalgebra or G-system
is a pair (S, g), consisting of a set S of states and a function g : S → G(S) defining the
“transitions” of the states. We call the functor G the type of the system. For instance,
DFA can be modeled as coalgebras of the functor G(S) = 2× SA, Mealy machines are
obtained by taking G(S) = (B×S)A and image-finite LTS are coalgebras for the functor
G(S) = (Pω(S))

A, where Pω is finite powerset.
Under mild conditions, functors G have a final coalgebra (as defined in Chapter 2) into
which every G-coalgebra can be mapped via a unique so-called G-homomorphism.
The final coalgebra can be viewed as the universe of all possible G-behaviors: the
unique homomorphism into the final coalgebra maps every state of a coalgebra to a
canonical representative of its behavior. This provides a general notion of behavioral
equivalence: two states are equivalent if and only if they are mapped to the same
element of the final coalgebra. Instantiating the notion of final coalgebra for the
aforementioned examples, the result is as expected: for DFA the final coalgebra is the
set 2A∗ of all languages over A; for Mealy machines it is the set of causal functions
f : Aω → Bω; and for LTS it is the set of finitely branching trees with arcs labeled by
a ∈ A modulo bisimilarity. The notion of equivalence also specializes to the familiar
notions: for DFA, two states are equivalent when they accept the same language; for
Mealy machines, if they realize (or compute) the same causal function; and for LTS if
they are bisimilar.

69

70 Chapter 5. Non-deterministic Kleene coalgebras

It is the main aim of this chapter to show how the type of a system, given by the
functor G, is not only enough to determine a notion of behavior and behavioral equiv-
alence, but also allows for a uniform derivation of both a set of expressions describing
behavior and a corresponding axiomatization. The theory of universal coalgebra [96]
provides a standard equivalence and a universal domain of behaviors, uniquely based
on the functor G. The main contributions of the chapter are (1) the definition of a
set of expressions ExpG describing G-behaviors, (2) the proof of the correspondence
between behaviors described by ǫ ∈ ExpG and locally finite G-coalgebras (this is the
analogue of Kleene’s theorem), and (3) a corresponding sound and complete axiom-
atization, with respect to behavioral equivalence, of ExpG (this is the analogue of
Kleene algebra). All these results are solely based on the type of the system, given by
the functor G.

Organization of the chapter. In Section 5.1 we introduce the class of non-deter-
ministic functors and coalgebras. In Section 5.2 we associate with each non-determi-
nistic functor G a generalized language ExpG of regular expressions and we present
an analogue of Kleene’s theorem, which makes precise the connection between ExpG

and G-coalgebras. A sound and complete axiomatization of ExpG is presented in Sec-
tion 5.3. Section 5.4 contains two more examples of application of the framework
and Section 5.5 shows a language and axiomatization for the class of polynomial and
finitary coalgebras. Section 5.6 presents concluding remarks, directions for future
work and discusses related work.

5.1 Non-deterministic coalgebras

A non-deterministic coalgebra is a pair (S, f : S→ G(S)), where S is a set of states and
G is a non-deterministic functor. Non-deterministic functors are functors G: Set →
Set, built inductively from the identity and constants, using ×, 3+, (−)A and Pω.

5.1.1 DEFINITION. The class NDF of non-deterministic functors on Set is inductively
defined by putting:

NDF ∋ G:: = Id | B | G 3+ G | G×G | GA | PωG

where B is a (non-empty) finite join-semilattice and A is a finite set. ♣
Since we only consider finite exponents A= {a1, . . . , an}, the functor (−)A is not really
needed, since it is subsumed by a product with n components. However, to simplify
the presentation, we decided to include it.
Next, we show the explicit definition of the functors above on a set X and on a mor-
phism f : X → Y (note that G(f): G(X)→ G(Y)).

Id(X) = X B(X) = B (G1 3+ G2)(X) = G1(X)3+G2(X)

Id(f) = f B(f) = idB (G1 3+ G2)(f) = G1(f)3+ G2(f)

(GA)(X) = G(X)A (PωG)(X) = Pω(G(X)) (G1 × G2)(X) = G1(X)× G2(X)

(GA)(f) = G(f)A (PωG)(f) = Pω(G(f)) (G1 × G2)(f) = G1(f)×G2(f)

5.2. A language of expressions for non-deterministic coalgebras 71

Typical examples of non-deterministic functors include M= (B×Id)A, D= 2×IdA, Q =

(1 3+ Id)A and N = 2× (PωId)A, where 2 = {0,1} is a two-element join semilattice with
0 as bottom element (1∨ 0 = 1) and 1 = {∗} is a one element join-semilattice. These
functors represent, respectively, the type of Mealy, deterministic, partial deterministic
and non-deterministic automata. In this chapter, we will use the last three as running
examples. In Chapter 4, we have studied in detail regular expressions for Mealy
automata. Similarly to what happened there, we impose a join semilattice structure
on the constant functor. The product, exponentiation and powerset functors preserve
the join-semilattice structure and thus do not need to be changed. This is not the case
for the classical coproduct and thus we use 3+ instead (the operation 3+ was defined
in the preliminaries of this thesis), which also guarantees that the join semilattice
structure is preserved.
Next, we give the definition of the ingredient relation, which relates a non-determi-
nistic functor G with its ingredients, i.e. the functors used in its inductive construction.
We shall use this relation later for typing our expressions.

5.1.2 DEFINITION. Let Ã⊆ NDF×NDF be the least reflexive and transitive relation on
non-deterministic functors such that

G1 ⊳ G1 ×G2, G2 Ã G1 × G2, G1 Ã G1 3+G2, G2 Ã G1 3+G2, G Ã GA, G Ã PωG

♣

Here and throughout this document we use F Ã G as a shorthand for 〈F,G〉 ∈Ã. If
F Ã G, then F is said to be an ingredient of G. For example, 2, Id, IdA and D itself are
all the ingredients of the deterministic automata functor D = 2× IdA.

5.2 A language of expressions for non-deterministic coalgebras

In this section, we generalize the classical notion of regular expressions to non-de-
terministic coalgebras. We start by introducing an untyped language of expressions
and then we single out the well-typed ones via an appropriate typing system, thereby
associating expressions to non-deterministic functors. The language of expressions
presented in Chapter 4 for Mealy machines can be recovered as a special case of this
language by taking the corresponding functor.

5.2.1 DEFINITION (Expressions). Let A be a finite set, B a finite join-semilattice and
X a set of fixed point variables. The set Exp of all expressions is given by the following
grammar, where a ∈ A, b ∈ B and x ∈ X :

ǫ ::= ; | x | ǫ⊕ ǫ | µx .γ | b | l〈ǫ〉 | r〈ǫ〉 | l[ǫ] | r[ǫ] | a(ǫ) | {ǫ}

where γ is a guarded expression given by:

γ ::= ; | γ⊕ γ | µx .γ | b | l〈ǫ〉 | r〈ǫ〉 | l[ǫ] | r[ǫ] | a(ǫ) | {ǫ}

The only difference between the BNF of γ and ǫ is the occurrence of x . ♣

72 Chapter 5. Non-deterministic Kleene coalgebras

In the expression µx .γ, µ is a binder for all the free occurrences of x in γ. Variables
that are not bound are free. A closed expression is an expression without free occur-
rences of fixed point variables x . We denote the set of closed expressions by Expc .
Intuitively, expressions denote elements of the final coalgebra. The expressions ;,
ǫ1 ⊕ ǫ2 and µx .ǫ will play a similar role to, respectively, the empty language, the
union of languages and the Kleene star in classical regular expressions for determi-
nistic automata. The expressions l〈ǫ〉 and r〈ǫ〉 refer to the left and right hand-side of
products. Similarly, l[ǫ] and r[ǫ] refer to the left and right hand-side of sums. The
expressions a(ǫ) and {ǫ} denote function application and a singleton set, respectively.
We shall soon illustrate, by means of examples, the role of these expressions.
Our language does not have any operator denoting intersection or complement (it
only includes the sum operator ⊕). This is a natural restriction, very much in the
spirit of Kleene’s regular expressions for deterministic finite automata. We will prove
that this simple language is expressive enough to denote exactly all locally finite coal-
gebras.
Next, we present a typing assignment system for associating expressions to non-deter-
ministic functors. This will allow us to associate with each functor G the expressions
ǫ ∈ Expc that are valid specifications of G-coalgebras. The typing proceeds following
the structure of the expressions and the ingredients of the functors.

5.2.2 DEFINITION (Type system). We define a typing relation ⊢⊆ Exp×NDF×NDF that
will associate an expression ǫ with two non-deterministic functors F and G, which are
related by the ingredient relation (F is an ingredient of G). We shall write ⊢ ǫ : F Ã G

for 〈ǫ,F,G〉 ∈ ⊢. The rules that define ⊢ are the following:

⊢ ;: F Ã G ⊢ b : BÃ G ⊢ x : G Ã G

⊢ ǫ : G Ã G

⊢ µx .ǫ : G Ã G

⊢ ǫ1 : F Ã G ⊢ ǫ2 : F Ã G

⊢ ǫ1 ⊕ ǫ2 : F Ã G

⊢ ǫ : G Ã G

⊢ ǫ : IdÃ G

⊢ ǫ : F Ã G

⊢ {ǫ} : PωF Ã G

⊢ ǫ : F Ã G

⊢ a(ǫ) : FA
Ã G

⊢ ǫ : F1 Ã G

⊢ l〈ǫ〉 : F1 ×F2 Ã G

⊢ ǫ : F2 Ã G

⊢ r〈ǫ〉 : F1×F2 Ã G

⊢ ǫ : F1 Ã G

⊢ l[ǫ] : F1 3+F2 Ã G

⊢ ǫ : F2 Ã G

⊢ r[ǫ] : F1 3+F2 Ã G

♣

Intuitively, ⊢ ǫ : F Ã G (for a closed expression ǫ) means that ǫ denotes an element
of F(ΩG), where ΩG is the final coalgebra of G. As expected, there is a rule for
each expression construct. The extra rule involving Id Ã G reflects the isomorphism
between the final coalgebra ΩG and G(ΩG) (Lambek’s lemma , cf. [96]). Only fixed
points at the outermost level of the functor are allowed. This does not mean however
that we disallow nested fixed points. For instance, µx . a(x ⊕ µy. a(y)) would be a
well-typed expression for the functor D of deterministic automata, as it will become
clear below, when we will present more examples of well-typed and non-well-typed

5.2. A language of expressions for non-deterministic coalgebras 73

expressions. The presented type system is decidable (expressions are of finite length
and the system is inductive on the structure of ǫ ∈ Exp).
We can formally define the set of G-expressions: well-typed, closed and guarded,
expressions associated with a non-deterministic functor G.

5.2.3 DEFINITION (G-expressions). Let G be a non-deterministic functor and F an
ingredient of G. We define ExpFÃG by:

ExpFÃG = {ǫ ∈ Expc | ⊢ ǫ : F Ã G} .

We define the set ExpG of well-typed G-expressions by ExpGÃG. ♣

Let us instantiate the definition of G-expressions to the functors of deterministic au-
tomata D = 2× IdA.

5.2.4 EXAMPLE (Deterministic expressions). Let A be a finite set of input actions and
let X be a set of fixed point variables. The set ExpD of deterministic expressions is
given by the set of closed and guarded expressions generated by the following BNF
grammar. For a ∈ A and x ∈ X :

ExpD ∋ ǫ :: = ; | ǫ⊕ ǫ | µx .ǫ | x | l〈ǫ1〉 | r〈ǫ2〉
ǫ1 :: = ; | 0 | 1 | ǫ1 ⊕ ǫ1

ǫ2 :: = ; | a(ǫ) | ǫ2 ⊕ ǫ2

♠

Examples of well-typed expressions for the functor D = 2 × IdA (with 2 = {0,1} a
two-element join-semilattice with 0 as bottom element; recall that the ingredients
of D are 2, IdA and D itself) include r〈a(;)〉, l〈1〉 ⊕ r〈a(l〈0〉)〉 and µx .r〈a(x)〉 ⊕ l〈1〉.
The expressions l[1], l〈1〉 ⊕ 1 and µx .1 are examples of non well-typed expressions
for D, because the functor D does not involve 3+, the subexpressions in the sum
have different type, and recursion is not at the outermost level (1 has type 2 Ã D),
respectively.
It is easy to see that the closed (and guarded) expressions generated by the grammar
presented above are exactly the elements of ExpD. The most interesting case to check
is the expression r〈a(ǫ)〉. Note that a(ǫ) has type IdA

ÃD as long as ǫ has type IdÃD.
And the crucial remark here is that, by definition of ⊢, ExpIdÃG ⊆ ExpG. Therefore, ǫ
has type Id Ã D if it is of type D Ã D, or more precisely, if ǫ ∈ ExpD, which explains
why the grammar above is correct.
At this point, we should remark that the syntax of our expressions differs from the
classical regular expressions in the use of µ and action prefixing a(ǫ) instead of Kleene
star and full concatenation. We shall prove later that these two syntactically different
formalisms are equally expressive (Theorems 5.2.12 and 5.2.14), but, to increase the
intuition behind our expressions, let us present the syntactic translation from classical
regular expressions to ExpD (this translation is inspired by [84]) and back.

74 Chapter 5. Non-deterministic Kleene coalgebras

5.2.5 DEFINITION. The set of regular expressions is given by the following syntax

RE ∋ r::= 0 | 1 | a | r + r | r · r | r∗

where a ∈ A and · denotes sequential composition. We define the following transla-
tions between regular expressions and deterministic expressions:

(−)† : RE→ ExpD (−)‡ : ExpD→ RE

(0)† = ; (;)‡ = 0
(1)† = l〈1〉 (l〈;〉)‡ = (l〈0〉)‡ = (r〈;〉)‡ = 0
(a)† = r〈a(l〈1〉)〉 (l〈1〉)‡ = 1
(r1+ r2)

† = (r1)
†⊕ (r2)

† (l〈ǫ1⊕ ǫ′1〉)‡ = (l〈ǫ1〉)‡ + (l〈ǫ′1〉)‡
(r1 · r2)

† = (r1)
†[(r2)

†/l〈1〉] (r〈a(ǫ)〉)‡ = a · (ǫ)‡
(r∗)† = µx .(r)†[x/l〈1〉]⊕ l〈1〉 (r〈ǫ2⊕ ǫ′2〉)‡ = (r〈ǫ2〉)‡ + (r〈ǫ′2〉)‡

(ǫ1⊕ ǫ2)
‡ = (ǫ1)

‡+ (ǫ2)
‡

(µx .ǫ)‡ = sol(eqs(µx .ǫ))

The function eqs translates µx .ǫ into a system of equations in the following way.
Let µx1.ǫ1, . . . ,µxn.ǫn be all the fixed point subexpressions of µx .ǫ, with x1 = x and
ǫ1 = ǫ. We define n equations x i = (ǫi)

†, where ǫi is obtained from ǫi by replac-
ing each subexpression µx i .ǫi by x i , for all i = 1, . . . n. The solution of the system,
sol(eqs(µx .ǫ)), is then computed in the usual way (the solution of an equation of
shape x = r x + t is r∗ t).
In the previous chapter, regular expressions were given a coalgebraic structure, using
Brzozowski derivatives [29]. Later in this chapter, we will provide a coalgebra struc-
ture to ExpD, after which the soundness of the above translations can be stated and
proved: r ∼ r† and ǫ ∼ ǫ‡, where ∼ will coincide with language equivalence. ♣

Thus, the regular expression aa∗ is translated to r〈a(µx .r〈a(x)〉⊕ l〈1〉)〉, whereas the
expression µx .r〈a(r〈a(x)〉)〉 ⊕ l〈1〉 is transformed into (aa)∗.
We present next the syntax for the expressions in ExpQ and in ExpN (recall that
Q= (1 3+ Id)A and N = 2× (PωId)A).

5.2.6 EXAMPLE (Partial expressions). Let A be a finite set of input actions and X be a
set of fixed point variables. The set ExpQ of partial expressions is given by the set of
closed and guarded expressions generated by the following BNF grammar. For a ∈ A

and x ∈ X :
ExpQ ∋ ǫ :: = ; | ǫ⊕ ǫ | µx .ǫ | x | a(ǫ1)

ǫ1 :: = ; | ǫ1 ⊕ ǫ1 | l[ǫ2] | r[ǫ]
ǫ2 :: = ; | ǫ2 ⊕ ǫ2 | ∗

Intuitively, the expressions a(l[∗]) and a(r[ǫ]) specify, respectively, a state which has
no defined transition for input a and a state with an outgoing transition to another
state as specified by ǫ. ♠

5.2.7 EXAMPLE (Non-deterministic expressions). Let A be a finite set of input actions
and X be a set of fixed point variables. The set ExpN of non-deterministic expressions

5.2. A language of expressions for non-deterministic coalgebras 75

is given by the set of closed and guarded expressions generated by the following BNF
grammar. For a ∈ A and x ∈ X :

ExpN ∋ ǫ ::= ; | x | l〈ǫ1〉 | r〈ǫ2〉 | ǫ⊕ ǫ | µx .ǫ
ǫ1 ::= ; | ǫ1 ⊕ ǫ1 | 1 | 0
ǫ2 ::= ; | ǫ2 ⊕ ǫ2 | a(ǫ′)
ǫ′ ::= ; | ǫ′ ⊕ ǫ′ | {ǫ}

Intuitively, the expression r〈a({ǫ1} ⊕ {ǫ2})〉 specifies a state which has two outgoing
transitions labeled with a, one to a state specified by ǫ1 and another to a state specified
by ǫ2. ♠

We have defined a language of expressions which gives us an algebraic description of
systems. We should also remark at this point that in the examples we strictly follow
the type system to derive the syntax of the expressions. However, it is obvious that
many simplifications can be made in order to obtain a more polished language. In
particular, after the axiomatization we will be able to decrease the number of levels in
the above grammars, since we will have axioms of the shape a(ǫ)⊕ a(ǫ′) ≡ a(ǫ⊕ ǫ′).
In Section 5.4, we will sketch two examples where we apply some simplification to
the syntax. Also note that the language presented in Chapter 4 can be obtained from
ExpM, with M = (B× Id)A, by abbreviating a(r〈ǫ〉) by a(ǫ) and a(l〈b〉) by a↓b and
applying the simplification mentioned above to eliminate redundant expressions.
The goal is now to present a generalization of Kleene’s theorem for non-deterministic
coalgebras (Theorems 5.2.12 and 5.2.14). Recall that, for regular languages, the
theorem states that a language is regular if and only if it is recognized by a finite
automaton. In order to achieve our goal we will first show that the set ExpG of G-
expressions carries a G-coalgebra structure.

5.2.1 Brzozowski derivatives for non-deterministic expressions

In this section, we show that the set of G-expressions for a given non-deterministic
functor G has a coalgebraic structure δG : ExpG → G(ExpG) . More precisely, we are
going to define a function

δFÃG : ExpFÃG→ F(ExpG)

for every ingredient F of G, and then set δG = δGÃG. Our definition of the function
δFÃG will make use of the following.

5.2.8 DEFINITION. For every G ∈ NDF and for every F with F Ã G:

(i) we define a constant EmptyFÃG ∈ F(ExpG) by induction on the syntactic struc-
ture of F:

EmptyIdÃG = ;
EmptyBÃG = ⊥B

EmptyF1×F2ÃG = 〈EmptyF1ÃG,EmptyF2ÃG〉

EmptyF13+F2ÃG = ⊥
EmptyFAÃG = λa.EmptyFÃG

EmptyPωFÃG = ;

76 Chapter 5. Non-deterministic Kleene coalgebras

(ii) we define a function PlusFÃG : F(ExpG)× F(ExpG)→ F(ExpG) by induction on
the syntactic structure of F:

PlusIdÃG(ǫ1,ǫ2) = ǫ1⊕ ǫ2

PlusBÃG(b1, b2) = b1 ∨B b2

PlusF1×F2ÃG(〈ǫ1,ǫ2〉, 〈ǫ3,ǫ4〉) = 〈PlusF1ÃG(ǫ1,ǫ3),PlusF2ÃG(ǫ2,ǫ4)〉
Plus

F13+F2ÃG
(κi(ǫ1),κi(ǫ2)) = κi(PlusFiÃG(ǫ1,ǫ2)), i ∈ {1,2}

Plus
F13+F2ÃG

(κi(ǫ1),κ j(ǫ2)) = ⊤ i, j ∈ {1,2} and i 6= j

PlusF13+F2ÃG(x ,⊤) = PlusF13+F2ÃG(⊤, x) =⊤
Plus

F13+F2ÃG
(x ,⊥) = Plus

F13+F2ÃG
(⊥, x) = x

PlusFAÃG(f , g) = λa. PlusFÃG(f (a), g(a))

PlusPωFÃG(s1, s2) = s1 ∪ s2

♣

Intuitively, one can think of the constant EmptyFÃG and the function PlusFÃG as lift-
ings of ; and ⊕ to the level of F(ExpG).
We need two more things to define δFÃG. First, we define an order � on the types of
expressions. For F1, F2 and G non-deterministic functors such that F1 Ã G and F2 Ã G,
we define

(F1 Ã G)� (F2 Ã G)⇔ F1 Ã F2

The order � is a partial order (structure inherited from Ã). Note also that (F1 Ã G) =

(F2 Ã G)⇔ F1 = F2. Second, we define a measure N(ǫ) based on the maximum
number of nested unguarded occurrences of µ-expressions in ǫ and unguarded occur-
rences of ⊕. We say that a subexpression µx .ǫ1 of ǫ occurs unguarded if it is not in
the scope of one of the operators l〈−〉, r〈−〉, l[−], r[−], a(−) or {−}.

5.2.9 DEFINITION. For every guarded expression ǫ, we define N(ǫ) as follows:

N(;) = N(b) = N(a(ǫ)) = N(l〈ǫ〉) = N(r〈ǫ〉) = N(l[ǫ]) = N(r[ǫ]) = N({ǫ}) = 0

N(ǫ1 ⊕ ǫ2) = 1+max{N(ǫ1), N(ǫ2)}
N(µx .ǫ) = 1+ N(ǫ)

♣

The measure N induces a partial order on the set of expressions: ǫ1≪ ǫ2⇔ N(ǫ1) ≤
N(ǫ2), where ≤ is just the ordinary inequality of natural numbers.
Now we have all we need to define δFÃG : ExpFÃG→ F(ExpG).

5.2.10 DEFINITION. For every ingredient F of a non-deterministic functor G and an

5.2. A language of expressions for non-deterministic coalgebras 77

expression ǫ ∈ ExpFÃG, we define δFÃG(ǫ) as follows:

δFÃG(;) = EmptyFÃG

δFÃG(ǫ1⊕ ǫ2) = PlusFÃG(δFÃG(ǫ1),δFÃG(ǫ2))

δGÃG(µx .ǫ) = δGÃG(ǫ[µx .ǫ/x])

δIdÃG(ǫ) = ǫ for G 6= Id

δBÃG(b) = b

δF1×F2ÃG(l〈ǫ〉) = 〈δF1ÃG(ǫ),EmptyF2ÃG〉
δF1×F2ÃG(r〈ǫ〉) = 〈EmptyF1ÃG,δF2ÃG(ǫ)〉
δF13+F2ÃG(l[ǫ]) = κ1(δF1ÃG(ǫ))

δ
F13+F2ÃG

(r[ǫ]) = κ2(δF2ÃG(ǫ))

δFAÃG(a(ǫ)) = λa′.

�

δFÃG(ǫ) if a = a′

EmptyFÃG otherwise
δPωFÃG({ǫ}) = {δFÃG(ǫ) }

Here, ǫ[µx .ǫ/x] denotes syntactic substitution, replacing every free occurrence of x

in ǫ by µx .ǫ. ♣

In order to see that the definition of δFÃG is well-formed, we have to observe that
δFÃG can be seen as a function having two arguments: the type F Ã G and the ex-
pression ǫ. Then, we use induction on the Cartesian product of types and expressions
with orders � and ≪, respectively. More precisely, given two pairs 〈F1 Ã G,ǫ1〉 and
〈F2 Ã G,ǫ2〉 we have an order

〈F1 Ã G,ǫ1〉 ≤ 〈F2 Ã G,ǫ2〉 ⇔ (i) (F1 Ã G) � (F2 Ã G)

or (ii) (F1 Ã G) = (F2 Ã G) and ǫ1≪ ǫ2
(5.1)

Observe that in the definition above it is always true that 〈F′ Ã G,ǫ′〉 ≤ 〈F Ã G,ǫ〉,
for all occurrences of δF′ÃG(ǫ

′) occurring in the right hand side of the equation
defining δFÃG(ǫ). In all cases, but the ones that ǫ is a fixed point or a sum ex-
pression, the inequality comes from point (i) above. For the case of the sum, note
that 〈F Ã G,ǫ1〉 ≤ 〈F Ã G,ǫ1 ⊕ ǫ2〉 and 〈F Ã G,ǫ2〉 ≤ 〈F Ã G,ǫ1 ⊕ ǫ2〉 by point (ii),
since N(ǫ1) < N(ǫ1 ⊕ ǫ2) and N(ǫ2) < N(ǫ1 ⊕ ǫ2). Similarly, in the case of µx .ǫ we
have that N(ǫ) = N(ǫ[µx .ǫ/x]), which can easily be proved by (standard) induction
on the syntactic structure of ǫ, since ǫ is guarded (in x), and this guarantees that
N(ǫ[µx .ǫ/x])<N(µx .ǫ). Hence, 〈G Ã G,ǫ〉 ≤ 〈G Ã G,µx .ǫ〉. Also note that clause 4 of
the above definition overlaps with clauses 1 and 2 (by taking F = Id). However, they
give the same result and thus the function δFÃG is well-defined.

5.2.11 DEFINITION. We define, for each non-deterministic functor G, a G-coalgebra

δG : ExpG→ G(ExpG)

by putting δG = δGÃG. ♣

The function δG can be thought of as the generalization of the well-known notion
of Brzozowski derivative [29] for regular expressions and, moreover, it provides an
operational semantics for expressions, as we shall see in Section 5.2.2.

78 Chapter 5. Non-deterministic Kleene coalgebras

The observation that the set of expressions has a coalgebra structure will be crucial
for the proof of the generalized Kleene theorem, as will be shown in the next two
sections.

5.2.2 From coalgebras to expressions

Having a G-coalgebra structure on ExpG has two advantages. First, it provides us,
by finality, directly with a natural semantics because of the existence of a (unique)
homomorphism [[·]]: ExpG→ ΩG, that assigns to every expression ǫ an element [[ǫ]]
of the behavior final coalgebra ΩG.
The second advantage of the coalgebra structure on ExpG is that it allows us to use
the notion of G-bisimulation to relate G-coalgebras (S, g) and expressions ǫ ∈ ExpG.
If one can construct a bisimulation relation between an expression ǫ and a state s

of a given coalgebra, then the behavior represented by ǫ is equal to the behavior of
the state s. This is the analogue of computing the language L(r) represented by a
given regular expression r and the language L(s) accepted by a state s of a finite state
automaton and checking whether L(r) = L(s).
The following theorem states that every state in a locally finite G-coalgebra can be
represented by an expression in our language. This generalizes half of Kleene’s the-
orem for deterministic automata: if a language is accepted by a finite automaton
then it is regular (i.e. it can be denoted by a regular expression). The generaliza-
tion of the other half of the theorem (if a language is regular then it is accepted by
a finite automaton) will be presented in Section 5.2.3. It is worth to remark that in
the usual definition of deterministic automaton the initial state of the automaton is
included and, thus, in the original Kleene’s theorem, it was enough to consider finite
automata. In the coalgebraic approach, the initial state is not explicitly modeled and
thus we need to consider locally-finite coalgebras: coalgebras where each state will
generate a finite subcoalgebra.

5.2.12 THEOREM. Let G be a non-deterministic functor and let (S, g) be a locally-finite

G-coalgebra. Then, for any s ∈ S, there exists an expression 〈〈 s 〉〉 ∈ ExpG such that

s ∼ 〈〈 s 〉〉.

PROOF. Let s ∈ S and let 〈s〉 = {s1, . . . , sn} with s1 = s. We construct, for every state
si ∈ 〈s〉, an expression 〈〈 si 〉〉 such that si ∼ 〈〈 si 〉〉 .
If G = Id, we set, for every i, 〈〈 si 〉〉 = ;. It is easy to see that {〈si ,;〉 | si ∈ 〈s〉} is a
bisimulation and, thus, we have that s ∼ 〈〈 s 〉〉.
For G 6= Id, we proceed in the following way. Let, for every i, Ai = µx i .γ

G

g(si)
where,

for F Ã G and c ∈ F〈s〉, the expression γF
c
∈ ExpFÃG is defined by induction on the

5.2. A language of expressions for non-deterministic coalgebras 79

structure of F:

γId
si

= x i γB
b

= b γ
F1×F2

〈c,c′〉 = l〈γF1
c
〉 ⊕ r〈γF2

c′ 〉

γFA

f
=

⊕

a∈A

a(γF
f (a)
) γ

F13+F2

κ1(c)
= l[γF1

c
] γ

F13+F2

κ2(c)
= r[γF2

c
]

γ
F13+F2

⊥ = ; γ
F13+F2

⊤ = l[;]⊕ r[;]

γ
PωF

C =

⊕

c∈C

{γF
c
} if C 6= ;

; otherwise

Note that here the choice of l[;] ⊕ r[;] to represent inconsistency is arbitrary but
canonical, in the sense that any other expression involving sum of l[ǫ1] and r[ǫ2] will
be bisimilar. Formally, the definition of γ above is parametrized by a function from
{s1, . . . , sn} to a fixed set of variables {x1, . . . , xn}. It should also be noted that, similarly
to what happened in the previous chapter,

⊕

E, for an ordered set E = {ǫ1, . . . ,ǫn} of
expressions, stands for ǫ1 ⊕ (ǫ2⊕ (ǫ3⊕ . . .)).
Let A0

i
= Ai , define Ak+1

i
= Ak

i
{Ak

k+1/xk+1} and then set 〈〈 si 〉〉 = An
i
. Here, A{A′/x}

denotes syntactic replacement (that is, substitution without renaming of bound vari-
ables in A which are also free variables in A′). The definition of 〈〈 si 〉〉 does not depend
in the chosen order of {s1, . . . , sn}: the expressions obtained are just different modulo
renaming of variables.
Observe that the term

An
i
= (µx i .γ

G

g(si)
){A0

1/x1} . . . {An−1
n
/xn}

is a closed term because, for every j = 1, . . . , n, the term A
j−1
j

contains at most n− j

free variables in the set {x j+1, . . . , xn}.
It remains to prove that si ∼ 〈〈 si 〉〉. We show that R= {〈si , 〈〈 si 〉〉〉 | si ∈ 〈s〉} is a bisim-
ulation. For that, we first define, for F Ã G and c ∈ F〈s〉, ξF

c
= γF

c
{A0

1/x1} . . . {An−1
n
/xn}

and the relation

RFÃG = {〈c,δFÃG(ξ
F
c
)〉 | c ∈ F〈s〉}.

Then, we prove that 1 RFÃG = F(R) and 2 〈g(si),δG(〈〈 si 〉〉)〉 ∈ RGÃG.

1 By induction on the structure of F.

F = Id Note that RIdÃG = {〈si ,ξ
Id
si
〉 | si ∈ 〈s〉} which is equal to Id(R) = R provided

80 Chapter 5. Non-deterministic Kleene coalgebras

that ξId
si
= 〈〈 si 〉〉. The latter is indeed the case:

ξId
si
= γId

si
{A0

1/x1} . . . {An−1
n
/xn} (def. ξId

si
)

= x i{A0
1/x1} . . . {An−1

n
/xn} (def. γId

si
)

= Ai−1
i
{Ai

i+1/x i+1} . . . {An−1
n
/xn} ({Ai−1

i
/x i})

= A0
i
{A0

1/x1} . . . {An−1
n
/xn} (def. Ai−1

i
)

= 〈〈 si 〉〉 (def. 〈〈 si 〉〉)

F = B Note that, for b ∈ B, ξB
b
= γB

b
{A0

1/x1} . . . {An−1
n
/xn} = b. Thus, we have

that RBÃG = {〈si ,ξ
B
si
〉 | si ∈ B〈s〉} = {〈b, b〉 | b ∈ B}= B(R).

F = F1 ×F2

〈〈u, v〉, 〈e, f 〉〉 ∈ F1 ×F2(R)

⇐⇒ 〈u, e〉 ∈ F1(R) and 〈v, f 〉 ∈ F2(R) (def. F1 ×F2)

⇐⇒ 〈u, e〉 ∈ RF1ÃG and 〈v, f 〉 ∈ RF2ÃG (ind. hyp.)

⇐⇒ 〈u, e〉 = 〈c,δF1ÃG(ξ
F1
c
)〉 and 〈v, f 〉 = 〈c′,δF2ÃG(ξ

F2

c′)〉 (def. RFiÃG)

⇐⇒ 〈u, v〉 = 〈c, c′〉 and 〈e, f 〉= δF1×F2ÃG(l(ξ
F1
c
)⊕ r(ξ

F2

c′
)) (def. δFÃG)

⇐⇒ 〈u, v〉 = 〈c, c′〉 and 〈e, f 〉= δF1×F2ÃG(ξ
F1×F2

〈c,c′〉) (def. ξF)

⇐⇒ 〈〈u, v〉, 〈e, f 〉〉 ∈ RF1×F2ÃG

F = F1 3+F2 , F = FA
1 and F = PωF1 : similar to F1 ×F2.

2 We want to prove that 〈g(si),δG(〈〈 si 〉〉)〉 ∈ RGÃG. For that, we must show that
g(si) ∈ G〈s〉 and δG(〈〈 si 〉〉) = δG(ξ

G

g(si)
). The former follows by definition of 〈s〉,

whereas for the latter we observe that:

δG(〈〈 si 〉〉)
= δG((µx i .γ

G

g(si)
){A0

1/x1} . . . {An−1
n
/xn}) (def. of 〈〈 si 〉〉)

= δG(µx i .γ
G

g(si)
{A0

1/x1} . . . {Ai−2
i−1/x i−1}{Ai

i+1/x i+1} . . . {An−1
n
/xn})

= δG(γ
G

g(si)
{A0

1/x1} . . . {Ai−2
i−1/x i−1}{Ai

i+1/x i+1} . . . {An−1
n
/xn}[An

i
/x i]) (def. of δG)

= δG(γ
G

g(si)
{A0

1/x1} . . . {Ai−2
i−1/x i−1}{Ai

i+1/x i+1} . . . {An−1
n
/xn}{An

i
/x i}) ([An

i
/x i] = {An

i
/x i})

= δG(γ
G

g(si)
{A0

1/x1} . . . {Ai−2
i−1/x i−1}{An

i
/x i}{Ai

i+1/x i+1} . . . {An−1
n
/xn})

= δG(ξ
G

g(si)
)

5.2. A language of expressions for non-deterministic coalgebras 81

Here, note that [An
i
/x i] = {An

i
/x i}, because An

i
has no free variables. The last

two steps follow, respectively, because x i is not free in Ai
i+1, . . . ,An−1

n
and:

{An
i
/x i}{Ai

i+1/x i+1} . . . {An−1
n
/xn}

= {Ai−1
i
{Ai

i+1/x i+1} . . . {An−1
n
/xn}/x i}{Ai

i+1/x i+1} . . . {An−1
n
/xn}

= {Ai−1
i
/x i}{Ai

i+1/x i+1} . . . {An−1
n
/xn} (5.2)

Equation (5.2) uses the syntactic identity

A{B{C/y}/x}{C/y} = A{B/x}{C/y}, y not free in C (5.3)

Let us illustrate the construction appearing in the proof of Theorem 5.2.12 by some
examples. These examples will illustrate the similarity with the proof of the original
Kleene theorem, where a regular expression denoting the language recognized by a
state of a deterministic automaton is built using a system of equations, which we
recalled in Section 3.1.1.
Consider the following deterministic automaton over a two letter alphabet A= {a, b},
whose transition function g is given by the following picture (recall that s repre-
sents that the state s is final):

s1
a

b

s2

a,b

We define A1 = µx1.γD
g(s1)

and A2 = µx2.γD
g(s2)

where

γD

g(s1)
= l〈0〉 ⊕ r〈b(x1)⊕ a(x2)〉 γD

g(s2)
= l〈1〉 ⊕ r〈a(x2)⊕ b(x2)〉

We have A2
1 = A1{A1

2/x2} and A2
2 = A2{A0

1/x1}. Thus, 〈〈 s2 〉〉 = A2 and, since A1
2 = A2,

〈〈 s1 〉〉 is the expression

µx1. l〈0〉 ⊕ r〈b(x1)⊕ a(µx2. l〈1〉 ⊕ r〈a(x2)⊕ b(x2)〉)〉

By construction we have s1 ∼ 〈〈 s1 〉〉 and s2 ∼ 〈〈 s2 〉〉.
For another example, take the following partial automaton, also over a two letter
alphabet A= {a, b}:

q1
a q2

b

In the graphical representation of a partial automaton (S, p) we omit transitions for
which p(s)(a) = κ1(∗). In this case, this happens in q1 for the input letter b and in q2

for a.

82 Chapter 5. Non-deterministic Kleene coalgebras

We will have the equations

A1 = A0
1 = A1

1 = µx1.b(l[∗])⊕ a(r[x2])

A2 = A0
2 = A1

2 = µx2.a(l[∗])⊕ b(r[x2])

Thus:
〈〈 s1 〉〉 = A2

1 = µx1. b(l[∗])⊕ a(r[µx2. a(l[∗])⊕ b(r[x2])])

〈〈 s2 〉〉 = µx2.a(l[∗])⊕ b(r[x2])

Again we have s1 ∼ 〈〈 s1 〉〉 and s2 ∼ 〈〈 s2 〉〉.
As a last example, let us consider the following non-deterministic automaton, over a
one letter alphabet A= {a}:

s1

a

a

a s2

a

a

s3

a

a

We start with the equations:

A1 = µx1.l〈0〉 ⊕ r〈a({x1}⊕ {x2} ⊕ {x3})〉
A2 = µx2.l〈0〉 ⊕ r〈a({x2}⊕ {x3})〉
A3 = µx3.l〈1〉 ⊕ r〈a({x1}⊕ {x3})〉

Then we have the following iterations:

A1
1 = A1

A2
1 = A1{A1

2/x2}= µx1.l〈0〉 ⊕ r〈a({x1} ⊕ {A2} ⊕ {x3})〉
A3

1 = A1{A1
2/x2}{A2

3/x3}= µx1.l〈0〉 ⊕ r〈a({x1} ⊕ {(A2{A2
3/x3})} ⊕ {A2

3})〉

A1
2 = A2{A1/x1}= A2

A2
2 = A2{A1/x1}= A2

A3
2 = A2{A1/x1}{A2

3/x3}= µx2.l〈0〉 ⊕ r〈a({x2} ⊕ {A2
3})〉

A1
3 = A3{A1/x1}= µx3.l〈1〉 ⊕ r〈a({A1}⊕ {x3})〉

A2
3 = A3{A1/x1}{A1

2/x2}= µx3.l〈1〉 ⊕ r〈a({(A1{A1
2/x2})}⊕ {x3})〉

A3
3 = A2

3

This yields the following expressions:

〈〈 s1 〉〉 = µx1.l〈0〉 ⊕ r〈a({x1} ⊕ {〈〈 s2 〉〉} ⊕ {〈〈 s3 〉〉})〉
〈〈 s2 〉〉 = µx2.l〈0〉 ⊕ r〈a({x2} ⊕ {〈〈 s3 〉〉})〉
〈〈 s3 〉〉 = µx3.l〈1〉 ⊕ r〈a({µx1.l〈0〉⊕ r〈a({x1}⊕ {µx2.l〈0〉⊕ r〈a({x2} ⊕ {x3})〉}⊕ {x3})〉} ⊕ {x3})〉

5.2. A language of expressions for non-deterministic coalgebras 83

5.2.3 From expressions to coalgebras

We prove the converse of Theorem 5.2.12, that is, we show how to construct a finite

G-coalgebra (S, g) from an arbitrary expression ǫ ∈ ExpG, such that there exists a state
s ∈ S with ǫ ∼G s.
The immediate way of obtaining a coalgebra from an expression ǫ ∈ ExpG is to com-
pute the subcoalgebra 〈ǫ〉, since we have provided the set ExpG with a coalgebra
structure δG : ExpG → G(ExpG). However, the subcoalgebra generated by an expres-
sion ǫ ∈ ExpG by repeatedly applying δG is, in general, infinite. Take for instance the
deterministic expression ǫ1 = µx . r〈a(x ⊕ µy. r〈a(y)〉)〉 (for simplicity, we consider
A = {a} and below we will write, in the second component of δD, an expression ǫ
instead of the function mapping a to ǫ) and observe that:

δD(ǫ1) = 〈0,ǫ1 ⊕ µy. r〈a(y)〉〉
δD(ǫ1⊕ µy. r〈a(y)〉) = 〈0,ǫ1 ⊕ µy. r〈a(y)〉⊕µy. r〈a(y)〉〉
δD(ǫ1⊕ µy. r〈a(y)〉⊕µy. r〈a(y)〉) = 〈0,ǫ1 ⊕ µy. r〈a(y)〉⊕µy. r〈a(y)〉⊕ µy. r〈a(y)〉〉

...

As one would expect, all the new states are equivalent and will be identified by [[−]]
(the morphism into the final coalgebra). However, the function δD does not make
any state identification and thus yields an infinite coalgebra.
This phenomenon occurs also in classical regular expressions. In Section 3.1.2, we
showed that normalizing the expressions using the axioms for associativity, commu-
tativity and idempotency was enough to guarantee finiteness1. We will show in this
section that this also holds in our setting.
Consider the following axioms (only the first three are essential, but we include the
fourth to obtain smaller coalgebras):

(Associativity) ǫ1⊕ (ǫ2⊕ ǫ3)≡ (ǫ1 ⊕ ǫ2)⊕ ǫ3

(Commutativity) ǫ1⊕ ǫ2 ≡ ǫ2 ⊕ ǫ1

(Idempotency) ǫ⊕ ǫ ≡ ǫ
(Empty) ;⊕ ǫ ≡ ǫ

We define the relation ≡ACIE⊆ ExpFÃG×ExpFÃG, written infix, as the least equivalence
relation containing the four identities above. The relation ≡ACIE gives rise to the
(surjective) equivalence map [ǫ]ACIE = {ǫ′ | ǫ ≡ACIE ǫ

′}. The following diagram shows

1Actually, to guarantee finiteness, it is enough to eliminate double occurrences of expressions ǫ at the
outermost level of an expression · · ·⊕ ǫ⊕· · ·⊕ ǫ⊕· · · (and to do this one needs the ACI axioms). Note that
this is weaker than taking expressions modulo the ACI axioms: for instance, the expressions ǫ1 ⊕ ǫ2 and
ǫ2 ⊕ ǫ1, for ǫ1 6= ǫ2, would not be identified in the process above.

84 Chapter 5. Non-deterministic Kleene coalgebras

the maps defined so far:

ExpFÃG

δFÃG

[−]ACIE
ExpFÃG/≡ACIE

F(ExpG)
F([−]ACIE)

F(ExpG/≡ACIE
)

In order to complete the diagram, we next prove that ≡ACIE is contained in the kernel
of F([−]ACIE) ◦δFÃG

2. This will guarantee the existence of a function

δFÃG : ExpFÃG/≡ACIE
→ F(ExpG/≡ACIE

)

which, when F = G, provides ExpG/≡ with a coalgebraic structure

δG : ExpG/≡ACIE
→ G(ExpG/≡ACIE

)

(as before we write δG for δGÃG) and which makes [−]ACIE a homomorphism of coal-
gebras.

5.2.13 LEMMA. Let G and F be non-deterministic functors, with F Ã G. For all ǫ1,ǫ2 ∈
ExpFÃG,

ǫ1 ≡ACIE ǫ2⇒ (F([−]ACIE))(δFÃG(ǫ1)) = (F([−]ACIE))(δFÃG(ǫ2))

PROOF. In order to improve readability, in this proof we will use [−] to denote [−]ACIE.
It is enough to prove that for all x1, x2, x3 ∈ F(ExpG):

1 F([−])(PlusFÃG(PlusFÃG(x1, x2), x3)) = F([−])(PlusFÃG(x1,PlusFÃG(x2, x3)))

2 F([−])(PlusFÃG(x1, x2)) = F([−])(PlusFÃG(x2, x1))

3 F([−])(PlusFÃG(x1, x1)) = F([−])(x1)

4 F([−])(PlusFÃG(EmptyFÃG, x1)) = F([−])(x1)

By induction on the structure of F. We illustrate a few cases, the omitted ones are
proved in a similar way.

F = Id x1, x2, x3 ∈ ExpG

1 [PlusIdÃG(PlusIdÃG(x1, x2), x3)]

= [(x1⊕ x2)⊕ x3] (def. Plus)
= [x1⊕ (x2 ⊕ x3)] (Associativity)
= [PlusIdÃG(x1,PlusIdÃG(x2, x3))] (def. Plus)

4 [PlusIdÃG(EmptyIdÃG, x1)]

= [;⊕ x1] (def. Plus and Empty)
= [x1] (Empty)

2This is equivalent to prove that ExpFÃG/≡ACIE
, together with [−]ACIE, is the coequalizer of the projec-

tion morphisms from ≡ACIE to ExpFÃG .

5.2. A language of expressions for non-deterministic coalgebras 85

F = F1 ×F2 x1 = 〈u1, v1〉, x2 = 〈u2, v2〉 ∈ (F1 ×F2)(ExpG)

2 (F1 ×F2)([−])(PlusF1×F2ÃG(〈u1, v1〉, 〈u2, v2〉))
= 〈F1([−])(PlusF1ÃG(u1,u2)),F2([−])(PlusF2ÃG(v1, v2))〉 (def. Plus)
= 〈F1([−])(PlusF1ÃG(u2,u1)),F2([−])(PlusF2ÃG(v2, v1))〉 (ind. hyp.)
= (F1 ×F2)([−])(PlusF1×F2ÃG(〈u2, v2〉, 〈u1, v1〉)) (def. Plus)

3 (F1 ×F2)([−])(PlusF1×F2ÃG(〈u1, v1〉, 〈u1, v1〉))
= 〈F1([−])(PlusF1ÃG(u1,u1)),F2([−])(PlusF2ÃG(v1, v1))〉 (def. Plus)
= 〈F1([−])(u1),F2([−])(v1)〉 (ind. hyp.)
= (F1 ×F2)([−])(〈u1, v1〉)

F = PωF1 x1, x2, x3 ∈ PωF1(ExpG)

1 PωF1([−])(PlusPωF1ÃG(x1,PlusPωF1ÃG(x2, x3)))

= PωF1([−])(x1 ∪ (x2 ∪ x3)) (def. Plus)
= PωF1([−])((x1 ∪ x2)∪ x3)

= PωF1([−])(PlusPωF1ÃG(PlusPωF1ÃG(x1, x2), x3)) (def. Plus)

In the last but one step, we use the fact that, for any set X , (Pω(X),∪,;) is a join-
semilattice (hence, x1 ∪ (x2 ∪ x3) = (x1 ∪ x2) ∪ x3). Due to this fact, in the case
F = PωF1, in this particular proof, the induction hypothesis will not be used.

Thus, by Theorem 2.2.7, we have a well-defined function

δFÃG : ExpFÃG/≡ACIE
→ F(ExpG/≡ACIE

)

such that δFÃG([ǫ]ACIE) = (F[−]ACIE)(δFÃG(ǫ)).
We are ready to state and prove the second half of Kleene’s theorem.

5.2.14 THEOREM. Let G be a non-deterministic functor. For every ǫ ∈ ExpG, there exists
∆G(ǫ) = (S, g) such that S is finite and there exists s ∈ S with ǫ ∼ s.

PROOF. For every ǫ ∈ ExpG, we set ∆G(ǫ) = 〈[ǫ]ACIE〉 (recall that 〈s〉 denotes the
smallest subcoalgebra generated by s). First note that, by Lemma 5.2.13, the map
[−]ACIE is a homomorphism and thus ǫ ∼ [ǫ]ACIE. We prove, for every ǫ ∈ ExpG, that
the subcoalgebra 〈[ǫ]ACIE〉= (V,δG) has a finite state space V (here, δG actually stands
for the restriction of δG to V). Again, in order to improve readability, in this proof we
will use [−] to denote [−]ACIE.
More precisely, we prove, for all ǫ ∈ ExpFÃG, the following inclusion

V ⊆ V = {[ǫ1⊕ . . .⊕ ǫk] | ǫ1, . . . ,ǫk ∈ cl(ǫ) all distinct,ǫ1, . . . ,ǫk ∈ ExpG} (5.4)

Here, if k = 0 we take the sum above to be ; and cl(ǫ) denotes the smallest set
containing all subformulas of ǫ and the unfoldings of µ (sub)formulas, that is, the

86 Chapter 5. Non-deterministic Kleene coalgebras

smallest subset satisfying:

cl(;) = {;}
cl(ǫ1⊕ ǫ2) = {ǫ1 ⊕ ǫ2} ∪ cl(ǫ1)∪ cl(ǫ2)

cl(µx .ǫ1) = {µx .ǫ1} ∪ cl(ǫ1[µx .ǫ1/x])

cl(l〈ǫ1〉) = {l〈ǫ1〉} ∪ cl(ǫ1)

cl(r〈ǫ1〉) = {r〈ǫ1〉} ∪ cl(ǫ1)

cl(l[ǫ1]) = {l[ǫ1]} ∪ cl(ǫ1)

cl(r[ǫ1]) = {r[ǫ1]} ∪ cl(ǫ1)

cl(a(ǫ1)) = {a(ǫ1)} ∪ cl(ǫ1)

cl({ǫ1}) = {{ǫ1}} ∪ cl(ǫ1)

Note that the set cl(ǫ) is finite (the number of different unfoldings of µ-expressions is
finite) and has the property ǫ ∈ cl(ǫ).
We prove the inclusion in equation (5.4) in the following way. First, we observe that
[ǫ] ∈ V , because ǫ ∈ cl(ǫ). Then, we prove that (V ,δG) (again, δG actually stands for
the restriction of δG to V) is a subcoalgebra of (ExpG/≡ACIE

,δG). Thus, V ⊆ V , since V ,
the state space of 〈[ǫ]〉 is equal to the intersection of all state spaces of subcoalgebras
of (ExpG/≡ACIE

,δG) containing [ǫ].

To prove that (V ,δG) is a subcoalgebra we prove that, for ǫ1, . . . ,ǫk ∈ ExpFÃG,

ǫ1, . . . ,ǫk ∈ cl(ǫ) all distinct⇒ δFÃG([ǫ1⊕ . . .⊕ ǫk]) ∈ F(V) (5.5)

The intended result then follows by taking F = G.
We first prove two auxiliary results, by induction on the structure of F:

1 (F[−])(EmptyFÃG) ∈ F(V)

2 (F[−])(PlusFÃG(u, v)) ∈ F(V)⇔ (F[−])(u) ∈ F(V) and (F[−])(v) ∈ F(V)

for u, v ∈ F(ExpG).

F = Id

1 (F[−])(EmptyFÃG) = [;] ∈ V

2 (F[−])(PlusFÃG(u, v)) = [u⊕ v] ∈ V⇔ [u] ∈ V and [v] ∈ V u, v ∈ ExpG

The right to left implication follows because, using the (Associativity), (Commutativity)

and (Idempotency) axioms, we can rewrite u⊕v as ǫ1⊕. . .⊕ǫk, with all ǫ1, . . . ,ǫk ∈ cl(ǫ)

distinct.

F = B

1 (B[−])(EmptyBÃG) =⊥B ∈ B(V)

2 (B[−])(PlusBÃG(u, v)) = u∨B v ∈ B(V)⇔ u ∈ B(V) and v ∈ B(V) u, v ∈ B(ExpG)

5.2. A language of expressions for non-deterministic coalgebras 87

F = F1 ×F2

1 (F1×F2[−])(EmptyF1×F2ÃG)

= 〈(F1[−])(EmptyF1ÃG), (F2[−])(EmptyF2ÃG)〉 ∈ F1 ×F2(V)

2 (F1×F2[−])(PlusF1×F2ÃG(〈u1,u2〉, 〈v1, v2〉)) =
〈(F1[−])(PlusF1ÃG(u1, v1)), (F2[−])(PlusF2ÃG(u2, v2))〉 ∈ F1 ×F2(V)
(IH)
⇔ u1, v1 ∈ F1(V) and u2, v2 ∈ F2(V)

⇔〈u, v〉 ∈ F1 ×F2(V), u= 〈u1,u2〉, v = 〈v1, v2〉 ∈ F1 ×F2(ExpG)

F = F1 3+F2 and F = FA
1 : similar to F1 ×F2.

F = PωF1

1 (PωF[−])(EmptyPωFÃG) = ; ∈ PωF(V)

2 (PωF[−])(PlusPωFÃG(u, v)) = ((PωF[−])(u)∪ (PωF[−])(v)) ∈ PωF(V)

⇔ (PωF[−](u)) ∈ PωF(V) and (PωF[−](v)) ∈ PωF(V)

Using 2 , we can simplify our proof goal (equation (5.5)) as follows:

δFÃG([ǫ1⊕ . . .⊕ ǫk]) ∈ F(V)⇔ (F[−])(δFÃG(ǫi)) ∈ F(V), ǫi ∈ cl(ǫ), i = 1, . . . , k

Using induction on the product of types of expressions and expressions (using the
order defined in equation (5.1)), 1 and 2 , we prove that (F[−])(δFÃG(ǫi)) ∈ F(V),
for any ǫi ∈ cl(ǫ).

(F[−])(δFÃG(;)) = (F[−])(EmptyFÃG) ∈ F(V) (by 1)

(F[−])(δFÃG(ǫ1 ⊕ ǫ2)) = (F[−])(PlusFÃG(δFÃG(ǫ1),δFÃG(ǫ2)) ∈ F(V) (IH and 2)

(G[−])(δGÃG(µx .ǫ)) = (G[−])(δGÃG(ǫ[µx .ǫ/x])) ∈ G(V) (IH)

(Id[−])(δIdÃG(ǫi)) = [ǫi] ∈ Id(V) for G 6= Id (ǫi ∈ cl(ǫ))

(B[−])δBÃG(b) = b ∈ B(V) (B(V) = B)

(F1 ×F2[−])(δF1×F2ÃG(l〈ǫ〉))
= 〈(F1[−])(δF1ÃG(ǫ)), (F2[−])(EmptyF2ÃG)〉 ∈ F1 ×F2(V) (IH and 1)

(F1 ×F2[−])(δF1×F2ÃG(r〈ǫ〉))
= 〈(F1[−])(EmptyF1ÃG), (F2[−])(δF2ÃG(ǫ))〉 ∈ F1 ×F2(V) (IH and 1)

(F1 3+F2[−])(δF13+F2ÃG(l[ǫ])) = κ1((F1[−])(δF1ÃG(ǫ))) ∈ F1 3+F2(V) (IH)

(F1 3+F2[−])(δF13+F2ÃG
(r[ǫ])) = κ2((F2[−])(δF2ÃG(ǫ))) ∈ F1 3+F2(V) (IH)

(FA[−])(δFAÃG(a(ǫ))) =

�

λa′.

�

(F[−])(δFÃG(ǫ)) if a = a′

EmptyFÃG otherwise

�

∈ FA(V) (IH and 1)

(PωF[−])(δPωFÃG({ǫ})) = { (F[−])(δFÃG(ǫ)) } ∈ PωF(V) (IH)

88 Chapter 5. Non-deterministic Kleene coalgebras

Examples

Next we will illustrate the construction described in the proof of Theorem 5.2.14:
given an expression ǫ ∈ ExpG we construct a G-coalgebra (S, g) such that there is
s ∈ S with s ∼ ǫ. For simplicity, we will consider deterministic and partial automata
expressions over A= {a, b}.
Let us start by showing the synthesized automata for the most simple deterministic
expressions – ;, l〈0〉 and l〈1〉.

;

a,b

l〈0〉 a,b ;

a,b

l〈1〉 a,b ;

a,b

The first two automata recognize the empty language ; and the last the language {ε}
containing only the empty word.
We note that the generated automata are not minimal (for instance, the automata for
l〈0〉 and ; are bisimilar). Our goal has been to generate a finite automaton from an
expression. From this the minimal automaton can always be obtained by identifying
bisimilar states.
The following automaton, generated from the expression r〈a(l〈1〉)〉, recognizes the
language {a},

r〈a(l〈1〉)〉 a

b

l〈1〉

a,b

;

a,b

For an example of an expression containing fixed points, consider ǫ = µx . r〈a(l〈0〉 ⊕
l〈1〉 ⊕ x)〉. One can easily compute the synthesized automaton:

µx . r〈a(l〈0〉 ⊕ l〈1〉 ⊕ x)〉 a

b

l〈0〉 ⊕ l〈1〉 ⊕ ǫ

a

b ;

a,b

and observe that it recognizes the language aa∗. Here, the role of the join-semilattice
structure is also visible: l〈0〉 ⊕ l〈1〉 ⊕ ǫ specifies that this state is supposed to be non-
final (l〈0〉) and final (l〈1〉). The conflict of these two specifications is solved, when
they are combined with ⊕, using the join-semilattice structure: because 1∨ 0 = 1 the
state is set to be final.

5.2. A language of expressions for non-deterministic coalgebras 89

As a last example of deterministic expressions consider ǫ1 = µx . r〈a(x ⊕ µy.r〈a(y)〉)〉.
Applying δD to ǫ1 one gets the following (partial) automaton:

µx . r〈a(x ⊕ µy. r〈a(y)〉)〉 a

b

ǫ1 ⊕µy. r〈a(y)〉 ;

Calculating δD(ǫ1 ⊕µy. r〈a(y)〉) yields

δD(ǫ1 ⊕µy. r〈a(y)〉) = 〈0, t〉
where t(a) = ǫ1 ⊕ µy. r〈a(y)〉⊕µy. r〈a(y)〉〉

t(b) = ;

Note that the expression ǫ1 ⊕ µy. r〈a(y)〉 ⊕ µy. r〈a(y)〉 is in the same equivalence
class as ǫ1 ⊕ µy. r〈a(y)〉, which is a state that already exists. As we saw in the begin-
ning of Section 5.2.1, by only applying δD, without ACI, one would always generate
syntactically different states which instead of the automaton computed now:

µx . r〈a(x ⊕µy. r〈a(y)〉)〉 a

b

ǫ1 ⊕ µy. r〈a(y)〉

a

b ;

a,b

would yield the following infinite automaton (with ǫ2 = µy. r〈a(y)〉):

µx . r〈a(x ⊕µy. r〈a(y)〉)〉 a

b

ǫ1 ⊕ ǫ2
a

b

ǫ1⊕ ǫ2 ⊕ ǫ2
a

b

. . .

;

a,b

Let us next see a few examples of synthesis for partial automata expressions, where
we will illustrate the role of ⊥ and ⊤. In the graphical representation of a partial
automaton (S, p), we will omit transitions for inputs a with g(s)(a) = κ1(∗) and we

draw s
a

g(s)(a) whenever g(s)(a) ∈ {⊥,⊤}. Note however that ⊥ 6∈ S and

⊤ 6∈ S and thus will have no defined transitions.
As before, let us first present the corresponding automata for simple expressions – ;,
a(l[∗]), a(;) and a(l[∗])⊕ b(l[∗]).

; a,b
⊥ a(l[∗]) b ⊥ a(;) a

b

; a,b
⊥ a(l[∗])⊕ b(l[∗])

90 Chapter 5. Non-deterministic Kleene coalgebras

Note how ⊥ is used to encode underspecification, working as a kind of deadlock state.
In the first three expressions the behavior for one or both of the inputs is missing,
whereas in the last expression the specification is complete.
The element ⊤ is used to deal with inconsistent specifications. For instance, consider
the expression a(l[∗])⊕ b(l[∗])⊕ a(r[a(l[∗])⊕ b(l[∗])]). All inputs are specified, but
note that at the outermost level input a appears in two different sub-expressions –
a(l[∗]) and a(r[a(l[∗])⊕ b(l[∗])]) – specifying at the same time that input a leads to
successful termination and that it leads to a state where a(l[∗])⊕ b(l[∗]) holds, which
is contradictory, giving rise to the following automaton.

a(l[∗])⊕ b(l[∗])⊕ a(r[a(l[∗])⊕ b(l[∗])]) a ⊤

5.3 A sound and complete axiomatization

In the previous section, we have shown how to derive from the type of a system,
given by a functor G, a language ExpG that allows for the specification of G-behaviors.
Analogously to Kleene’s theorem, we have proved the correspondence between the
behaviors denoted by ExpG and locally finite G-coalgebras. In this section, we will
show how to provide ExpG with a sound and complete axiomatization. Again, the
functor G will serve as a main guide for the definition. The defined axiomatization is
closely related to Kleene algebra (the set of expressions has a join semilattice struc-
ture) and to the axiomatization provided by Milner for CCS (uniqueness of fixed
points will be required). When instantiating the definition below to concrete functors
one will recover known axiomatizations, such as the one for CCS mentioned above
or the one for labeled transition systems (with explicit termination) presented in [2].
The latter will be discussed in detail in Section 5.4.
We now introduce an equational system for expressions of type F Ã G. We define
the relation ≡ ⊆ ExpFÃG × ExpFÃG, written infix, as the least equivalence relation
containing the following identities:

1. (ExpFÃG,⊕,;) is a join-semilattice.

ǫ⊕ ǫ ≡ ǫ (Idempotency)

ǫ1 ⊕ ǫ2 ≡ ǫ2 ⊕ ǫ1 (Commutativity)

ǫ1 ⊕ (ǫ2 ⊕ ǫ3) ≡ (ǫ1⊕ ǫ2)⊕ ǫ3 (Associativity)

;⊕ ǫ ≡ ǫ (Empty)

2. µ is the unique fixed point.

γ[µx .γ/x]≡ µx .γ (FP)

γ[ǫ/x]≡ ǫ⇒ µx .γ ≡ ǫ (Unique)

5.3. A sound and complete axiomatization 91

3. The join-semilattice structure propagates through the expressions.

; ≡ ⊥B (B− ;) b1 ⊕ b2 ≡ b1 ∨B b2 (B−⊕)
l〈;〉 ≡ ; (×− ;− L) l〈ǫ1 ⊕ ǫ2〉 ≡ l〈ǫ1〉 ⊕ l〈ǫ2〉 (×−⊕− L)

r〈;〉 ≡ ; (×− ;− R) r〈ǫ1 ⊕ ǫ2〉 ≡ r〈ǫ1〉 ⊕ r〈ǫ2〉 (×−⊕− R)

a(;) ≡ ; (−A−;) a(ǫ1 ⊕ ǫ2) ≡ a(ǫ1)⊕ a(ǫ2) (−A−⊕)
l[ǫ1 ⊕ ǫ2] ≡ l[ǫ1]⊕ l[ǫ2] (+−⊕− L)

r[ǫ1 ⊕ ǫ2] ≡ r[ǫ1]⊕ r[ǫ2] (+−⊕− R)

l[ǫ1]⊕ r[ǫ2] ≡ l[;]⊕ r[;] (+−⊕−⊤)

4. ≡ is a congruence.

ǫ1 ≡ ǫ2⇒ ǫ[ǫ1/x] ≡ ǫ[ǫ2/x] for x free in ǫ (Cong)

5. α-equivalence

µx .γ ≡ µy.γ[y/x] for y not free in γ (α− equiv)

It is important to remark that in the third group of rules there does not exist any
equation applicable to expressions of type PωF.

5.3.1 EXAMPLE. Consider the non-deterministic automata over the alphabet A= {a}:

s1

a

s2

a

s3
a

Applying 〈〈−〉〉 (as defined in the proof of Theorem 5.2.12) one can easily compute
the expressions corresponding to s1 and s2:

ǫ1 = 〈〈 s1 〉〉 = µx1.l〈0〉 ⊕ r〈a({x1})〉
ǫ2 = 〈〈 s2 〉〉 = µy1.l〈0〉 ⊕ r〈a({µy2.l〈0〉 ⊕ r〈a({µy1.l〈0〉 ⊕ r〈a({y2})〉})〉})〉

We prove that ǫ2 ≡ ǫ1. In the following calculations let ǫ = µx1.r〈a({x1})〉.

ǫ2 ≡ ǫ1

⇔ r〈a({µy2.r〈a({r〈a({y2})〉})〉})〉 ≡ ǫ ((B−;), (×−;− L), (FP) and (Empty))
⇔ µy2.r〈a({r〈a({y2})〉})〉 ≡ ǫ ((FP) on ǫ and (Cong) twice)
⇐ r〈a({r〈a({ǫ})〉})〉 ≡ ǫ (uniqueness of fixed points)
⇔ r〈a({ǫ})〉 ≡ ǫ (fixed point axiom)
⇔ ǫ ≡ ǫ (fixed point axiom)

Note that the (Cong) rule was used in almost every step.
For another example, consider the non-deterministic automaton over the alphabet
A= {a, b}:

s1
a,b

s2 s3
a,b b s4

92 Chapter 5. Non-deterministic Kleene coalgebras

Using the definition of 〈〈−〉〉 one can compute the following expressions for s1, s2, s3

and s4:
ǫ1 = 〈〈 s1 〉〉 = µx1.l〈0〉 ⊕ r〈a({ǫ2})⊕ b({ǫ2})〉
ǫ2 = 〈〈 s2 〉〉 = µx2.l〈0〉 ⊕ ;
ǫ3 = 〈〈 s3 〉〉 = µx3.l〈0〉 ⊕ r〈a({ǫ2})⊕ b({ǫ2} ⊕ {ǫ4})〉
ǫ4 = 〈〈 s4 〉〉 = µx4.l〈0〉 ⊕ ;

For ǫ2 we calculate:

ǫ2 ≡ l〈0〉 ⊕ ; (FP)
≡ l〈;〉 (Empty) and (B− ;)
≡ ; (×− ;− L)

Similarly, one has that ǫ4 ≡ ;. Now, we prove ǫ1 ≡ ǫ3:

ǫ1 ≡ ǫ3

⇔ l〈0〉 ⊕ r〈a({ǫ2})⊕ b({ǫ2})〉 ≡ l〈0〉 ⊕ r〈a({ǫ2})⊕ b({ǫ2} ⊕ {ǫ4})〉 (FP)
⇔ l〈0〉 ⊕ r〈a({;})⊕ b({;})〉 ≡ l〈0〉 ⊕ r〈a({;})⊕ b({;} ⊕ {;})〉 (ǫ2 ≡ ; ≡ ǫ4)
⇔ l〈0〉 ⊕ r〈a({;})⊕ b({;})〉 ≡ l〈0〉 ⊕ r〈a({;})⊕ b({;})〉 (Idempotency)

♠

The equivalence relation ≡ gives rise to the (surjective) equivalence map

[−]: ExpFÃG→ ExpFÃG/≡

defined by [ǫ] = {ǫ′ | ǫ ≡ ǫ′}. The following diagram summarizes the maps we have
defined so far:

ExpFÃG

δFÃG

[−]
ExpFÃG/≡

F(ExpFÃG)
F([−])

F(ExpG/≡)

In order to complete the diagram, we next prove that ≡ is contained in the kernel of
F([−])◦δFÃG. This will, by Theorem 2.2.7, guarantee the existence of a well-defined
function

∂FÃG : ExpFÃG/≡→ F(ExpG/≡)

which, when F = G, provides ExpG/≡ with a coalgebraic structure ∂G : ExpG/≡ →
G(ExpG/≡) (as before, we write ∂G to abbreviate ∂GÃG) and which makes [−] a homo-
morphism of coalgebras.

5.3.2 LEMMA. Let G and F be non-deterministic functors, with F Ã G. For all ǫ1,ǫ2 ∈
ExpFÃG with ǫ1 ≡ ǫ2,

F([−]) ◦δFÃG(ǫ1) = F([−]) ◦δFÃG(ǫ2)

5.3. A sound and complete axiomatization 93

PROOF. By induction on the length of derivations of ≡.
First, let us consider derivations of length 1. We need to prove the result for all the
axioms in items 1. and 3. plus the axioms FP and (α− equiv).
For the axioms in 1. the result follows by Lemma 5.2.13. The axiom FP follows trivially
because of the definition of δG, since δG(µx .γ) = δG(γ[µx .γ/x]) and thus G([−]) ◦
δG(µx .γ) = G([−]) ◦δG(γ[µx .γ/x]).
For the axiom (α− equiv) we use the (Cong) rule, which is proved below:

G([−]) ◦ δG(µx .γ)
=G([−]) ◦ δG(γ[µx .γ/x]) (def. of δG)
=G([−]) ◦ δG(γ[µy.γ[y/x]/x]) (by (Cong))
=G([−]) ◦ δG(γ[y/x][µy.γ[y/x]/y]) (A[B[y/x]/x] = A[y/x][B[y/x]/y], y not free in γ)
=G([−]) ◦ δG(µy.γ[y/x])) (def. of G([−]) ◦δG)

Let us show the proof for some of the axioms in 3.. The omitted cases are similar. We
show for each axiom ǫ1 ≡ ǫ2 that δFÃG(ǫ1) = δFÃG(ǫ2).

⊥B ≡ ; b1 ⊕ b2 ≡ b1 ∨B b2

δBÃG(⊥B) = ⊥B = δBÃG(;) δBÃG(b1 ∨B b2) = b1 ∨B b2 = δBÃG(b1 ⊕ b2)

l(;)≡ ;

δF1×F2ÃG(l(;)) = 〈EmptyF1ÃG,EmptyF2ÃG〉 = δF1×F2ÃG(;)

l(ǫ1⊕ ǫ2)≡ l(ǫ1)⊕ l(ǫ2)

δF1×F2ÃG(l(ǫ1⊕ ǫ2))

= 〈δF1ÃG(ǫ1 ⊕ ǫ2),EmptyF2ÃG〉)
= 〈PlusF1ÃG(δF1ÃG(ǫ1),δF1ÃG(ǫ2)),PlusF2ÃG(EmptyF2ÃG,EmptyF2ÃG)〉)
= PlusF1×F2

(〈δF1ÃG(ǫ1),EmptyF2ÃG〉, 〈δF1ÃG(ǫ2),EmptyF2ÃG〉
= δF1×F2ÃG(l(ǫ1)⊕ l(ǫ2)))

l[ǫ1⊕ ǫ2]≡ l[ǫ1]⊕ l[ǫ2] l[ǫ1]⊕ r[ǫ2]≡ l[;]⊕ r[;]

δ
F13+F2ÃG

(l[ǫ1⊕ ǫ2])

= κ1(δF1ÃG(ǫ1 ⊕ ǫ2))

= Plus
F13+F2

(κ1(δF1ÃG(ǫ1)),κ1(δF1ÃG(ǫ2))

= δ
F13+F2ÃG

(l[ǫ1]⊕ l[ǫ2])

δ
F13+F2ÃG

(l[ǫ1]⊕ r[ǫ2])

= Plus
F13+F2

(κ1(δF1ÃG(ǫ1)),κ2(δF2ÃG(ǫ2)))

= ⊤
= Plus

F13+F2
(κ1(δF1ÃG(;)),κ2(δF2ÃG(;)))

= δF13+F2ÃG(l[;]⊕ r[;])

Note that if we would have the axioms l[;] ≡ ; and r[;] ≡ ; in the axiomatization

94 Chapter 5. Non-deterministic Kleene coalgebras

presented above, this theorem would not hold.

δ
F13+F2ÃG

(l[;]) = κ1([⊥]) 6= ⊥= δF13+F2ÃG
(;)

δ
F13+F2ÃG

(r[;]) = κ2([⊥]) 6= ⊥= δF13+F2ÃG
(;)

Derivations with length k > 1 can be obtained by two rules: (Unique) or (Cong). For
the first (which uses the second), suppose that we have derived µx .γ ≡ ǫ and that we
have already proved γ[ǫ/x]≡ ǫ. Then, we have:

G([−]) ◦δG(µx .γ) = G([−]) ◦δG(γ[µx .γ/x]) (def. δG)
= G([−]) ◦δG(γ[ǫ/x]) (by (Cong))
= G([−]) ◦δG(ǫ) (induction hypothesis)

For (Cong), suppose that we have derived ǫ[ǫ1/x] ≡ ǫ[ǫ2/x2] and that we have al-
ready derived ǫ1 ≡ ǫ2, which gives us, as induction hypothesis, the equality

(F[−])(δFÃG(ǫ1)) = (F[−])(δFÃG(ǫ2)) (5.6)

This equation is precisely what we need to prove the case ǫ = x (and thus ǫ1,ǫ2:G Ã
G):

(G[−])(δG(x[ǫ1/x]) = (G[−])(δG(ǫ1))

= (G[−])(δG(ǫ2)) (5.6)
= (G[−])(δG(x[ǫ2/x]))

For the cases ǫ 6= x , we prove that δFÃG(ǫ[ǫ1/x]) = δFÃG(ǫ[ǫ2/x]), by induction
on the product of types of expressions and expressions (using the order defined in
equation (5.1)). We show a few cases, the omitted ones are similar.

δGÃG((µy.ǫ)[ǫ1/x]) = δGÃG(ǫ[ǫ1/x][µy.ǫ/y]))
(IH)
= δGÃG(ǫ[ǫ2/x][µy.ǫ/y])) = δGÃG((µy.ǫ)[ǫ2/x])

δF1×F2ÃG(l〈ǫ〉[ǫ1/x]) = 〈δF1ÃG(ǫ[ǫ1/x]),EmptyF2ÃG〉
(IH)
= 〈δF1ÃG(ǫ[ǫ2/x]),EmptyF2ÃG〉= δF1×F2ÃG(l〈ǫ〉[ǫ2/x])

δF13+F2ÃG(l[ǫ][ǫ1/x]) = κ1(δF1ÃG(ǫ[ǫ1/x]))
(IH)
= κ1(δF1ÃG(ǫ[ǫ2/x])) = δ

F13+F2ÃG
(l[ǫ][ǫ2/x])

Thus, we have a well-defined function ∂FÃG : ExpFÃG/≡ → F(ExpG/≡), which makes
the above diagram commute, that is ∂FÃG([ǫ]) = (F[−]) ◦δFÃG(ǫ). This provides the
set ExpG/≡ with a coalgebraic structure ∂G : ExpG/≡→ G(ExpG/≡) which makes [−] a
homomorphism between the coalgebras (ExpG,δG) and (ExpG/≡,∂G).

Soundness and completeness

Next we show that the axiomatization introduced in the previous section is sound and
complete.
Soundness is a direct consequence of the fact that the equivalence map [−] is a coal-
gebra homomorphism.

5.3. A sound and complete axiomatization 95

5.3.3 THEOREM (Soundness). Let G be a non-deterministic functor. For all ǫ1,ǫ2 ∈
ExpG,

ǫ1 ≡ ǫ2⇒ ǫ1 ∼ ǫ2

PROOF. Let G be a non-deterministic functor, let ǫ1,ǫ2 ∈ ExpG and suppose that ǫ1 ≡
ǫ2. Then, [ǫ1] = [ǫ2] and, thus

behExpG/≡
([ǫ1]) = behExpG/≡

([ǫ2])

where behS denotes, for any G-coalgebra (S, g), the unique map into the final coal-
gebra. The uniqueness of the map into the final coalgebra and the fact that [−] is a
coalgebra homomorphism implies that behExpG/≡

◦ [−] = behExpG
which then yields

behExpG
(ǫ1) = behExpG

(ǫ2)

Since in the final coalgebra only the bisimilar elements are identified, ǫ1 ∼ ǫ2 fol-
lows.

For completeness a bit more of work is required. Let us explain upfront the key steps
of the proof. The goal is to prove that ǫ1 ∼ ǫ2⇒ ǫ1 ≡ ǫ2. First, note that we have

ǫ1 ∼ ǫ2⇔ behExpG
(ǫ1) = behExpG

(ǫ2)⇔ behExpG/≡
([ǫ1]) = behExpG/≡

([ǫ2]) (5.7)

We then prove that behExpG/≡
is injective, which is a sufficient condition to guarantee

that ǫ1 ≡ ǫ2 (since it implies, together with (5.7), that [ǫ1] = [ǫ2]).
We proceed as follows. First, we factorize behExpG/≡

into an epimorphism followed
by a monomorphism (Theorem 2.2.8) as shown in the following diagram (where
I = behExpG/≡

(ExpG/≡)):

ExpG/≡

behExpG/≡

e

∂G

I
m

ωG

ΩG

ωG

G(ExpG/≡) G(I) G(ΩG)

Then, we prove that (1) (ExpG/≡,∂G) is a locally finite coalgebra (Lemma 5.3.4) and
(2) both coalgebras (ExpG/≡,∂G) and (I ,ωG) are final in the category of locally fi-
nite G-coalgebras (Lemmas 5.3.7 and 5.3.8, respectively). Since final coalgebras are
unique up to isomorphism, it follows that e : ExpG/≡ → I is in fact an isomorphism
and therefore behExpG/≡

is injective, which will give us completeness.

In the case of the deterministic automata functor D= 2×IdA, the set I will be precisely
the set of regular languages. This means that final locally finite coalgebras generalize
regular languages (in the same way that final coalgebras generalize the set of all
languages).
We proceed with presenting and proving the extra lemmas needed in order to prove
completeness. We start by showing that the coalgebra (ExpG/≡,∂G) is locally finite
(note that this implies that (I ,ωG) is also locally finite) and that ∂G is an isomorphism.

96 Chapter 5. Non-deterministic Kleene coalgebras

5.3.4 LEMMA. The coalgebra (ExpG/≡,∂G) is a locally finite coalgebra. Moreover, ∂G is

an isomorphism.

PROOF. Local finiteness is a direct consequence of the generalized Kleene’s theorem
(Theorem 5.2.14). In the proof of Theorem 5.2.14 we showed that, given ǫ ∈ ExpG,
the subcoalgebra 〈[ǫ]ACIE〉 is finite. Thus, the subcoalgebra 〈[ǫ]〉 is also finite (since
ExpG/≡ is a quotient of ExpG/≡AC I E

).
To see that ∂G is an isomorphism, first define, for every F Ã G,

∂ −1
FÃG
(c) = [γF

c
] (5.8)

where γF

c
is defined, for F 6= Id, as γF

c
in the proof of Theorem 5.2.12, and for F = Id

as γId
[ǫ] = ǫ. Then, we prove that ∂ −1

FÃG
has indeed the properties 1 ∂ −1

FÃG
◦ ∂FÃG =

idExpFÃG/≡
and 2 ∂FÃG ◦ ∂ −1

FÃG
= idF(ExpFÃG/≡)

. Instantiating F = G one derives that

δG is an isomorphism. It is enough to prove for 1 that γF

∂FÃG([ǫ])
≡ ǫ and for 2 that

∂FÃG([γ
F

c
]) = c. We illustrate a few cases. The omitted ones are similar.

1 By induction on the product of types of expressions and expressions (using the
order defined in equation (5.1)).

γId
∂IdÃG([ǫ])

= ǫ

γ
F1×F2

∂F1×F2ÃG([r〈ǫ〉])
= l〈γF1

∂F1ÃG(;)
〉 ⊕ r〈γF2

∂F2ÃG(ǫ)
〉
(IH)
≡ l〈;〉 ⊕ r〈ǫ〉 ≡ r〈ǫ〉

γG

∂G([µx .ǫ]) = γ
G

∂G([ǫ[µx .ǫ/x]])

(IH)
≡ ǫ[µx .ǫ/x]≡ µx .ǫ

Note that the cases ǫ = ; and ǫ = ǫ1 ⊕ ǫ2 require an extra proof (by induction on F).
More precisely, one needs to prove that

a γF

F[−](EmptyFÃG)
≡ ; and b γF

F[−](PlusFÃG(x1,x2))
≡ γF

F[−](x1)
⊕ γF

F[−](x2)

It is an easy proof by induction. We illustrate here only the cases F = Id, F = B and

5.3. A sound and complete axiomatization 97

F = F1 ×F2.

a γId
[;] = ;

γB
[⊥B]
=⊥B ≡ ;

γ
F1×F2

〈F1[−](EmptyF1ÃG),F2[−](EmptyF2ÃG)〉
= l〈γF1

F1[−](EmptyF1ÃG)
〉 ⊕ r〈γF2

F2[−](EmptyF2ÃG)
〉

(IH)
≡ l〈;〉 ⊕ r〈;〉 ≡ ;

b γId
[x1⊕x2]

= x1 ⊕ x2 = γ
Id
[x1]
⊕ γId

[x2]

γB
[x1∨B x2]

= x1 ∨B x2 ≡ x1 ⊕ x2 = γB
[x1]
⊕ γB

[x2]

γ
F1×F2

F1×F2[−](PlusF1×F2ÃG(〈u1,v1〉,〈u2,v2〉))
= γ

F1×F2

〈PlusF1
(u1 ,v1),PlusF2

(u2,v2)〉

= l〈γF1

PlusF1
(u1,v1)
〉 ⊕ r〈γF2

PlusF2
(u2,v2)
〉

(IH)
≡ l〈γF1

u1
⊕ γF1

v1
〉 ⊕ r〈γF2

u2
⊕ γF2

v2
〉

≡ (l〈γF1
u1
〉 ⊕ r〈γF2

u2
〉)⊕ (l〈γF1

v1
〉 ⊕ r〈γF2

v2
〉)

= γ
F1×F2

〈u1 ,u2〉
⊕ γF1×F2

〈v1,v2〉

2 By induction on the structure of F.

∂
F13+F2ÃG

([γF13+F2
c

]) =

∂F13+F2ÃG([l[γ
F1

c′]]) = κ1(∂F1ÃG([γ
F1

c′])) c = κ1(c
′)

∂F13+F2ÃG([r[γ
F2

c′]]) = κ2(∂F2ÃG([γ
F2

c′])) c = κ2(c
′)

∂F13+F2ÃG([;]) =⊥ c =⊥
∂

F13+F2ÃG
([l[;]⊕ r[;]]) = ⊤ c =⊤

(IH)
= c

∂PωFÃG([γ
PωF

C]) =

∂PωFÃG([;]) = ; C = ;
∂PωFÃG([

⊕

c∈C

γF1
c
]) = {∂FÃG([γ

F1
c
]) | c ∈ C} otherwise

(IH)
= C

Next, we prove the analogue of the following useful and intuitive equality on regular
expressions (which we showed in Theorem 3.1.14). Given a deterministic automaton
〈o, t〉: S→ 2×SA and a state s ∈ S, the associated regular expression rs can be written
as

rs = o(s) +
∑

a∈A

a · rt(s)(a) (5.9)

using the axioms of Kleene algebra [29, Theorem 4.4].

98 Chapter 5. Non-deterministic Kleene coalgebras

5.3.5 LEMMA. Let (S, g) be a locally finite G-coalgebra, with G 6= Id, and let s ∈ S, with

〈s〉 = {s1, . . . , sn} (where s1 = s). Then:

〈〈 si 〉〉 ≡ γG

g(si)
{〈〈 s1 〉〉/x1} . . . {〈〈 sn 〉〉/xn} (5.10)

PROOF. Let Ak
i
, where i and k range from 1 to n, be the terms defined as in the proof

of Theorem 5.2.12. Recall that 〈〈 si 〉〉 = An
i
. We calculate:

〈〈 si 〉〉
= An

i

= (µx i.γ
G

g(si)
){A0

1/x1} . . . {An−1
n
/xn}

= µx i .(γ
G

g(si)
{A0

1/x1} . . . {Ai−2
i−1/x i−2}{Ai

i+1/x i+1} . . . {An−1
n
/xn})

≡ γG

g(si)
{A0

1/x1} . . . {Ai−2
i−1/x i−2}{Ai

i+1/x i+1} . . . {An−1
n
/xn}{An

i
/x i} (fixed point axiom3)

= γG

g(si)
{A0

1/x1} . . . {An−1
n
/xn} (by 5.2)

= γG

g(si)
{A0

1{A1
2/x2} . . . {An−1

n
/xn}/x1} . . . {An−1

n
/xn} (by 5.3)

= γG

g(si)
{An

1/x1}{A1
2/x2} . . . {An−1

n
/xn} (def. An

1)

... (last 2 steps for A1
2, . . . , An−2

n−1)

= γG

g(si)
{An

1/x1}{An
2/x2} . . . {An

n
/xn} (An

n−1 = An
n
)

Instantiating (5.10) for 〈o, t〉: S → 2 × SA, one can easily spot the similarity with
equation (5.9) above:

〈〈 s 〉〉 ≡ l〈o(s)〉 ⊕ r
D
⊕

a∈A

a
�

〈〈 t(s)(a) 〉〉
�

E

Next, we prove that there exists a coalgebra homomorphism between any locally finite
G- coalgebra (S, g) and (ExpG/≡,∂G).

5.3.6 LEMMA. Let (S, g) be a locally finite G-coalgebra. There exists a coalgebra homo-

morphism ⌈−⌉: S→ ExpG/≡.

PROOF. We define ⌈−⌉= [−]◦〈〈−〉〉, where 〈〈−〉〉 is as in the proof of Theorem 5.2.12,
associating to a state s of a locally finite coalgebra an expression 〈〈 s 〉〉 with s ∼ 〈〈 s 〉〉.
To prove that ⌈−⌉ is a homomorphism we need to verify that (G⌈−⌉) ◦ g = ∂G ◦ ⌈−⌉.
If G = Id, then (G⌈−⌉) ◦ g(si) = [;] = ∂G(⌈ si ⌉). For G 6= Id we calculate, using
Lemma 5.3.5:

∂G(⌈ si ⌉) = ∂G([γG

g(si)
[〈〈 s1 〉〉/x1] . . . [〈〈 sn 〉〉/xn]])

and we then prove the more general equality, for F Ã G and c ∈ F〈s〉:

∂FÃG([γ
F
c
[〈〈 s1 〉〉/x1] . . . [〈〈 sn 〉〉/xn]]) = F⌈−⌉(c) (5.11)

3Note that the fixed point axiom can be formulated using syntactic replacement rather than substitution
– γ{µx .γ/x} ≡ µx .γ – since µx .γ is a closed term.

5.3. A sound and complete axiomatization 99

The intended equality then follows by taking F = G and c = g(si). Let us prove the
equation (5.11) by induction on F.

F = Id c = s j ∈ 〈s〉

∂IdÃG([γ
Id
s j
[〈〈 s1 〉〉/x1] . . . [〈〈 sn 〉〉/xn]]) = [〈〈 s j 〉〉] = ⌈ s j ⌉

F = B c = b ∈ B

∂BÃG([γ
B
b
[〈〈 s1 〉〉/x1] . . . [〈〈 sn 〉〉/xn]]) = [b] = B⌈−⌉(b)

F = F1 ×F2 c = 〈c1, c2〉 ∈ (F1 ×F2)〈s〉

∂F1×F2ÃG([γ
F1×F2

〈c1,c2〉
[〈〈 s1 〉〉/x1] . . . [〈〈 sn 〉〉/xn]])

= ∂F1×F2ÃG([l(γ
F1
c1
)⊕ r(γF2

c2
)[〈〈 s1 〉〉/x1] . . . [〈〈 sn 〉〉/xn]])

= 〈∂F1ÃG([γ
F1
c1
[〈〈 s1 〉〉/x1] . . . [〈〈 sn 〉〉/xn]]),∂F2ÃG([γ

F2
c2
[〈〈 s1 〉〉/x1] . . . [〈〈 sn 〉〉/xn]])〉

IH
= 〈F1⌈−⌉(c1),F2⌈−⌉(c2)〉
= (F1×F2⌈−⌉)(c)

F = F1 3+F2 , F = FA
1 and F = PωF1 : similar to F1×F2.

We can now prove that the coalgebras (ExpG/≡,∂G) and (I ,ωG) are both final in the
category of locally finite G-coalgebras.

5.3.7 LEMMA. The coalgebra (I ,ωG) is final in the category Coalg(G)LF.

PROOF. We want to show that for any locally finite G-coalgebra (S, g), there exists a
unique homomorphism (S, g)→ (I ,ωG). The existence is guaranteed by Lemma 5.3.6,
where ⌈−⌉: S → ExpG/≡ is defined. Postcomposing this homomorphism with e (de-
fined above) we get a coalgebra homomorphism e ◦ ⌈−⌉: S → I . If there is another
homomorphism f : S → I , then by postcomposition with the inclusion m: I ,→ Ω we
get two homomorphisms (m ◦ f and m ◦ e ◦ ⌈−⌉) into the final G-coalgebra. Thus, f

and e ◦ ⌈−⌉ must be equal.

5.3.8 LEMMA. The coalgebra (ExpG/≡,∂G) is final in the category Coalg(G)LF.

PROOF. We want to show that for any locally finite G-coalgebra (S, g), there exists
a unique homomorphism (S, g) → (ExpG/≡,∂G). We only need to prove uniqueness,
since the existence is guaranteed by Lemma 5.3.6, where ⌈−⌉: S→ ExpG/≡ is defined.
Suppose we have another homomorphism f : S→ ExpG/≡. Then, we shall prove that
f = ⌈−⌉. Let, for any s ∈ S, fs denote any representative of f (s) (that is, f (s) = [fs]).
First, observe that because f is a homomorphism the following holds for every s ∈ S:

f (s) = (∂ −1
G
◦G(f) ◦ g)(s)⇔ fs ≡ γG

g(s)
[fs1
/x1] . . . [fsn

/xn] (5.12)

100 Chapter 5. Non-deterministic Kleene coalgebras

where 〈s〉 = {s1, . . . , sn}, with s1 = s (recall that ∂ −1
G

was defined in (5.8) and note that

γG

(G(f)◦g)(s) = γ
G

g(s)
[fsi
/x i]).

We now prove that fsi
≡ 〈〈 si 〉〉 (which is equivalent to f (si) = ⌈ si ⌉), for all i = 1, . . . n.

For simplicity we will here prove the case n = 3. The general case is identical but
notationally heavier. First, we prove that fs1

≡ A1[fs2
/x2][fs3

/x3].

fs1
≡ γG

g(s1)
[fs1
/x1][fs2

/x2][fs3
/x3] (by (5.12))

⇔ fs1
≡ γG

g(s1)
[fs2
/x2][fs3

/x3][fs1
/x1] (all f (si) are closed)

⇒ fs1
≡ µx1.γG

g(s1)
[fs2
/x2][fs3

/x3] (by uniqueness of fixed points)

⇔ fs1
≡ A1[fs2

/x2][fs3
/x3] (def. of A1)

Now, using what we have computed for fs1
we prove that fs2

≡ A1
2[fs3

/x3].

fs2
≡ γG

g(s2)
[fs1
/x1][fs2

/x2][fs3
/x3] (by (5.12))

⇔ fs2
≡ γG

g(s2)
[A1/x1][fs2

/x2][fs3
/x3] (expressions for fs1

and (5.3))

⇔ fs2
≡ γG

g(s2)
[A1/x1][fs3

/x3][fs2
/x2] (all f (si) are closed)

⇒ fs2
≡ µx2.γG

g(s2)
[A1/x1][fs3

/x3] (by uniqueness of fixed points)

⇔ fs2
≡ A1

2[fs3
/x3] (def. of A1

2)

At this point we substitute fs2
in the expression for fs1

by A1
2[fs3

/x3] which yields:

fs1
≡ A1[A

1
2[fs3

/x3]/x2][fs3
/x3]≡ A1[A

1
2/x2][fs3

/x3]

Finally, we prove that fs3
≡ A2

3:

fs3
≡ γG

g(s3)
[fs1
/x1][fs2

/x2][fs3
/x3] (by (5.12))

⇔ fs3
≡ γG

g(s3)
[A1/x1][A

1
2/x2][fs3

/x3] (expr. for f (si) and (5.3))

⇒ fs3
≡ µx3.γG

g(s3)
[A1/x1][A

1
2/x2] (by uniqueness of fixed points)

⇔ fs3
≡ A2

3 (def. of A2
3)

Thus, we have fs1
≡ A1[A

1
2/x2][A

2
3/x3], fs2

≡ A1
2[A

2
3/x3] and fs3

≡ A2
3. Observe that

A1
2[A

2
3/x3] ≡ A1

2{A2
3/x3}, since x2 is not free in A2

3. Similarly, since x1 is not free in A1
2

and A2
3, we have that A1[A

1
2/x2][A

2
3/x3] ≡ A1{A1

2/x2}{A2
3/x3}. Thus f (si) = ⌈ si ⌉, for all

i = 1,2,3.

As a consequence of Lemma 5.3.8, we have that if G1 and G2 are isomorphic functors
then ExpG1

/≡ and ExpG2
/≡ are also isomorphic (for instance, this would be true for

G1(X) = B× (X × A) and G2(X) = A× (B× X)). At this point, because final objects
are unique up-to isomorphism, we know that e : ExpG/≡ → I is an isomorphism and
hence we can conclude that the map behExpG/≡

is injective, since it factorizes into
an isomorphism followed by a mono. This fact is the last thing we need to prove
completeness.

5.4. Two more examples 101

5.3.9 THEOREM (Completeness). Let G be a non-deterministic functor. For all ǫ1,ǫ2 ∈
ExpG,

ǫ1 ∼ ǫ2⇒ ǫ1 ≡ ǫ2

PROOF. Let G be a non-deterministic functor, let ǫ1,ǫ2 ∈ ExpG and suppose that ǫ1 ∼
ǫ2. Because only bisimilar elements are identified in the final coalgebra we know that
it must be the case that behExpG

(ǫ1) = behExpG
(ǫ2) and thus, since the equivalence

class map [−] is a homomorphism, behExpG/≡
([ǫ1]) = behExpG/≡

([ǫ2]). Now, because
behExpG/≡

is injective we have that [ǫ1] = [ǫ2]. Hence, ǫ1 ≡ ǫ2.

5.4 Two more examples

In this section we apply our framework to two other examples: labeled transition
systems (with explicit termination) and automata on guarded strings. These two
automata models are directly connected to, respectively, basic process algebra and
Kleene algebra with tests. To improve readability we will present the corresponding
languages using a more user-friendly syntax than the canonically derived one.

Labeled transition systems. Labeled transition systems (with explicit termination)
are coalgebras for the functor 1+ (PωId)A. As we will show below, instantiating our
framework for this functor produces a language that is equivalent to the closed and
guarded expressions generated by the following grammar, where a ∈ A and x ∈ X (X

is a set of fixed point variables):

P :: = 0 | P + P | a.P | δ | p | µx .P | x

together with the equations (omitting the congruence and α-equivalence rules)

P1 + P2 ≡ P2 + P1 P1 + (P2 + P3)≡ (P1 + P2) + P3

P + P ≡ P P + 0≡ P

P +δ ≡ P (⋆)
p
+ δ ≡ p+ P (⋆) (⋆) if P 6≡ 0 and P 6≡ p

P[µx .P/x] ≡ µx .P P[Q/x] ≡Q⇒ (µx .P)≡ Q

Note that, as expected, there is no law that allows us to prove a.(P + Q) ≡ a.P +
a.Q. Moreover, observe that this syntax and axiomatization is very similar to the one
presented in [2]. In the syntax above, δ represents deadlock,

p
successful termination

and 0 the totally undefined process.
We will next show how the beautified syntax above was derived from the canonically
derived syntax for the expressions ǫ ∈ Exp1+(PωId)A, which is given by the set of closed
and guarded expressions defined by the following BNF:

ǫ::= ; | ǫ⊕ ǫ | x | µx .ǫ | l[ǫ1] | r[ǫ2]

ǫ1::= ; | ǫ1 ⊕ ǫ1 | ∗
ǫ2::= ; | ǫ2 ⊕ ǫ2 | a(ǫ′)
ǫ′:: = ; | ǫ′⊕ ǫ′ | {ǫ}

102 Chapter 5. Non-deterministic Kleene coalgebras

We define two maps between this grammar and the grammar presented above. Let
us start to show how to translate P ’s into ǫ’s, by defining a map (−)† by induction on
the structure of P:

(0)† = ;
(P1 + P2)

† = (P1)
†⊕ (P2)

†

(µx .P)† = µx .P†

x† = x

(a.P)† = r[a({P†})]
(
p
)† = l[∗]

(δ)† = r[;]

And now the converse translation:

(;)‡ = 0

(ǫ1 ⊕ ǫ2)
‡ = (ǫ1)

‡+ (ǫ2)
‡

(µx .ǫ)‡ = µx .ǫ‡

x‡ = x

(l[;])‡ =
p

(l[ǫ1⊕ ǫ′1])‡ = (l[ǫ1])
‡ + (l[ǫ′1])

‡

(l[∗])‡ =
p

(r[;])‡ = δ

(r[ǫ2⊕ ǫ′2])‡ = (r[ǫ2])
‡+ (r[ǫ′2])

‡

(r[a(;)])‡ = δ

(r[a(ǫ′1⊕ ǫ′2)])‡ = (r[a(ǫ′1)])
‡+ (r[a(ǫ′2)])

‡

(r[a({ǫ})])‡ = a.ǫ‡

One can prove that if P1 ≡ P2 (using the equations above) then (P1)
† ≡ (P2)

† (using
the automatically derived equations for the functor) and also that ǫ1 ≡ ǫ2 implies
(ǫ1)

‡ ≡ (ǫ2)
‡.

Automata on guarded strings. It has recently been shown [71] that automata on
guarded strings (acceptors of the join irreducible elements of the free Kleene algebra
with tests on generators Σ, T) are coalgebras for the functor B × IdAt×Σ, where At

is the set of atoms, i.e. minimal nonzero elements of the free Boolean algebra B

generated by T and Σ is a set of actions. Applying our framework to this functor
yields a language that is equivalent to the closed and guarded expressions generated
by the following grammar, where b ∈ B and a ∈ Σ:

P ::= 0 | 〈b〉 | P + P | b→ a.P | µx .P | x

accompanied by the equations (omitting the congruence and α-equivalence rules)

P1 + P2 ≡ P2 + P1 P1 + (P2 + P3)≡ (P1 + P2) + P3

P + P ≡ P P + 0≡ P

〈b1〉+ 〈b2〉 ≡ 〈b1 ∨B b2〉 0≡ 〈⊥B〉
(b→ a.0) ≡ 0 (⊥B→ a.P) ≡ 0

(b→ a.P2) + (b→ a.P2)≡ b→ a.(P1+ P2) (b1→ a.P) + (b2→ a.P) ≡ (b1 ∨B b2)→ a.P
P[µx .P/x] ≡ µx .P P[Q/x] ≡ Q⇒ (µx .P)≡ Q

We will not present a full comparison of this syntax to the one of Kleene algebra
with tests [71] (and propositional Hoare triples). The differences between our syntax
and that of KAT are similar to the ones between regular expressions and the language
ExpD for the functor representing deterministic automata (see Definition 5.2.5). Sim-
ilarly to the LTS example one can define maps between the beautified syntax and the
automatically generated one and prove its correctness.

5.5. Polynomial and finitary coalgebras 103

5.5 Polynomial and finitary coalgebras

The functors we considered above allowed us to modularly derive languages and
axiomatizations for a large class of coalgebras. If we consider the subset of NDF with-
out the Pω functor, the class of coalgebras for these functors almost coincides with
polynomial coalgebras (that is, coalgebras for a polynomial functor). The only dif-
ference comes from the use of join-semilattices for constant functors and 3+ instead
of the ordinary coproduct, which played an important role in order for us to be able
to have underspecification and overspecification. We will now show how to derive
expressions and axiomatizations directly for polynomial coalgebras, where no under-
specification or overspecification is allowed.
Before we show the formal definition, let us provide some intuition. The main
changes4, compared to the previous sections, would be not to have ; and ⊕ and
consider an expression 〈−,−〉 for the product instead of the two expressions l〈−〉 and
r〈−〉 which we considered and an expression 〈a1(−), a2(−), . . . , an(−)〉 for the expo-
nential (with A = {a1, . . . an}). As an example, take the functor D(X) = 2 × X A of
deterministic automata. The expressions corresponding to this functor would then be
the set of closed and guarded expressions given by the following BNF:

ǫ::= x | µx .ǫ | 〈0, 〈a1(ǫ), a2(ǫ), . . . , an(ǫ)〉〉 | 〈1, 〈a1(ǫ), a2(ǫ), . . . , an(ǫ)〉〉

This syntax can be perceived as an explicit and complete description of the automa-
ton. This means that underspecification is nonexistent and the compactness of regular
expressions is lost. As an example of the verbosity present in this new language, take
A = {a, b, c} and consider the language that accepts words with only a’s and has at
last one a (described by aa∗ in Kleene’s regular expressions). In the language ExpD it
would be written as µx .a(l〈1〉 ⊕ x). Using the approach described above it would be
encoded as the expression

µx .〈0, 〈a(〈1, 〈a(x), b(empty), c(empty)〉〉), b(empty), c(empty)〉〉

where empty = µy.〈0, 〈a(y), b(y), c(y)〉 is the expression denoting the empty lan-
guage. The approach we presented before, by allowing underspecification, provides
a more user-friendly syntax and stays close to the know syntaxes for deterministic
automata and LTS.
In what follows we will formally present a language for polynomial coalgebras. We
start by introducing the definition of polynomial functor, which we take from [4].

5.5.1 DEFINITION (Polynomial Functor). Sums of the Cartesian power functors are
called polynomial functors:

PΣ(X) =
∐

σ∈Σ
X ar(σ)

Here,
∐

stands for ordinary coproduct and the indexing set Σ is a signature, that
is a possibly infinite collection of symbols σ, each of which is equipped with a finite
cardinal ar(σ), called the arity of σ. ♣

4This syntax was suggested to us by B. Klin, during CONCUR’09.

104 Chapter 5. Non-deterministic Kleene coalgebras

5.5.2 DEFINITION (Expressions and axioms for polynomial functors). Let PΣ be a
polynomial functor. The set ExpPΣ

of expressions for PΣ is given by the closed and
guarded expressions generated by the following BNF, where σ ∈ Σ and x ∈ V , for V

a set of fixed point variables:

ǫi::= x | µx .ǫ | σ(ǫ1, . . . ,ǫar(σ))

accompanied by the equations:

γ[µx .γ/x]≡ µx .γ (FP)

γ[ǫ/x]≡ ǫ⇒ µx .γ≡ ǫ (Unique)

ǫ1 ≡ ǫ2⇒ ǫ[ǫ1/x] ≡ ǫ[ǫ2/x], if x is free in ǫ (Cong)

µx .γ≡ µy.γ[y/x], if y is not free in γ (α− equiv)

♣

Providing the set ExpPΣ
with a coalgebraic structure is achieved using induction on

the number of unguarded occurrences of nested fixed points:

δ : ExpPΣ
→
∐

σ∈Σ
(ExpPΣ

)ar(σ)

δ(µx .ǫ) = δ(ǫ[µx .ǫ/x])

δ(σ(ǫ1, . . . ,ǫar(σ))) = κσ(〈ǫ1, . . . ,ǫar(σ)〉)

We are ready to state and prove Kleene’s theorem.

5.5.3 THEOREM (Kleene’s theorem for polynomial functors). Let PΣ be a polynomial

functor.

1. For every locally finite coalgebra (S, g : S→ PΣ(S)) and for every s ∈ S there exists

an expression ǫ ∈ ExpPΣ
such that ǫ ∼ s.

2. For every expression ǫ ∈ ExpPΣ
there is a finite coalgebra (S, g : S → PΣ(S)) with

s ∈ S such that s ∼ ǫ.

PROOF. Point 1. amounts to solve a system of equations. Let 〈s〉 = {s1, . . . , sn}. We
associate with each si ∈ 〈s〉 an expression 〈〈 si 〉〉 = An

i
, where An

i
is defined inductively

as in the proof of 5.2.12, with Ak+1
i = Ak

i
{Ak

k+1/xk+1} and A0
i
= Ai given by

Ai = µxsi
.σ(xs′1

, . . . , xs′
ar(σ)
), g(si) = κσ(s

′
1, . . . , s′

ar(σ))

It remains to prove that si ∼ ǫi , for all si ∈ 〈s〉. We observe that

R= {〈si , 〈〈 si 〉〉〉 | si ∈ 〈s〉}

5.5. Polynomial and finitary coalgebras 105

is a bisimulation, since for g(si) = κσ(s
′
1, . . . , s′

ar(σ)
), we have

δ(〈〈 si 〉〉)
= δ((µx i .σ(xs′1

, . . . , xs′
ar(σ)
)){A0

1/x1} . . . {An−1
n
/xn}) (def. of ǫi)

= δ(µx i .σ(xs′1
, . . . , xs′

ar(σ)
){A0

1/x1} . . . {Ai−2
i−1/x i−1}{Ai

i+1/x i+1} . . . {An−1
n
/xn})

= δ(σ(xs′1
, . . . , xs′

ar(σ)
){A0

1/x1} . . . {Ai−2
i−1/x i−1}{Ai

i+1/x i+1} . . . {An−1
n
/xn}[An

i
/x i]) (def. of δ)

= δ(σ(xs′1
, . . . , xs′

ar(σ)
){A0

1/x1} . . . {Ai−2
i−1/x i−1}{Ai

i+1/x i+1} . . . {An−1
n
/xn}{An

i
/x i})

= δ(σ(xs′1
, . . . , xs′

ar(σ)
){A0

1/x1} . . . {Ai−2
i−1/x i−1}{An

i
/x i}{Ai

i+1/x i+1} . . . {An−1
n
/xn})

= κσ(〈〈 s′1 〉〉, . . . , 〈〈 s′
ar(σ)
〉〉)

For point 2, we observe that the subcoalgebra 〈ǫ〉, for any ǫ ∈ ExpPΣ
is finite, since

the set cl(ǫ) containing all sub-formulas and unfoldings of fixed points of ǫ, which is
finite, is a subcoalgebra of (ExpPΣ

,δ). The fact that in this point, contrary to what
happened in Theorem 5.2.14, we do not need to quotient the set of expressions is
a direct consequence of the absence of underspecification or, more concretely, of the
expressions ; and ⊕.

The proof of soundness and completeness would follow a similar strategy as in the
previous section and we will omit it here.
In order to be able to compare the language introduced in this section with the lan-
guage obtained in our previous approach, we have to define an infinitary version
of the operator 3+ and extend the framework accordingly. We start by defining the
aforementioned operator on sets: 3+i∈I X i =

�∐

i∈I X i

�

∪ {⊥,⊤} and the correspond-
ing functor, for which we shall use the same symbol, is defined pointwise in the same
way as for 3+. Note that 3+ is a special case of this operator (resp. functor) for I a two
element set. In fact, for simplicity, we shall only consider this operator for index sets
I with two or more elements.
There is a natural transformation between polynomial functors and the class of non-
deterministic functors extended with 3+: every polynomial functor PΣ(X) is mapped
to PΣ(X) =3+σ∈Σ X ar(σ).
Next, we slightly alter the definition of expressions. Instead of the expressions l[−]
and r[−] we had before for 3+ we add an expression i[−] for each i ∈ I and the
expected typing rule:

⊢ ǫ : F j Ã G j ∈ I

⊢ j[ǫ] : 3+i∈I Fi Ã G

All the other elements in our story are adjusted in the expected way. We show what
happens in the axiomatization. For 3+ we had the rules

l[ǫ1⊕ ǫ2]≡ l[ǫ1]⊕ l[ǫ2] r[ǫ1⊕ ǫ2]≡ r[ǫ1]⊕ r[ǫ2] l[ǫ1]⊕ r[ǫ2]≡ l[;]⊕ r[;]

which are now replaced by

i[ǫ1]⊕ i[ǫ2] ≡ i[ǫ1⊕ ǫ2] i[ǫ1]⊕ j[ǫ2]≡ k[;]⊕ l[;], i 6= j, k 6= l

106 Chapter 5. Non-deterministic Kleene coalgebras

It is natural to ask what is the relation between the sets of expressions ExpPΣ
and

ExpPΣ
. The set ExpPΣ

is bijective to the subset of ExpPΣ
containing only fully specified

expressions, that is expressions ǫ for which the subcoalgebra 〈ǫ〉 does not contain any
state for which δPΣ

evaluates to ⊥ and ⊤. This condition is purely semantical and we
were not able to find a purely syntactic restriction that would capture it.
We repeat the exercise above for finitary functors. A finitary functor F is a functor that
is a quotient of a polynomial functor, i.e. there exists a natural transformation η : PΣ→
F, whose components ηX : PΣ(X)→ F(X) are epimorphisms. We define ExpF = ExpPΣ

.

5.5.4 THEOREM (Kleene’s theorem for finitary functors). Let F be a finitary functor.

1. Let (S, f) be a locally-finite F-coalgebra. Then, for any s ∈ S, there exists an

expression 〈〈 s 〉〉 ∈ ExpF such that s ∼ 〈〈 s 〉〉.
2. Let ǫ ∈ ExpF. Then, there exists a finite F-coalgebra (S, f) with s ∈ S such that

s ∼ ǫ.

PROOF. Let F be a finitary functor (quotient of a polynomial functor PΣ).
1 Let (S, f) be a locally finite F-coalgebra and let s ∈ S. We denote by T = {s1, . . . , sn}

the state space of the subcoalgebra 〈s〉 (with s1 = s). We then have that there exists
an f ♯ making the following diagram commute:

T

f ♯

id
T

f

S

f

PΣ(T) ηS
F(T) F(S)

We then build 〈〈 s 〉〉 with respect to f ♯ just as in Theorem 5.2.12 (note that (T, f ♯)

is finite) and the result follows because 〈〈 s 〉〉 ∼F s ⇐ 〈〈 s 〉〉 ∼PΣ
s (consequence of

naturality).
2 Let ǫ ∈ ExpF. By Theorem 5.2.14, there exists a finite PΣ-coalgebra (S, f) with

s ∈ S such that s ∼PΣ
ǫ. Thus, we take (S,ηS ◦ f) and we have a finite F-coalgebra with

s ∈ S such that ǫ ∼F s.

For the axiomatization a bit more ingenuity is required. One needs to derive which
extra axioms are induced by the epimorphism and then prove that they are sound and
complete.
For instance, the finite powerset functor (which we included in the syntax of non-
deterministic functors) is the classical example of a finitary functor. It is the quotient
of the polynomial functor PΣ(X) = 1 + X + X 2 + . . . (this represents lists of length
n) by identifying lists that contain precisely the same elements (that is, eliminating
repeated elements and abstracting from the ordering).
The syntax for ExpPΣ

is the set of closed and guarded expressions given by the follow-
ing BNF:

ǫ:: = x | µx .ǫ | i(ǫ1, . . . ,ǫi), i ∈ N
together with the axioms for the fixed point, (α− equiv) and (Cong).

5.6. Discussion 107

Taking into account the restriction mentioned we would have to include the extra
axioms:

i(ǫ1, . . . ,ǫi) ≡ i(ǫ′1, . . . ,ǫ′
i
) if {ǫ1, . . . ǫi} = {ǫ′1, . . . ǫ′

i
}

i(ǫ1,ǫ2, . . . ,ǫi)≡ (i − 1)(ǫ1,ǫ3, . . . ,ǫi) if ǫ1 ≡ ǫ2

In this case, one can see that this set of axioms is sound and complete, by simply
proving, for PΣ(X) = 1+ X + X 2 + . . ., ExpPΣ

/≡
∼= ExpPω

/≡ (since we already had a
language and sound and complete axiomatization for the Pω functor). The restricted
syntax and axioms needs to be derived for each concrete finitary functor. Finding a
uniform way of defining such restricted syntax/axioms and also uniformly proving
soundness and completeness is a challenging problem and it is left as future work.

5.6 Discussion

We presented a systematic way of deriving, from the type of a system, a language of
(generalized) regular expressions and a sound and complete axiomatization thereof.
We presented the analogue of Kleene’s theorem, proving the correspondence of the
behaviors captured by the expressions and the systems under consideration. The
whole approach was illustrated with five examples: deterministic finite automata,
partial deterministic automata, non-deterministic automata, labeled transition sys-
tems and automata on guarded strings. Moreover, all the results presented in the
previous chapter for Mealy machines can be recovered as a particular instance of the
present framework.
The language of generalized regular expressions we associated with each functor
modulo the axioms is closely related to the work on iterative theories [5, 6]: it is
an initial iterative algebra. This also shows the connection of our work with the work
by Bloom and Ésik on iterative algebras/theories [20]. It would be interesting to
investigate the connections with iterative algebras further.
In [61], a bialgebraic review of deterministic automata and regular expressions was
presented. One of the main results of [61] was a description of the free algebra and
Brzozowski coalgebra structure on regular expressions as a bialgebra with respect to
a GSOS law. We expect that this extends to our framework, but fully working this out
is left as future work.
In this chapter, we studied coalgebras for Set functors. It is an important and chal-
lenging question to extend our results to other categories. Following our work, S.
Milius [82] has showed how to derive a language and sound and complete axiom-
atization for the functor R× Id in the category of vector spaces and linear maps. It
would also be interesting to extend Milius results for other functors as well as study
functors over other categories, such as metric spaces [73,114,115].
The connection between regular expressions and coalgebras was first explored by Rut-
ten in [95], as we discussed in the introduction of this thesis. In the present chapter,
the set of expressions for the functor F(S) = 2×SA differs from the classical definition
in that we do not have Kleene star and full concatenation (sequential composition)
but, instead, the least fixed point operator and action prefixing. Modulo that differ-
ence, the definition of a coalgebra structure on the set of expressions in both [95]

108 Chapter 5. Non-deterministic Kleene coalgebras

and the present chapter is essentially the same. All in all, one can therefore say that
standard regular expressions and their treatment in [95] can be viewed as a special
instance of the present approach. This is also the case for the generalization of the
results in [95] to automata on guarded strings [71]. Finally, this chapter extends the
results of the previous chapter, where a sound and complete specification language
was presented. All the results therein can be recovered as a special instance of the
framework of this chapter by considering the functor (B × Id)A, where A is a finite
input alphabet and B is a finite semilattice for the output alphabet.
In the last few years several proposals of specification languages for coalgebras ap-
peared [24, 25, 36, 50, 60, 75, 86, 94, 103]. We discussed in the introduction of this
thesis the main similarities and differences with the existing approaches.
All the results presented in this chapter can be extended in order to accommodate sys-
tems with quantities, such as probability or costs [21], which we will do in the next
chapter. The main technical challenge is that quantitative systems have an inherently
non-idempotent behavior and thus the proof of Kleene’s theorem and the axiomati-
zation require extra care. This extension allows for the derivation of specification
languages and axiomatizations for a wide variety of systems, which include weighted
automata, simple probabilistic systems (also known as Markov chains) and systems
with mixed probability and non-determinism (such as Segala systems). Here is when
generality of our approach really brings new results. For instance, we have derived a
language and an axiomatization for the so-called stratified systems. The language is
equivalent to the one presented in [116], but no axiomatization was known.
The derivation of the syntax and axioms associated with each non-deterministic func-
tor has been implemented in the coinductive prover CIRC [78]. This allows for auto-
matic reasoning about the equivalence of expressions specifying systems.

Chapter 6

Quantitative Kleene coalgebras

In the previous chapter, we introduced for coalgebras of a large but restricted class
of functors, a language of regular expressions; a corresponding generalization of
Kleene’s Theorem; and a sound and complete axiomatization with respect to bisim-
ilarity. We derived both the language of expressions and their axiomatization, in a
modular fashion, from the functor defining the type of the system, by induction on
the structure of the functors.
In recent years, much attention has been devoted to the analysis of probabilistic
behaviors, which occur for instance in randomized, fault-tolerant systems. Several
different types of systems were proposed: reactive [76, 92], generative [48], strat-
ified [109, 117], alternating [55, 118], (simple) Segala systems [105, 106], bun-
dle [40] and Pnueli-Zuck [91], among others. For some of these systems, expressions
were defined for the specification of their behaviors, as well as axioms to reason about
their behavioral equivalence. Examples include [1,13,15,41,42,62,77,85,110].
The results of the previous chapter apply to the class of non-deterministic functors,
which is general enough to include the examples of deterministic automata and la-
beled transition systems, as well as many other systems such as Mealy and Moore
machines. However, probabilistic systems, weighted automata [43, 104] etc. cannot

be described by non-deterministic functors. It is aim of the present chapter to identify
a class of functors (a) that is general enough to include these and more generally a
large class of quantitative systems; and (b) to which the methodology developed in
the previous chapter can be extended.
To this end, we give a non-trivial extension of the class of non-deterministic functors
by adding a functor type that allows the transitions of our systems to take values
in a monoid structure of quantitative values. This new class, which we shall call
quantitative functors, now includes all the types of probabilistic systems mentioned
above.
At the same time, we show how to extend our earlier approach to the new setting. As
it turns out, the main technical challenge is due to the fact that the behavior of quan-
titative systems is inherently non-idempotent. As an example consider the expression
1/2 ·ǫ⊕1/2 ·ǫ′ representing a probabilistic system that either behaves as ǫ with prob-

109

110 Chapter 6. Quantitative Kleene coalgebras

ability 1/2 or behaves as ǫ′ with the same probability. When ǫ is equivalent to ǫ′,
then the system is equivalent to 1 · ǫ rather than 1/2 · ǫ. This is problematic because
idempotency played a crucial role in our previous results to ensure that expressions
denote finite-state behaviors.
We will show how the lack of idempotency in the extended class of functors can be
circumvented by a clever use of the monoid structure. This will allow us to derive
for each functor in our new extended class everything we were after: a language of
regular expressions; a corresponding Kleene’s Theorem; and a sound and complete
axiomatization for the corresponding notion of behavioral equivalence.
In order to show the effectiveness and the generality of our approach, we apply it to
four types of systems: weighted automata; and simple Segala, stratified and Pnueli-
Zuck systems. For simple Segala systems, we recover the language and axiomati-
zation presented in [42]. For weighted automata and stratified systems, languages
have been defined in [30] and [117] but, to the best of our knowledge, no axiom-
atization was ever given. Applying our method, we obtain the same languages and,
more interestingly, we obtain novel axiomatizations. We also present a completely
new framework to reason about Pnueli-Zuck systems. Table 6.1 summarizes the main
results of this chapter: the language and axiomatizations derived for several quanti-
tative systems.

Organization of the chapter. In Section 6.1 we introduce the functor that will al-
low us to model quantitative systems: the monoidal exponentiation functor. Sec-
tion 6.2 shows how to extend the framework presented in the previous chapter to
quantitative systems: we associate with every quantitative functor H a language of
expressions ExpH, we prove a Kleene like theorem and we introduce a sound and
complete axiomatization with respect to the behavioral equivalence induced by H.
Section 6.3 paves the way for the derivation of expressions and axioms for probabilis-
tic systems, which we present in Section 6.4. In Section 6.5, we present a variation on
the definition of the monoidal exponentiation functor and show the advantages and
disadvantages for the construction of the framework. Section 6.6 presents concluding
remarks and directions for future research.

Quantitative Kleene coalgebras 111

Weighted automata – H(S) = S× (SS)A

ǫ::= ; | ǫ⊕ ǫ | µx .ǫ | x | s | a(s · ǫ) where s ∈ S and a ∈ A

(ǫ1 ⊕ ǫ2)⊕ ǫ3 ≡ ǫ1 ⊕ (ǫ2 ⊕ ǫ3) ǫ1 ⊕ ǫ2 ≡ ǫ2 ⊕ ǫ1 ǫ⊕; ≡ ǫ
a(s · ǫ)⊕ a(s′ · ǫ)≡ a((s+ s′) · ǫ) s⊕ s′ ≡ s+ s′ a(0 · ǫ)≡ ; 0 ≡ ;
ǫ[µx .ǫ/x] ≡ µx .ǫ γ[ǫ/x] ≡ ǫ⇒ µx .γ≡ ǫ

Segala systems – H(S) = Pω(Dω(S))
A

ǫ::= ; | ǫ⊞ ǫ | µx .ǫ | x | a({ǫ′}) where a ∈ A, pi ∈ (0, 1] and
∑

i∈1...n
pi = 1

ǫ′::=
⊕

i∈1···n
pi · ǫi

(ǫ1 ⊞ ǫ2)⊞ ǫ3 ≡ ǫ1 ⊞ (ǫ2 ⊞ ǫ3) ǫ1 ⊞ ǫ2 ≡ ǫ2 ⊞ ǫ1 ǫ⊞ ; ≡ ǫ ǫ⊞ ǫ ≡ ǫ
(ǫ′1 ⊕ ǫ′2)⊕ ǫ′3 ≡ ǫ′1 ⊕ (ǫ′2 ⊕ ǫ′3) ǫ′1 ⊕ ǫ′2 ≡ ǫ′2 ⊕ ǫ′1 (p1 · ǫ)⊕ (p2 · ǫ)≡ (p1 + p2) · ǫ
ǫ[µx .ǫ/x] ≡ µx .ǫ γ[ǫ/x] ≡ ǫ⇒ µx .γ≡ ǫ

Stratified systems – H(S) =Dω(S)+ (B× S)+ 1

ǫ::= µx .ǫ | x | 〈b,ǫ〉 |
⊕

i∈1···n
pi · ǫi | ↓ where b ∈ B, pi ∈ (0, 1] and

∑

i∈1...n
pi = 1

(ǫ1 ⊕ ǫ2)⊕ ǫ3 ≡ ǫ1 ⊕ (ǫ2 ⊕ ǫ3) ǫ1 ⊕ ǫ2 ≡ ǫ2 ⊕ ǫ1 (p1 · ǫ)⊕ (p2 · ǫ)≡ (p1+ p2) · ǫ
ǫ[µx .ǫ/x] ≡ µx .ǫ γ[ǫ/x] ≡ ǫ⇒ µx .γ≡ ǫ

Pnueli-Zuck systems – H(S) = PωDω(Pω(S)
A)

ǫ::= ; | ǫ⊞ ǫ | µx .ǫ | x | {ǫ′} where a ∈ A, pi ∈ (0, 1] and
∑

i∈1...n
pi = 1

ǫ′::=
⊕

i∈1···n
pi · ǫ′′i

ǫ′′::= ; | ǫ′′ ⊞ ǫ′′ | a({ǫ})

(ǫ1 ⊞ ǫ2)⊞ ǫ3 ≡ ǫ1 ⊞ (ǫ2 ⊞ ǫ3) ǫ1 ⊞ ǫ2 ≡ ǫ2 ⊞ ǫ1 ǫ⊞ ; ≡ ǫ ǫ⊞ ǫ ≡ ǫ
(ǫ′1 ⊕ ǫ′2)⊕ ǫ′3 ≡ ǫ′1 ⊕ (ǫ′2 ⊕ ǫ′3) ǫ′1 ⊕ ǫ′2 ≡ ǫ′2 ⊕ ǫ′1 (p1 · ǫ′′)⊕ (p2 · ǫ′′)≡ (p1 + p2) · ǫ′′
(ǫ′′1 ⊞ ǫ

′′
2)⊞ ǫ

′′
3 ≡ ǫ′′1 ⊞ (ǫ′′2 ⊞ ǫ′′3) ǫ′′1 ⊞ ǫ

′′
2 ≡ ǫ′′2 ⊞ ǫ′′1 ǫ′′ ⊞ ; ≡ ǫ′′ ǫ′′ ⊞ ǫ′′ ≡ ǫ′′

ǫ[µx .ǫ/x] ≡ µx .ǫ γ[ǫ/x] ≡ ǫ⇒ µx .γ≡ ǫ

Table 6.1: All the (valid) expressions are closed and guarded. The congruence and the α-
equivalence axioms are implicitly assumed for all the systems. The symbols 0 and + denote, in
the case of weighted automata, the empty element and the binary operator of the commutative
monoid S while, for the other systems, they denote the ordinary 0 and sum of real numbers.
We write

⊕

i∈1···n
pi · ǫi for p1 · ǫ1 ⊕ · · · ⊕ pn · ǫn.

112 Chapter 6. Quantitative Kleene coalgebras

6.1 The monoidal exponentiation functor

In the previous chapter we introduced non-deterministic functors and a language
of expressions for specifying coalgebras. Coalgebras for non-deterministic functors
cover many interesting types of systems, such as deterministic automata and Mealy
machines, but not quantitative systems. For this reason, we recall the definition of
the monoidal exponentiation functor [51], which will allow us to define coalgebras
representing quantitative systems. In the next section, we will provide expressions
and an axiomatization for these.
A monoid M is an algebraic structure consisting of a set with an associative binary
operation + and a neutral element 0 for that operation. A commutative monoid is
a monoid where + is also commutative. Examples of commutative monoids include
2, the two-element {0,1} Boolean algebra with logical “or”, and the set R of real
numbers with addition (we will use R to denote both the monoid and the carrier set).
A property that will play a crucial role in the rest of the paper is idempotency: a mo-
noid is idempotent, if the associated binary operation + is idempotent. For example,
the monoid 2 is idempotent, while R is not. Note that an idempotent commutative
monoid is a join-semilattice.
Given a function ϕ from a set S to a monoid M, we define support of ϕ as the set
{s ∈ S | ϕ(s) 6= 0}.

6.1.1 DEFINITION (Monoidal exponentiation functor). Let M be a commutative mo-
noid. The monoidal exponentiation functorM−ω : Set→ Set is defined as follows. For
each set S, MS

ω is the set of functions from S to M with finite support. For each func-
tion h: S → T , Mh

ω : MS
ω → MT

ω is the function mapping each ϕ ∈ MS
ω into ϕh ∈ MT

ω

defined, for every t ∈ T , as

ϕh(t) =
∑

s′∈h−1(t)

ϕ(s′)

♣

Throughout this chapter we will omit the subscript ω and use M− to denote the mo-
noidal exponentiation functor. Note that the (finite) powerset functor Pω(−) coincides
with 2−ω. The Pω functor is often used to represent non-deterministic systems. For ex-
ample, LTS’s (with labels over A) are coalgebras for the functor Pω(−)A.

6.1.2 PROPOSITION. The functor M− is bounded.

PROOF. Using [53, Theorem 4.7] it is enough to prove that there exists a natural
surjection η from a functor B× (−)A to M−, for some sets B and A.
We take A= N and B = MN, where N denotes the set of all natural numbers and we
define for every set X the function ηX :MN × XN→MX as

ηX (ϕ, f)(x) =
∑

n∈ f −1(x)

ϕ(n)

6.1. The monoidal exponentiation functor 113

Because ϕ has finite support, the function ηX is surjective. It remains to prove that it
is natural. Take h: X → Y . We shall prove that the following diagram commutes

M
N × XN

ηX

id×hN

M
N × Y N

ηY

MX

Mh
MY

that is Mh ◦ηX = ηY ◦ (id× hN).

(Mh ◦ηX)(ϕ, f) =
∑

x∈h−1(y)ηX (ϕ, f)(x) (def. Mh applied to ηX (ϕ, f))

=
∑

x∈h−1(y)

∑

n∈ f −1(x)ϕ(n) (def. ηX)

=
∑

n∈(h◦ f)−1(y)ϕ(n) (f and h are functions)

= ηY (ϕ,h ◦ f) (def. ηY)

= (ηY ◦ (id× hN))(ϕ, f)

6.1.3 COROLLARY. The functor M− has a final coalgebra.

PROOF. By [52, Theorem 7.2], the fact that M− is bounded is enough to guarantee
the existence of a final coalgebra.

Recall that M− does not preserve weak-pullbacks [51], but it preserves arbitrary in-
tersections [51, Corollary 5.4], which we need to define smallest subcoalgebras. The
fact that M− does not preserve weak-pullbacks has as consequence that the notions
of bisimilarity and observational equivalence might not coincide. Due to this fact, the
soundness and completeness results of the axiomatization we shall later introduce
will be formulated using the notion of behavioral equivalence.
We finish this section with an example of quantitative systems–weighted automata–
modeled as coalgebras of a functor which contains the monoidal exponentiation as a
subfunctor.

Weighted Automata. Weighted automata [43, 104] are transition systems labeled
over a set A and with weights in a semiring S. Moreover, each state is equipped with
an output value1 in S. A semiring S is a tuple 〈S,+,×, 0, 1〉 where 〈S,+, 0〉 is a commu-
tative monoid and 〈S,×, 1〉 is a monoid satisfying certain distributive laws. Examples
of semirings include the real numbers R, with usual addition and multiplication, and
the Boolean semiring 2 with disjunction and conjunction.

1In the original formulation also an input value is considered. To simplify the presentation and follow-
ing [31] we omit it.

114 Chapter 6. Quantitative Kleene coalgebras

From a coalgebraic perspective, weighted automata are coalgebras of the functor
W = S × (SId)A, where we write again S to denote the commutative monoid of the
semiring S. More concretely, a coalgebra for S× (SId)A is a pair (S, 〈o, T 〉), where S

is a set of states, o : S → S is the function that associates an output weight to each
state s ∈ S and T : S → (SS)A is the transition relation that associates a weight to
each transition. We will use the following notation in the representation of weighted
automata:

s
a,w

s′

os os′

⇔ T (s)(a)(s′) = w and o(s) = os and o(s′) = os′

If the set of states S and the alphabet A are finite, weighted automata can be conve-
niently represented in the following way. Let S = {s1, . . . , sn} be the set of states and
A = {a1, . . . , am} the input alphabet. The output function o can be seen as a vector
with n entries

o =

o(s1)
...

o(sn)

and the transition function T is a set of m matrices (of dimension n× n)

Tai
=

t11 . . . t1n

...
...

tn1 . . . tnn

with t jk = t(s j)(ai)(sk)

This representation has advantages in the definition of homomorphism between two
weighted automata. Composition of homomorphisms can be expressed as matrix
multiplication, making it easier to check the commutativity of the diagram below
(recall that the definition of the monoidal exponentiation function on arrows (Defini-
tion 6.1.1) is not very simple).
Let (S, 〈o, T 〉) and (S′, 〈o′, T ′〉) be two weighted automata. A homomorphism between
these automata is a function h: S→ S′ which makes the following diagram commute

S

〈o,T 〉

h
S′

〈o′ ,T ′〉

S× (SS)A
id×(Sh)A

S× (SS′)A

Now, representing h: S→ S′, with S = {s1, . . . , sn} and S′ = {s′1, . . . , s′
m
} as a matrix with

dimensions n×m in the following way

h=

h11 . . . h1m

...
...

hn1 . . . hnm

with h jk =

¨

1 if h(s j) = s′
k

0 otherwise

6.1. The monoidal exponentiation functor 115

one can formulate the commutativity condition of the diagram above – (id× (Sh)A) ◦
〈o, T 〉 = 〈o′, T ′〉 ◦ h – as the following matrix equalities:

o = h× o′ and ∀a∈A Ta × h= h× T ′
a

Here, note that ((Sh)A ◦ Ta)(si)(s
′
j
) = (Ta×h)(i, j), T ′

a
◦h= h× T ′

a
and o′ ◦h= h× o′ (we

are using the same letters to denote the functions, on the left side of the equations,
and their representation as matrices, on the right side).
For a concrete example, let S= R, let A= {a} and consider the two weighted automata
depicted below.

s2

s1

a,1

a,1

0

0 s3

0

s′1
a,2

s′2

0 0

o =

0
0
0

Ta =

0 1 1
0 0 0
0 0 0

o′ =

�

0
0

�

T ′
a
=

�

0 2
0 0

�

Now consider the morphism h: S → S′ which maps s1 to s′1 and both s2 and s3 to s′2,
that is, it corresponds to the matrix

h=

1 0
0 1
0 1

We now compute

h× o′ =

0
0
0

 = o and Ta × h=

0 2
0 0
0 0

 = h× T ′
a

and we can conclude that h is a coalgebra homomorphism.
It is worth recalling that coalgebra homomorphisms always map states into bisimilar
states ([96, Lemma 5.3]). Thus, since h is a R× (RId)A-homomorphism, s1 is bisimilar
to s′1 and s2,s3 are bisimilar to s′2.
Note that the multiplicative monoid 〈S,×, 1〉 plays no role in the coalgebraic definition
of weighted automata. Indeed, in [43, 104], it is used only to define the weight of a
sequence of transitions. Bisimilarity for weighted automata has been studied in [30]
and it coincides with the coalgebraic notion of behavioral equivalence for the functor
S× (SId)A (Definition 2.2.5).

116 Chapter 6. Quantitative Kleene coalgebras

6.1.4 PROPOSITION. Behavioral equivalence for S× (SId)A coincides with the weighted

automata bisimilarity defined in [30].

PROOF. The definition of homomorphism which we stated above using matrix mul-
tiplication coincides with the definition of functional simulation [30, Definition 3.1].
Then, by [30, Corollary 3.6], two weighted automata (S, 〈o, T 〉) and (S′, 〈o′, T ′〉) are
bisimilar if and only if there exists a weighted automata 〈Q, 〈o1, T1〉) such that there
exist surjective functional simulations h: S→ Q and h′ : S′ → Q. In coalgebraic terms,
this means that h and h′ form a cospan of coalgebra homomorphisms. Thus, for any
s ∈ S and s′ ∈ S′, if they are bisimilar according to [30], that is if h(s) = h′(s′), then
we have that behQ(h(s)) = behQ(h

′(s′)) which, by uniqueness of the map into the final
coalgebra, implies that behS(s) = behS′(s

′). Hence, the states s and s′ are behaviorally
equivalent. The converse implication follows using a similar reasoning and we omit
it here.

6.2 A non-idempotent algebra for quantitative regular behaviors

In this section, we will extend the framework presented in the previous chapter in
order to deal with quantitative systems, as described in the previous section. We
will start by defining an appropriate class of functors H, proceed with presenting the
language ExpH of expressions associated with H together with a Kleene like theorem
and finally we introduce an axiomatization of ExpH and prove it sound and complete
with respect to behavioral equivalence.

6.2.1 DEFINITION. The set QF of quantitative functors on Set is defined inductively
by:

QF ∋H:: = G |MH | (MH)A |MH1
1 ×M

H2
2 |M

H1
1 3+M

H2
2

where G is a non-deterministic functor, M is a commutative monoid and A is a finite
set. ♣

Note that we do not allow mixed functors, such as G+MH or G×MH. The reason
for this restriction will become clear later in this section when we discuss the proof
of Kleene’s theorem. In Section 6.3, we will show how to deal with such mixed func-
tors. Also, recall that the class of non-deterministic functors includes the Pω functor
(which is isomorphic to 2Id): this will not be a source of problems as we show in
Example 6.2.7.
We need now to extend several definitions presented in the previous chapter. The
definition of the ingredient associated with a functor is extended in the expected way,
as we show next.

6.2.2 DEFINITION. Let Ã ⊆ QF × QF be the least reflexive and transitive relation on
quantitative functors such that

H1 ÃH1 ×H2, H2 ÃH1 ×H2, H1 ÃH1 3+H2, H2 ÃH1 3+H2,

H ÃHA, H Ã PωH, H ÃMH

6.2. A non-idempotent algebra for quantitative regular behaviors 117

♣

All the other definitions we presented in the previous chapter need now to be ex-
tended to quantitative functors. We start by observing that taking the current defini-
tions and replacing the subscript F Ã G with F Ã H does most of the work. In fact,
having that, we just need to extend all the definitions for the case MF

ÃH.
We start by introducing a new expression m · ǫ, which we highlight in the definition,
with m ∈M, extending the set of untyped expressions.

6.2.3 DEFINITION (Expressions for quantitative functors). Let A be a finite set, B a
finite join-semilattice, M a commutative monoid and X a set of fixed point variables.
The set Exp of all expressions is given by the following grammar, where a ∈ A, b ∈ B,
m ∈M and x ∈ X :

ǫ ::= ; | x | ǫ⊕ ǫ | µx .γ | b | l〈ǫ〉 | r〈ǫ〉 | l[ǫ] | r[ǫ] | a(ǫ) | {ǫ} | m · ǫ

where γ is a guarded expression given by:

γ ::= ; | γ⊕ γ | µx .γ | b | l〈ǫ〉 | r〈ǫ〉 | l[ǫ] | r[ǫ] | a(ǫ) | {ǫ} | m · ǫ

♣

The intuition behind the new expression m · ǫ is that there is a transition between the
current state and the state specified by ǫ with weight m.
The type system will have one extra rule, which we highlight in the definition.

6.2.4 DEFINITION (Type system). We now define a typing relation ⊢ ⊆Exp×QF×QF

that will associate an expression ǫ with two quantitative functors F and H, which are
related by the ingredient relation (F is an ingredient of H). We shall write ⊢ ǫ : F ÃH

for 〈ǫ,F,H〉 ∈ ⊢. The rules that define ⊢ are the following:

⊢ ;: F ÃH ⊢ b : BÃH ⊢ x : H ÃH

⊢ ǫ : H ÃH

⊢ µx .ǫ : H ÃH

⊢ ǫ1 : F ÃH ⊢ ǫ2 : F ÃH

⊢ ǫ1 ⊕ ǫ2 : F ÃH

⊢ ǫ : H ÃH

⊢ ǫ : IdÃH

⊢ ǫ : F ÃH

⊢ {ǫ} : PωF ÃH

⊢ ǫ : F ÃH

⊢ a(ǫ) : FA
ÃH

⊢ ǫ : F1 ÃH

⊢ l〈ǫ〉 : F1×F2 ÃH

⊢ ǫ : F2 ÃH

⊢ r〈ǫ〉 : F1×F2 ÃH

⊢ ǫ : F1 ÃH

⊢ l[ǫ] : F1 3+F2 ÃH

⊢ ǫ : F2 ÃH

⊢ r[ǫ] : F1 3+F2 ÃH

ǫ : F ÃH

m · ǫ :MF
ÃH

♣

As before, we define ExpFÃH by:

ExpFÃH = {ǫ ∈ Expc | ⊢ ǫ : F ÃH} .

118 Chapter 6. Quantitative Kleene coalgebras

The set ExpH of well-typed H-expressions equals ExpHÃH.

Next, we provide the set ExpH with a coalgebraic structure. We define a function
δFÃH : ExpFÃH → F(ExpH) and then set δH = δHÃH. We show the definition of
δFÃH as well as of the auxiliary constant EmptyFÃH and function PlusFÃH. As before
we highlight the new part of the definition when compared with the definition for
non-deterministic functors.

6.2.5 DEFINITION. For every H ∈ QF and for every F with F ÃH:

(i) we define a constant EmptyFÃH ∈ F(ExpH) by induction on the syntactic struc-
ture of F:

EmptyIdÃH = ; Empty
F13+F2ÃH

= ⊥
EmptyBÃH = ⊥B EmptyFAÃH = λa.EmptyFÃH

EmptyF1×F2ÃH = 〈EmptyF1ÃH,EmptyF2ÃH〉 EmptyPωFÃH = ;

EmptyMFÃH = λc.0

(ii) we define a function PlusFÃH : F(ExpH)×F(ExpH)→ F(ExpH) by induction on
the syntactic structure of F:

PlusIdÃH(ǫ1,ǫ2) = ǫ1 ⊕ ǫ2

PlusBÃH(b1, b2) = b1 ∨B b2

PlusF1×F2ÃH(〈ǫ1,ǫ2〉, 〈ǫ3,ǫ4〉) = 〈PlusF1ÃH(ǫ1,ǫ3),PlusF2ÃH(ǫ2,ǫ4)〉
Plus

F13+F2ÃH
(κi(ǫ1),κi(ǫ2)) = κi(PlusFiÃH(ǫ1,ǫ2)), i ∈ {1,2}

Plus
F13+F2ÃH

(κi(ǫ1),κ j(ǫ2)) = ⊤ i, j ∈ {1,2} and i 6= j

PlusF13+F2ÃH(x ,⊤) = PlusF13+F2ÃH(⊤, x) =⊤
Plus

F13+F2ÃH
(x ,⊥) = Plus

F13+F2ÃH
(⊥, x) = x

PlusFAÃH(f , g) = λa. PlusFÃH(f (a), g(a))

PlusPωFÃH(s1, s2) = s1 ∪ s2

PlusMFÃH(f , g) = λc. f (c) + g(c)

(iii) we define a function δFÃH : ExpFÃH → F(ExpH), by induction on the product of
types of expressions and expressions (using the order defined in equation (5.1),
extended with the clause N(m · ǫ) = 0). For every ingredient F of a non-de-
terministic functor H and an expression ǫ ∈ ExpFÃH, we define δFÃH(ǫ) as

6.2. A non-idempotent algebra for quantitative regular behaviors 119

follows:

δFÃH(;) = EmptyFÃH

δFÃH(ǫ1 ⊕ ǫ2) = PlusFÃH(δFÃH(ǫ1),δFÃH(ǫ2))

δHÃH(µx .ǫ) = δHÃH(ǫ[µx .ǫ/x])

δIdÃH(ǫ) = ǫ for H 6= Id

δBÃH(b) = b

δF1×F2ÃH(l〈ǫ〉) = 〈δF1ÃH(ǫ),EmptyF2ÃH〉
δF1×F2ÃH(r〈ǫ〉) = 〈EmptyF1ÃH,δF2ÃH(ǫ)〉
δF13+F2ÃH(l[ǫ]) = κ1(δF1ÃH(ǫ))

δ
F13+F2ÃH

(r[ǫ]) = κ2(δF2ÃH(ǫ))

δFAÃH(a(ǫ)) = λa′.

�

δFÃH(ǫ) if a = a′

EmptyFÃH otherwise
δPωFÃG({ǫ}) = {δFÃH(ǫ) }

δMFÃH(m · ǫ) = λc.

¨

m if δFÃH(ǫ) = c

0 otherwise

♣

The function δH = δHÃH provides an operational semantics for the expressions. We
will soon illustrate this for the case of expressions for weighted automata (Exam-
ple 6.2.8).
Finally, we introduce an equational system for expressions of type F ÃH. We define
the relation ≡ ⊆ ExpFÃH × ExpFÃH, written infix, as the least equivalence relation
containing the following identities:

ǫ⊕ ǫ ≡ ǫ, ǫ ∈ ExpFÃG (Idempotency)

ǫ1⊕ ǫ2 ≡ ǫ2 ⊕ ǫ1 (Commutativity)

ǫ1⊕ (ǫ2 ⊕ ǫ3)≡ (ǫ1⊕ ǫ2)⊕ ǫ3 (Associativity)

;⊕ ǫ ≡ ǫ (Empty)

γ[µx .γ/x]≡ µx .γ (FP)

γ[ǫ/x]≡ ǫ⇒ µx .γ ≡ ǫ (Unique)

; ≡ ⊥B (B− ;) b1 ⊕ b2 ≡ b1 ∨B b2 (B−⊕)
l〈;〉 ≡ ; (×− ;− L) l〈ǫ1 ⊕ ǫ2〉 ≡ l〈ǫ1〉 ⊕ l〈ǫ2〉 (×−⊕− L)

r〈;〉 ≡ ; (×− ;− R) r〈ǫ1 ⊕ ǫ2〉 ≡ r〈ǫ1〉 ⊕ r〈ǫ2〉 (×−⊕− R)

a(;)≡ ; (−A−;) a(ǫ1 ⊕ ǫ2)≡ a(ǫ1)⊕ a(ǫ2) (−A−⊕)
(0 · ǫ) ≡ ; (M− −;) (m · ǫ)⊕ (m′ · ǫ)≡ (m+m′) · ǫ (M− −⊕)

l[ǫ1 ⊕ ǫ2]≡ l[ǫ1]⊕ l[ǫ2] (+−⊕− L)

r[ǫ1 ⊕ ǫ2]≡ r[ǫ1]⊕ r[ǫ2] (+−⊕− R)

l[ǫ1]⊕ r[ǫ2] ≡ l[;]⊕ r[;] (+−⊕−⊤)

ǫ1 ≡ ǫ2⇒ ǫ[ǫ1/x] ≡ ǫ[ǫ2/x] if x is free in ǫ (Cong)

µx .γ ≡ µy.γ[y/x] if y is not free in γ (α− equiv)

120 Chapter 6. Quantitative Kleene coalgebras

Note that (Idempotency) only holds for ǫ ∈ ExpFÃG, where G is a non-deterministic
functor. The reason why it cannot hold for the remaining functors comes from the
fact that a monoid is, in general, not idempotent. Thus, (Idempotency) would conflict
with the axiom (M−−⊕), which allows us to derive, for instance, (2 · ;)⊕ (2 · ;)≡ 4 · ;.
In the case of an idempotent commutative monoid M, (Idempotency) follows from the
axiom (M−−⊕).

6.2.6 LEMMA. Let M be an idempotent commutative monoid. For every expression ǫ ∈
ExpMFÃH, one has ǫ⊕ ǫ ≡ ǫ.

PROOF. By induction on the product of types of expressions and expressions (using
the order defined in equation (5.1)). Everything follows easily by induction. The
most interesting case is ǫ = p ·ǫ1. Then, by (M−⊕), (p ·ǫ1)⊕ (p ·ǫ1)≡ (p+ p) ·ǫ1 and,
since the monoid is idempotent one has (p+ p) · ǫ1 = p · ǫ1.

6.2.7 EXAMPLE (Expressions for Pω(Id) and 2Id). The functor Pω(Id), which we ex-
plicitly include in our syntax of quantitative functors (since it is a non-deterministic
functor), is isomorphic to the functor 2Id, an instance of the monoidal exponentiation
functor. We shall next show that, as expected, ExpPω(Id)

/≡
∼= Exp2Id/≡.

The expressions for Pω(Id) are given by the closed and guarded expressions defined in
the following BNF

ǫ::= ; | ǫ⊕ ǫ | µx .ǫ | x | {ǫ}

The axioms which apply for these expressions are the axioms for fixed points plus the
axioms (Associativity), (Commutativity), (Idempotency) and (Empty).
For 2Id, the expressions are given by the closed and guarded expressions defined in
the following BNF

ǫ::= ; | ǫ⊕ ǫ | µx .ǫ | x | 1 · ǫ | 0 · ǫ

The axiomatization contains the axioms for fixed points plus the axioms (Associativity),
(Commutativity), (Empty), 0 · ǫ ≡ ; and p · ǫ ⊕ p′ · ǫ ≡ (p + p′) · ǫ. Because 2 is an
idempotent monoid, the last axiom can be replaced, for p = p′, by the (Idempotency)

axiom (Lemma 6.2.6). For p 6= p′, note that 0 · ǫ ≡ ; applies and, using the fact that
1+ 0 = 0, the axiom p · ǫ ⊕ p′ · ǫ ≡ (p + p′) · ǫ can be completely eliminated. This,
together with the one but last axiom, yields that ExpPω(Id)

/≡
∼= Exp2Id/≡. ♠

6.2.8 EXAMPLE (Expressions for weighted automata). The syntax canonically derived
from our typing system for the functor W = S × (SId)A 2 is given by the closed and
guarded expressions defined by the following BNF:

ǫ ::= ; | ǫ⊕ ǫ | x | µx .ǫ | l〈s〉 | r〈ǫ′〉
ǫ′ :: = ; | ǫ′ ⊕ ǫ′ | a(ǫ′′)
ǫ′′ ::= ; | ǫ′′⊕ ǫ′′ | s · ǫ

2To be completely precise (in order for W to be a quantitative functor) here the leftmost S should be
written as S{∗}. However, it is easy to see that Exp

S{∗}/≡
∼= S and so we will omit this detail from now on.

6.2. A non-idempotent algebra for quantitative regular behaviors 121

where s ∈ S and a ∈ A. The operational semantics of these expressions is given by
the function δWÃW (hereafter denoted by δW) which is an instance of the general
definition of δFÃH above. It is given by:

δW(;) = 〈0,λa.λǫ.0〉
δW(ǫ1 ⊕ ǫ2) = 〈s1 + s2,λa.λǫ.(f (a)(ǫ)+ g(s)(ǫ))

where 〈s1, f 〉 = δW(ǫ1) and 〈s2, g〉 = δW(ǫ2)

δW(µx .ǫ) = δW(ǫ[µx .ǫ/x])

δW(l〈s〉) = 〈s,λa.λǫ.0〉
δW(r〈ǫ′〉) = 〈0,δ(SId)AÃW(ǫ

′)〉

δ(SId)AÃW(;) = λa.λǫ.0
δ(SId)AÃW(ǫ1⊕ ǫ2) = λa.λǫ.(f (a)(ǫ)+ g(s)(ǫ))

where f = δ(SId)AÃW(ǫ1) and g = δ(SId)AÃW(ǫ2)

δ(SId)AÃW(a(ǫ
′′)) = λa′.

�

δSIdÃW(ǫ
′′) if a = a′

λǫ.0 otherwise

δ(SId)ÃW(;) = λǫ.0
δ(SId)ÃW(ǫ1⊕ ǫ2) = λǫ.(f (ǫ) + g(ǫ))

where f = δ(SId)ÃW(ǫ1) and g = δ(SId)ÃW(ǫ2)

δ(SId)ÃW(s · ǫ) = λǫ′.

�

s if ǫ = ǫ′

0 otherwise

The function δW assigns to each expression ǫ a pair 〈s, t〉, consisting of an output
weight s ∈ S and a function t : A→ SExpW . For a concrete example, let S = R, A= {a},
and consider ǫ = µx .r〈a(2 · x ⊕ 3 · ;)〉 ⊕ l〈1〉 ⊕ l〈2〉. The semantics of this expression,
obtained by δW is described by the weighted automaton below.

ǫ

a,2

a,3 ;

3 0

o =

�

3
0

�

Ta =

�

2 0
3 0

�

In Table 6.1 a more concise syntax for expressions for weighted automata is presented
(together with an axiomatization). It is interesting to remark that this syntax is a
subset of the one proposed in [31] (there a parallel composition was also considered),
but the axiomatization is new.
In order to see that the concise syntax and axiomatization are correct, one has to
write translation maps between both syntaxes and then prove that if two expressions
are provably equivalent in one syntax then their translations are provably equivalent
as well.

122 Chapter 6. Quantitative Kleene coalgebras

We show next the aforementioned translations and then we do not show the full proof
here but we will illustrate one case.
First, we translate the syntax presented in Table 6.1 into the canonically derived
syntax presented above.

(;)† = ;
(ǫ1⊕ ǫ2)

† = (ǫ1)
† ⊕ (ǫ2)

†

(µx .ǫ)† = µx .ǫ†

s† = l〈s〉
(a(s · ǫ))† = r〈a(s · ǫ†)〉
x† = x

And now the converse translation:

(;)‡ = ;
(ǫ1 ⊕ ǫ2)

‡ = (ǫ1)
‡⊕ (ǫ2)

‡

(µx .ǫ)‡ = µx .ǫ‡

x‡ = x

(l〈s〉)‡ = s

(r〈;〉)‡ = ;
(r〈ǫ′1⊕ ǫ′2〉)‡ = (r〈ǫ′1〉)‡ ⊕ (r〈ǫ′2〉)‡
(r〈a(;)〉)‡ = ;
(r〈a(ǫ′′1 ⊕ ǫ′′2)〉)‡ = (r〈a(ǫ′′1)〉)‡ ⊕ (r〈a(ǫ′′2)〉)‡
(r〈a(s · ǫ)〉)‡ = a(s · ǫ‡)

Let us next show an example of the correctness of the syntax and axioms presented
in Table 6.1. Take, from Table 6.1, the axiom a(0 · ǫ) ≡ ;. We need to prove that
(a(0 · ǫ))† ≡ ;†, using the canonically derived axioms for ExpW. The left expression
would be translated to r〈a(0 · ǫ†)〉, whereas ; would be translated to ;. Next, using
the axioms of ExpW one derives r〈a(0 · ǫ†)〉 ≡ r〈a(;)〉 ≡ r〈;〉 ≡ ;, as expected. ♠

We are now ready to formulate the analogue of Kleene’s theorem for quantitative
systems.

6.2.9 THEOREM (Kleene’s theorem for quantitative functors). Let H be a quantitative
functor.

1. For every locally finite H-coalgebra (S,h) and for every s ∈ S there exists an ex-

pression ǫs ∈ ExpH such that s ∼ ǫs.

2. For every ǫ ∈ ExpH, there exists a finite H-coalgebra (S,h) with s ∈ S such that

s ∼ ǫ.

PROOF. Let H be a quantitative functor. The proof of this theorem follows the same
structure as the proof of 5.2.12 and 5.2.14, the corresponding theorems for non-
deterministic functors.
Proof of item 1. Let s ∈ S and let 〈s〉 = {s1, . . . , sn} with s1 = s. We construct, for every
state si ∈ 〈s〉, an expression 〈〈 si 〉〉 such that si ∼ 〈〈 si 〉〉 .
If H = Id, we set, for every i, 〈〈 si 〉〉 = ;. It is easy to see that {〈si ,;〉 | si ∈ 〈s〉} is a
bisimulation and, thus, we have that s ∼ 〈〈 s 〉〉.
For H 6= Id, we proceed in the following way. Let, for every i, Ai = µx i .γ

H
h(si)

where,

for F Ã H and c ∈ F〈s〉, the expression γF
c
∈ ExpFÃH is defined by induction on the

6.2. A non-idempotent algebra for quantitative regular behaviors 123

structure of F:

γId
si
= x i γB

b
= b γ

F1×F2

〈c,c′〉 = l〈γF1
c
〉 ⊕ r〈ǫF2

c′
〉 γFA

f
=
⊕

a∈A a(γF

f (a)
)

γ
F13+F2

κ1(c)
= l[γF1

c
] γ

F13+F2

κ2(c)
= r[γF2

c
] γ

F13+F2

⊥ = ; γ
F13+F2

⊤ = l[;]⊕ r[;]

γ
PωF

C =

⊕

c∈C

{γF
c
} if C 6= ;

; otherwise
γMH1

f
=

⊕

c ∈H1(〈s〉)
f (c) 6= 0

f (c) · γH1
c

Now, let A0
i
= Ai , define Ak+1

i
= Ak

i
{Ak

k+1/xk+1} and then set 〈〈 si 〉〉 = An
i
. Here, A{A′/x}

denotes syntactic replacement (that is, substitution without renaming of bound vari-
ables in A which are also free variables in A′).
Observe that the term

An
i
= (µx i .γ

H
h(si)
){A0

1/x1} . . . {An−1
n
/xn}

is a closed term because, for every j = 1, . . . , n, the term A
j−1
j

contains at most n− j

free variables in the set {x j+1, . . . , xn}.
It remains to prove that si ∼ 〈〈 si 〉〉. We show that R = {〈si , 〈〈 si 〉〉〉 | si ∈ 〈s〉} is a bisimu-
lation. For that, we first define, for F ÃH and c ∈ F〈s〉, ξF

c
= γF

c
{A0

1/x1} . . . {An−1
n
/xn}

and the relation
RFÃH = {〈c,δFÃH(ξ

F
c
)〉 | c ∈ F〈s〉}.

Then, we prove that 1 RFÃH = F(R) and 2 〈h(si),δH(〈〈 si 〉〉)〉 ∈ RHÃH. We will show
here the proof for the case F =MH1 . The case when F is a non-deterministic functor
has been proved in Theorem 5.2.12. The remaining cases rely directly on MH1 and
we omit them here.

1 〈 f , g〉 ∈MH1(R)

⇔ ∃ϕ : H1(R)→M M
H1(π1)(ϕ) = f and MH1(π2)(ϕ) = g (def. MH1(R))

⇔ f (u) =
∑

〈u,y〉∈H1(R)

ϕ(〈u, y〉) and g(v) =
∑

〈x ,v〉∈H1(R)

ϕ(〈x , v〉) (def. MH1 on arrows)

⇔ f (u) =
∑

〈u,y〉∈RH1ÃH

ϕ(〈u, y〉) and g(v) =
∑

〈x ,v〉∈RH1ÃH

ϕ(〈x , v〉) (ind. hyp.)

⇔ f (u) = ϕ(〈u,δ(ξH1
u
)〉) and g(v) =

∑

v=δ(ξ
H1
x)

ϕ(〈x ,δ(ξH1
x
)〉) (def. RH1ÃH)

⇔ f (u) = ϕ(〈u,δ(ξH1
u
)〉) and g(v) =

∑

v=δ(ξ
H1
x)

f (x) (def. f)

⇔ f ∈MH1(〈s〉) and g = δMH1ÃH(
⊕

f (x)6=0
f (x) · ξH1

x
) (def. δMH1ÃH)

⇔ f ∈MH1(〈s〉) and g = δMH1ÃH(ξ
M

H1

f
) (def. ξM

H1

f
)

⇔ 〈 f , g〉 ∈ RMH1ÃH

124 Chapter 6. Quantitative Kleene coalgebras

The proof of 2 is exactly as in the case of non-deterministic functors and thus we
omit it here.

Proof of item 2. We want to show that for every expression ǫ ∈ ExpH there is a finite
H-coalgebra (S, f) with s ∈ S such that s ∼ ǫ. We construct such coalgebra in the
following way.
Again, we only show the proof for H =MH1 . The case when H is a non-deterministic
functor has been proved in Theorem 5.2.14 and the other cases (MH ×MH, (MH)A

and MH
3+MH) follow directly from the H =MH1 , which we shall prove next.

For ǫ ∈ ExpMH1ÃH, we set (S,h) = 〈ǫ〉 (recall that ǫ is the subcoalgebra generated
by ǫ). We now just have to prove that S is finite. In fact, we shall prove that S ⊆
cl(ǫ), where cl(ǫ) denotes the smallest subset containing all subformulas of ǫ and the
unfoldings of µ (sub)formulas, that is, the smallest subset satisfying:

cl(;) = {;}
cl(ǫ1 ⊕ ǫ2) = {ǫ1 ⊕ ǫ2} ∪ cl(ǫ1)∪ cl(ǫ2)

cl(µx .ǫ1) = {µx .ǫ1} ∪ cl(ǫ1[µx .ǫ1/x])

cl(l〈ǫ1〉) = {l〈ǫ1〉} ∪ cl(ǫ1)

cl(r〈ǫ1〉) = {r〈ǫ1〉} ∪ cl(ǫ1)

cl(l[ǫ1]) = {l[ǫ1]} ∪ cl(ǫ1)

cl(r[ǫ1]) = {r[ǫ1]} ∪ cl(ǫ1)

cl(a(ǫ1)) = {a(ǫ1)} ∪ cl(ǫ1)

cl({ǫ1}) = {{ǫ1}} ∪ cl(ǫ1)

cl(m · ǫ1) = {m · ǫ1} ∪ cl(ǫ1)

Note that the set cl(ǫ) is finite (the number of different unfoldings of µ-expressions is
finite).
To show that S ⊆ cl(ǫ) (S is the state space of 〈ǫ〉), it is enough to show that, for any
c ∈H1(ExpMH1ÃH), δMH1ÃH(ǫ)(c) 6= 0⇒ c ∈H1(cl(ǫ)).
It is an easy proof by induction on the product of types of expressions and expressions
(using the order defined in equation (5.1), extended with the clause N(m · ǫ) = 0).
We exemplify the cases ǫ = ǫ1 ⊕ ǫ2

δMH1ÃH(ǫ1 ⊕ ǫ2)(c) 6= 0
⇔ δMH1ÃH(ǫ1)(c) 6= 0 or δMH1ÃH(ǫ2)(c) 6= 0 (def. δMH1ÃH)
⇒ c ∈H1(cl(ǫ1)) or c ∈H1(cl(ǫ2)) (ind. hyp.)
⇒ c ∈H1(cl(ǫ1 ⊕ ǫ2)) (def. cl)

and ǫ = µx .ǫ1

δMH1 (µx .ǫ1)(c) 6= 0
⇔ δMH1 (ǫ1[µx .ǫ1/x])(c) 6= 0 (def. δMH1 (µx .ǫ1))
⇒ c ∈H1(cl(ǫ1[µx .ǫ1/x])) (ind. hyp.)
⇒ c ∈H1(cl(µx .ǫ1)) (H1(cl(ǫ1[µx .ǫ1/x]))⊆H1(cl(µx .ǫ1)))

We can now explain the technical reason why we consider, in this section, only func-
tors that are not mixed.
In the case of a non-deterministic functor G, the proof of item 2. above requires consid-
ering subcoalgebras modulo (Associativity), (Commutativity) and (Idempotency) (ACI).

6.2. A non-idempotent algebra for quantitative regular behaviors 125

Consider for instance the expression ǫ = µx .r〈a(x ⊕ x)〉 of type D = 2 × IdA. The
subcoalgebras generated with and without applying ACI are the following:

ǫ

a

ǫ
a

ǫ⊕ ǫ a
(ǫ⊕ ǫ)⊕ (ǫ⊕ ǫ) a . . .

In the case ofMH (orMH×MH, (MH)A andMH
3+MH), the idempotency axiom does

not hold anymore. However, surprisingly enough, in these cases proving the finiteness
of the subcoalgebra 〈ǫ〉 is not problematic. The key observation is that the monoid
structure will be able to avoid the infinite scenario described above. What happens is
concisely captured by the following example. Take the expression ǫ = µx .2·(x⊕ x) for
the functor RId. Then, the subcoalgebra generated by ǫ is depicted in the following
picture:

ǫ
2

ǫ⊕ ǫ

4

The syntactic restriction that excludes mixed functors is needed because of the fol-
lowing problem. Take as an example the functor MId × IdA. A well-typed expression
for this functor would be ǫ = µx .r〈a(x ⊕ x ⊕ l〈2 · x〉 ⊕ l〈2 · x〉)〉. It is clear that we
cannot apply idempotency in the subexpression x⊕ x⊕ l〈2 · x〉⊕ l〈2 · x〉 and hence the
subcoalgebra generated by ǫ will be infinite:

ǫ
a

ǫ′
a

4 ǫ′⊕ ǫ′ a

8

(ǫ′ ⊕ ǫ′)⊕ (ǫ′⊕ ǫ′) a

16

. . .

with ǫ′ = ǫ ⊕ ǫ ⊕ l〈2 · ǫ〉 ⊕ l〈2 · ǫ〉. We will show in the next section how to overcome
this problem.
Let us summarize what we have achieved so far: we have presented a framework
that allows, for each quantitative functor H ∈ QF, the derivation of a language ExpH.
Moreover, Theorem 6.2.9 guarantees that for each expression ǫ ∈ ExpH, there exists
a finite H-coalgebra (S,h) that contains a state s ∈ S bisimilar to ǫ and, conversely,
for each locally finite H-coalgebra (S,h) and for every state in s there is an expression
ǫs ∈ ExpH bisimilar to s.
Next, we show that the axiomatization is sound and complete with respect to behav-
ioral equivalence.

Soundness and completeness

The proof of soundness and completeness follows exactly the same structure as the
one presented in the previous chapter for non-deterministic functors. We will recall
all the steps here, but will only show the proof of each theorem and lemma for the
new case of the monoidal exponentiation functor. It is important to remark that

126 Chapter 6. Quantitative Kleene coalgebras

both the soundness and the completeness results will be formulated using behavioral
equivalence rather than bisimilarity, as in the previous chapter.
The relation ≡ gives rise to the equivalence map [−]: ExpFÃH → ExpFÃH/≡, defined
by [ǫ] = {ǫ′ | ǫ ≡ ǫ′}. The following diagram summarizes the maps we have defined
so far:

ExpFÃH

δFÃH

[−]
ExpFÃH/≡

F(ExpH)
F[−]

F(ExpH/≡)

In order to complete the diagram, we next prove that the relation ≡ is contained in
the kernel of F[−]◦δFÃH

3. This will guarantee, by Theorem 2.2.7, the existence of a
well-defined function ∂FÃH : ExpFÃH/≡ → F(ExpH/≡) which, when F =H, provides
ExpH/≡ with a coalgebraic structure ∂H : ExpH/≡→H(ExpH/≡) (as before we write
∂H for ∂HÃH) and which makes [−] a homomorphism of coalgebras.

6.2.10 LEMMA. Let H and F be quantitative functors, with F Ã H. For all ǫ1,ǫ2 ∈
ExpFÃH with ǫ1 ≡ ǫ2,

(F[−]) ◦δFÃH(ǫ1) = (F[−]) ◦δFÃH(ǫ2)

PROOF. By induction on the length of derivations of ≡.
We just show the proof for the axioms 0 · ǫ = ; and (m · ǫ)⊕ (m′ · ǫ) = (m+m′) · ǫ.

δMH1ÃH(0 · ǫ) = λc.0 = δMH1ÃH(;)

δMH1ÃH((m · ǫ)⊕ (m′ · ǫ)) = λc.δMH1ÃH(m · ǫ)(c) +δMH1ÃH(m
′ · ǫ)(c)

= λc.

¨

m+m′ if δH1ÃH(ǫ) = c

0 otherwise
= δMH1ÃH((m+m′) · ǫ)

Thus, we have now provided the set ExpH/≡ with a coalgebraic structure: we have
defined a function ∂H : ExpH/≡→H(ExpH/≡), with ∂H([ǫ]) = (H[−]) ◦δH(ǫ).
At this point we can prove soundness, since it is a direct consequence of the fact that
the equivalence map [−] is a coalgebra homomorphism.

6.2.11 THEOREM (Soundness). Let H be a quantitative functor. For all ǫ1,ǫ2 ∈ ExpH,

ǫ1 ≡ ǫ2⇒ ǫ1 ∼b ǫ2

3This is equivalent to proving that ExpFÃH/≡, together with [−], is the coequalizer of the projection
morphisms from ≡ to ExpFÃH .

6.2. A non-idempotent algebra for quantitative regular behaviors 127

PROOF. Let H be a quantitative functor, let ǫ1,ǫ2 ∈ ExpH and suppose that ǫ1 ≡ ǫ2.
Then, [ǫ1] = [ǫ2] and, thus

behExpH/≡
([ǫ1]) = behExpH/≡

([ǫ2])

where behS denotes, for any H-coalgebra (S, f), the unique map into the final coal-
gebra. The uniqueness of the map into the final coalgebra and the fact that [−] is a
coalgebra homomorphism implies that behExpH/≡

◦ [−] = behExpH
which then yields

behExpH
(ǫ1) = behExpH

(ǫ2)

Hence, ǫ1 ∼b ǫ2.

For completeness, we proceed as before (with the difference that now we use behav-
ioral equivalence ∼b instead of bisimilarity ∼.). Let us recall the key ingredients of
the proof. The goal is to prove that ǫ1 ∼b ǫ2⇒ ǫ1 ≡ ǫ2. First, note that we have

ǫ1 ∼b ǫ2⇔ behExpH
(ǫ1) = behExpH

(ǫ2)⇔ behExpH/≡
([ǫ1]) = behExpH/≡

([ǫ2]) (6.1)

We then prove that behExpH/≡
is injective, which is a sufficient condition to guarantee

that ǫ1 ≡ ǫ2 (since it implies, together with (6.1), that [ǫ1] = [ǫ2]).
First, we factorize behExpH/≡

into an epimorphism and a monomorphism [96, Theo-
rem 7.1] as shown in the following diagram (where I = behExpH/≡

(ExpH/≡)):

ExpH/≡

behExpH/≡

e

∂H

I
m

ωH

ΩH

ωH

H(ExpH/≡) H(I) HΩH

(6.2)

Then, we prove that (1) (ExpH/≡,∂H) is a locally finite coalgebra (Lemma 6.2.12)
and (2) both coalgebras (ExpH/≡,∂H) and (I ,ωH) are final in the category of locally
finite H-coalgebras (Lemmas 6.2.15 and 6.2.16, respectively). Since final coalgebras
are unique up to isomorphism, it follows that e : ExpH/≡→ I is in fact an isomorphism
and therefore behExpH/≡

is injective, which will give us completeness.
We now proceed with presenting and proving the extra lemmas needed in order to
prove completeness. We start by showing that the coalgebra (ExpH/≡,∂H) is locally
finite (note that this implies that (I ,ωH) is also locally finite) and that ∂H is an
isomorphism.

6.2.12 LEMMA. The coalgebra (ExpH/≡,∂H) is a locally finite coalgebra. Moreover, ∂H
is an isomorphism.

PROOF. Locally finiteness is a direct consequence of the generalized Kleene’s theorem
(Theorem 6.2.9). In the proof of Theorem 6.2.9 we showed that given ǫ ∈ ExpH,

128 Chapter 6. Quantitative Kleene coalgebras

for H = MH1 , H = MH1 ×MH2 , H = (MH1)A or H = MH1 3+MH2 , the subcoalgebra
〈ǫ〉 is finite. In case H is a non-deterministic functor, we proved that the subcoal-
gebra 〈[ǫ]ACIE〉 is finite. Thus, the subcoalgebra 〈[ǫ]〉 is always finite (since ExpH/≡
is a quotient of both ExpH and ExpH/≡ACIE

). Recall that ACIE abbreviates the axioms
(Associativity), (Commutativity), (Idempotency) and (Empty) and ≡ACIE denotes equiva-
lence under these axioms only.
To see that ∂H is an isomorphism, first define, for every F ÃH,

∂ −1
FÃH

(c) = [γF

c
] (6.3)

where γF

c
is defined, for F 6= Id, as γF

c
in the proof of Theorem 6.2.9, and for F = Id as

γId
[ǫ] = ǫ. Then, we prove that the function ∂ −1

FÃH
has indeed the desired properties 1

∂ −1
FÃH
◦ ∂FÃH = idExpFÃH/≡

and 2 ∂FÃH ◦ ∂ −1
FÃH

= idF(ExpFÃH/≡)
. Instantiating F = H

one derives that δH is an isomorphism. It is enough to prove for 1 that γF

∂FÃH([ǫ])
≡ ǫ

and for 2 that ∂FÃH([γ
F

c
]) = c. We just illustrate the new cases when compared to

Theorem 5.3.4.

1 By induction on the product of types of expressions and expressions (using the
order defined in equation (5.1)).

γM
H1

∂
M

H1ÃH
([m·ǫ])

=
⊕

{∂MH1ÃH([m · ǫ])(c) · γH1
c
| c ∈H1(ExpH/≡),∂MH1ÃH([m · ǫ])(c) 6= 0}

= m · γH1

∂H1ÃH([ǫ])

≡ m · ǫ

In the last step, we used the induction hypothesis, whereas in the one but last step
we used the fact that ∂MH1ÃH([m · ǫ])(c) 6= 0⇔ c = ∂H1ÃH([ǫ]).
2 By induction on the structure of F.

∂MH1ÃH([γ
MH1

f
]) = ∂MH1ÃH([

⊕

{ f (c) · γH1
c
| c ∈H1(ExpH/≡), f (c) 6= 0}])

= λc′.
∑

{ f (c) | c ∈H1(ExpH/≡) and c′ = ∂H1ÃH(γ
H1
c
)}

IH
= λc′.

∑

{ f (c) | c ∈H1(ExpH/≡) and c′ = c}
= f

We now present the analogue of the following useful and intuitive equality on regular
expressions, which we had already presented in the previous chapter for non-deter-
ministic functors (Lemma 5.3.5). Given a deterministic automaton 〈o, t〉: S → 2× SA

and a state s ∈ S, the associated regular expression rs can be written as

rs = o(s) +
∑

a∈A

a · rt(s)(a) (6.4)

using the axioms of Kleene algebra [29, Theorem 4.4].

6.2. A non-idempotent algebra for quantitative regular behaviors 129

6.2.13 LEMMA. Let (S,h) be a locally finite H-coalgebra, with H 6= Id, and let s ∈ S,

with 〈s〉 = {s1, . . . , sn} (where s1 = s). Then:

〈〈 si 〉〉 ≡ γH
g(si)
{〈〈 s1 〉〉/x1} . . . {〈〈 sn 〉〉/xn} (6.5)

PROOF. Same as in Lemma 5.3.5.

The above equality is used to prove that there exists a coalgebra homomorphism
between any locally finite coalgebra (S,h) and (ExpH/≡,∂H).

6.2.14 LEMMA. Let (S,h) be a locally finite H-coalgebra. There exists a coalgebra ho-

momorphism ⌈−⌉: S→ ExpH/≡.

PROOF. We define ⌈−⌉= [−]◦〈〈−〉〉, where 〈〈−〉〉 is as in the proof of Theorem 6.2.9,
associating to a state s of a locally finite coalgebra an expression 〈〈 s 〉〉 with s ∼ 〈〈 s 〉〉.
To prove that ⌈−⌉ is a homomorphism we need to verify that (H⌈−⌉) ◦h= ∂H ◦ ⌈−⌉.
If H = Id, then (H⌈−⌉) ◦ g(si) = [;] = ∂H(⌈ si ⌉). For H 6= Id we calculate, using
Lemma 6.2.13:

∂H ◦ ⌈ si ⌉= ∂H([γH
g(si)
[〈〈 s1 〉〉/x1] . . . [〈〈 sn 〉〉/xn]])

and we then prove the more general equality, for F ÃH and c ∈ F〈s〉:

∂FÃH([γ
F
c
[〈〈 s1 〉〉/x1] . . . [〈〈 sn 〉〉/xn]]) = F⌈−⌉(c) (6.6)

The intended equality then follows by taking F = H and c = g(si). Let us prove the
equation (6.6) by induction on F. We only show the case F =MH1 .

∂MH1ÃH([γ
M

H1

f
[〈〈 s1 〉〉/x1] . . . [〈〈 sn 〉〉/xn]])

= ∂MH1ÃH([
⊕

{ f (c) · γH1
c
[〈〈 s1 〉〉/x1] . . . [〈〈 sn 〉〉/xn] | c ∈H1(ExpH/≡), f (c) 6= 0}])

= λc′.
∑

{ f (c) | c ∈H1(ExpH/≡) and c′ = ∂H1ÃH(γ
H1
c
[〈〈 s1 〉〉/x1] . . . [〈〈 sn 〉〉/xn])}

IH
= λc′.

∑

{ f (c) | c ∈H1(ExpH/≡) and c′ = (H1⌈−⌉)(c)}
= MH1(⌈−⌉)(f)

We can now prove that the coalgebras (ExpH/≡,∂H) and (I ,ωH) are both final in the
category of locally finite H-coalgebras.

6.2.15 LEMMA. The coalgebra (I ,ωH) is final in the category Coalg(H)LF.

PROOF. We want to show that for any locally finite coalgebra (S,h), there exists a
unique homomorphism (S,h) → (I ,ωH). Lemma 6.2.14, where ⌈−⌉: S → ExpH/≡
is defined, guarantees the existence. Postcomposing this homomorphism with e (de-
fined above, in diagram 6.2) we get a coalgebra homomorphism e ◦ ⌈−⌉: S → I . If
there is another homomorphism f : S → I , then by postcomposition with the inclu-
sion m: I ,→ Ω we get two homomorphisms (m ◦ f and m ◦ e ◦ ⌈−⌉) into the final
H-coalgebra. Thus, f and e ◦ ⌈−⌉ must be equal.

130 Chapter 6. Quantitative Kleene coalgebras

6.2.16 LEMMA. The coalgebra (ExpH/≡,∂H) is final in the category Coalg(H)LF.

PROOF. We want to show that for any locally finite coalgebra (S,h), there exists a
unique homomorphism (S,h) → (ExpH/≡,∂H). We only need to prove uniqueness,
since the existence is guaranteed by Lemma 6.2.14, where ⌈−⌉: S → ExpH/≡ is de-
fined.
Suppose we have another homomorphism f : S→ ExpH/≡. Then, we shall prove that
f = ⌈−⌉. First, observe that because f is a homomorphism the following holds for
every s ∈ S:

f (s)≡ ∂ −1
H
◦H f ◦ h(s)≡ γH

g(s)
[f (s1)/x1] . . . [f (sn)/xn] (6.7)

where 〈s〉 = {s1, . . . , sn}, with s1 = s (recall that ∂ −1
H

was defined in (6.3) and note that
γH

H f ◦h(s) = γ
H
h(s)
[f (si)/x i]).

We now have to prove that f (si) = ⌈ si ⌉, for all i = 1, . . . n. The proof, which relies
mainly on uniqueness of fixed points, is exactly as in Theorem 5.3.8 and we omit it
here.

At this point, because final objects are unique up-to isomorphism, we know that
e : ExpH/≡→ I is an isomorphism and hence we can conclude that the map behExpH/≡
is injective, since it factorizes into an isomorphism followed by a mono. This fact is
the last ingredient we need to prove completeness.

6.2.17 THEOREM (Completeness). Let H be a quantitative functor. For all ǫ1,ǫ2 ∈
ExpH,

ǫ1 ∼b ǫ2⇒ ǫ1 ≡ ǫ2

PROOF. Let H be a quantitative functor, let ǫ1,ǫ2 ∈ ExpH and suppose that ǫ1 ∼b

ǫ2, that is, behExpH
(ǫ1) = behExpH

(ǫ2). We reason as in equation (6.1). Since
the equivalence class map [−] is a homomorphism, it holds that behExpH/≡

([ǫ1]) =

behExpH/≡
([ǫ2]). Now, because behExpH/≡

is injective we have that [ǫ1] = [ǫ2]. Hence,
ǫ1 ≡ ǫ2.

6.3 Extending the class of functors

In the previous section, we introduced regular expressions for the class of quantitative
functors. In this section, by employing standard results from the theory of coalgebras,
we show how to use such regular expressions to describe the coalgebras of many more
functors, including the mixed functors we mentioned in Section 6.2.
Given two endofunctors F and G on Set, a natural transformation α: F⇒ G is a family
of functions αS : F(S) → G(S) (for all sets S), such that for all functions h: T → U ,
αU ◦F(h) = G(h) ◦αT . If all the αS are injective, then we say that α is injective.

6.3.1 PROPOSITION. An injective natural transformation α: F ⇒ G induces a functor

α ◦ (−): Coalg(F)LF→ Coalg(G)LF that preserves and reflects behavioral equivalence.

6.3. Extending the class of functors 131

PROOF. It is shown in [17, 96] that an injective α: F ⇒ G induces a functor α ◦
(−): Coalg(F) → Coalg(G) that preserves and reflects behavioral equivalence. Thus
we have only to prove that α ◦ (−) maps locally finite F-coalgebras into locally finite
G-coalgebras.
Recall that α ◦ (−) maps each F-coalgebra (S, f) into the G-coalgebra (S,α ◦ f), and
each F-homomorphism into itself. We prove that if (S, f) is locally finite, then also
(S,α ◦ f) is locally finite.
An F-coalgebra (S, f) is locally finite if for all s ∈ S, there exists a finite set V ⊆ S,
such that s ∈ V and V is a subsystem of S, that is there exists a function v : V → F(V),
such that inclusion i : V → S is an F-homomorphism between (V, v) and (S, f). At this
point, note that if i : V → S is an F-homomorphism between (V, v) and (S, f), then it
is also a G-homomorphism between (V,α ◦ v) and (S,α ◦ f). Thus, (S,α ◦ f) is locally
finite.

This result allows us to extend our framework to many other functors, as we shall
explain next. Consider a functor F which is not quantitative and suppose there exists
an injective natural transformation α from F into some quantitative functor H. A
(locally finite) F-coalgebra can be translated into a (locally finite) H-coalgebra via
the functor α ◦ (−) and then it can be characterized by using expressions in ExpH.
The axiomatization for ExpH is still sound and complete for F-coalgebras, since the
functor α ◦ (−) preserves and reflects behavioral equivalence.
However, note that (half of) Kleene’s theorem does not hold anymore, because not all
the expressions in ExpH denote F-behaviors or, more precisely, not all expressions in
ExpH are equivalent to H-coalgebras that are in the image of α ◦ (−). Thus, in order
to retrieve Kleene’s theorem, one has to exclude such expressions. In many situations,
this is feasible by simply imposing some syntactic constraints on ExpH.
Let us illustrate this by means of an example. First, we recall the definition of the
probability functor (which will play a key role in the next section).

6.3.2 DEFINITION (Probability functor). A probability distribution over a set S is a
function d : S → [0,1] such that

∑

s∈S d(s) = 1. The probability functor Dω : Set →
Set is defined as follows. For all sets S, Dω(S) is the set of probability distributions

over S with finite support. For all functions h: S→ T , Dω(h) maps each d ∈Dω(S) into
dh (Definition 6.1.1). ♣

Note that for any set S, Dω(S) ⊆ RS since probability distributions are also functions
from S to R. Let ι be the family of inclusions ιS : Dω(S)→ RS . It is easy to see that ι is a
natural transformation between Dω and RId (the two functors are defined in the same
way on arrows). Thus, in order to specify Dω-coalgebras, we will use ǫ ∈ ExpRId . These
are the closed and guarded expressions given by the following BNF, where r ∈ R and
x ∈ X (X a set of fixed point variables)

ǫ ::= ; | ǫ⊕ ǫ | x | µx .ǫ | r · ǫ

This language is enough to specify all Dω-behaviors, but it also allows us to specify
R

Id-behaviors that are not Dω-behaviors, such as for example, µx .2 · x and µx .0 · x . In

132 Chapter 6. Quantitative Kleene coalgebras

order to obtain a language ExpDω
that specifies all and only the regular Dω-behaviors,

it suffices to change the BNF above as follows:

ǫ :: = x | µx .ǫ |
⊕

i∈1...n

pi · ǫi for pi ∈ (0,1] such that
∑

i∈1...n

pi = 1 (6.8)

where
⊕

i∈1...n
pi · ǫi denotes p1 · ǫ1 ⊕ · · · ⊕ pn · ǫn.

Next, we prove Kleene’s theorem for this restricted syntax. Note that the procedure of
appropriately restricting the syntax usually requires some ingenuity. We shall see that
in many concrete cases, as for instance Dω above, it is fairly intuitive which restriction
to choose. Also, although we cannot provide a uniform proof of Kleene’s theorem,
the proof for each concrete example is a slight adaptation of the more general one
(Theorem 6.2.9).

6.3.3 THEOREM (Kleene’s Theorem for the probability functor).

1. For every locally finite Dω-coalgebra (S, d) and for every s ∈ S there exists an

expression ǫs ∈ ExpDω
such that s ∼ ǫs.

2. For every ǫ ∈ ExpDω
, there exists a finite Dω-coalgebra (S, d) with s ∈ S such that

s ∼ ǫ.

PROOF. Let s ∈ S and let 〈s〉 = {s1, . . . , sn} with s1 = s. We construct, for every state
si ∈ 〈s〉, an expression 〈〈 si 〉〉 such that si ∼ 〈〈 si 〉〉 .
Let, for every i, Ai = µx i .

⊕

d(si)(s j)6=0
d(si)(s j) · x j .

Now, let A0
i
= Ai , define Ak+1

i
= Ak

i
{Ak

k+1/xk+1} and then set 〈〈 si 〉〉 = An
i
. Observe that

the term
An

i
= (µx i.

⊕

d(si)(s j)6=0

d(si)(s j) · x j){A0
1/x1} . . . {An−1

n
/xn}

is a closed term and
∑

d(si)(s j)6=0
d(si)(s j) = 1. Thus, An

i
∈ ExpDω

.

It remains to prove that si ∼ 〈〈 si 〉〉. We show that R = {〈si , 〈〈 si 〉〉〉 | si ∈ 〈s〉} is a bisimu-
lation. For that we define a function ξ: R→Dω(R) as ξ(〈si ,−〉)(〈s j ,−〉) = d(si)(s j) and
we observe that the projection maps π1 and π2 are coalgebra homomorphisms, that
is, the following diagram commutes.

〈s〉

(1)d

R
π1

(2)ξ

π2 {An
i
| si ∈ 〈s〉}

δExpDω

Dω(〈s〉) Dω(R)
Dω(π1) Dω(π2)

Dω({An
i
| si ∈ 〈s〉})

Dω(π1)(ξ(〈si ,A
n
i
〉))(s j) =

∑

〈s j ,x〉∈R

ξ(〈si ,A
n
i
〉)(〈s j , x〉) = d(si)(s j) (1)

Dω(π2)(ξ(〈si ,A
n
i
〉))(An

j
) =

∑

〈x ,an
j
〉∈R

ξ(〈si ,A
n
i
〉)(〈x ,An

j
〉) = d(si)(s j) = δExpDω

(An
i
)(An

j
) (2)

6.4. Probabilistic systems 133

For the second part of the theorem, We need to show that for every expression ǫ ∈
ExpDω

there is a finite Dω-coalgebra (S, d) with s ∈ S such that s ∼ ǫ. We take (S, d) =

〈ǫ〉 and we observe that S is finite, because S ⊆ cl(ǫ) (the proof of this inclusion is as
in Theorem 6.2.9).

The axiomatization of ExpDω
is a subset of the one for ExpRId , since some axioms,

such as ; ≡ 0 · ǫ, have no meaning in the restricted syntax. In this case the axiom-
atization for ExpDω

would contain the axioms for the fixed point, plus (Associativity),
(Commutativity) and p · ǫ ⊕ p′ · ǫ = (p + p′) · ǫ. The soundness of this axiomatization
comes for free from the soundness in RId, because behavioral equivalence in RId im-
plies behavioral equivalence in Dω. For completeness we would have to prove that,
for any two expressions in the new syntax, if they are provably equivalent using all
the axioms of ExpRId then they must be provably equivalent using only the restricted
set of axioms. We omit the proof here. Note that it is usually obvious which axioms
one needs to keep for the restricted syntax.
For another example, consider the functors Id and Pω(Id). Let τ be the family of
functions τS : S → Pω(S) mapping each s ∈ S in the singleton set {s}. It is easy to see
that τ is an injective natural transformation. With the above observation, we can also
get regular expressions for the functor MId × IdA which, as discussed in Section 6.2,
does not belong to our class of quantitative functors. Indeed, by extending τ, we can
construct an injective natural transformation MId × IdA⇒MId ×Pω(Id)

A.
In the same way, we can construct an injective natural transformation from the func-
tor Dω(Id) + (A× Id) + 1 (which is the type of stratified systems, which we shall use
as an example in the next section) into RId + (A× Pω(Id)) + 1. Since the latter is a
quantitative functor, we can use its expressions and axiomatization for stratified sys-
tems. But since not all its expressions define stratified behaviors, we again will have
to restrict the syntax.

6.4 Probabilistic systems

Many different types of probabilistic systems have been defined in the literature: ex-
amples include reactive, generative, stratified, alternating, (simple) Segala, bundle
and Pnueli-Zuck. Each type corresponds to a functor, and the systems of a certain
type are coalgebras of the corresponding functor. A systematic study of all these sys-
tems as coalgebras was made in [17]. In particular, Figure 1 of [17] provides a full
correspondence between types of systems and functors. By employing this correspon-
dence and the results of the previous section, we can use our framework in order
to derive regular expressions and axiomatizations for all these types of probabilistic
systems.
In order to show the effectiveness of our approach, we have derived expressions and
axioms for three different types of probabilistic systems: simple Segala, stratified, and
Pnueli-Zuck.

134 Chapter 6. Quantitative Kleene coalgebras

•

a

ba

1/21/2 1/32/3
1

• • • • •

•
1/2 1/2

•
1/3 2/3

•
b

•
a

•
a

•

• •

•

1/3 2/3
1

aa ab
b

• • • • •

(i) (ii) (iii)

Figure 6.1: (i) A simple Segala system, (ii) a stratified system and (iii) a Pnueli-Zuck
system

Simple Segala systems. Simple Segala systems are transition systems where both
probability and non-determinism are present. They are coalgebras for the functor
Pω(Dω(Id))

A. Each labeled transition leads, non-deterministically, to a probability dis-
tribution of states instead of a single state. An example is shown in Figure 6.1(i).
We recall the expressions and axioms for simple Segala systems as shown in Table 6.1.

ǫ::= ; | ǫ⊞ ǫ | µx .ǫ | x | a({ǫ′}) where a ∈ A, pi ∈ (0,1] and
∑

i∈1...n
pi = 1

ǫ′::=
⊕

i∈1···n
pi · ǫi

(ǫ1 ⊞ ǫ2)⊞ ǫ3 ≡ ǫ1 ⊞ (ǫ2 ⊞ ǫ3) ǫ1 ⊞ ǫ2 ≡ ǫ2 ⊞ ǫ1 ǫ⊞ ; ≡ ǫ ǫ⊞ ǫ ≡ ǫ
(ǫ′1 ⊕ ǫ′2)⊕ ǫ′3 ≡ ǫ′1 ⊕ (ǫ′2 ⊕ ǫ′3) ǫ′1 ⊕ ǫ′2 ≡ ǫ′2 ⊕ ǫ′1 (p1 · ǫ)⊕ (p2 · ǫ)≡ (p1 + p2) · ǫ
ǫ[µx .ǫ/x] ≡ µx .ǫ γ[ǫ/x]≡ ǫ⇒ µx .γ≡ ǫ

Here, in order to avoid confusion, we use ⊞ instead of ⊕ for the expressions at the
top level, making a clear distinction between the idempotent (non-deterministic) and
non-idempotent (probabilistic) sums. The syntax above was obtained from the canon-
ically derived one by applying the restrictions arising from Dω and also some simplifi-
cations (syntactic sugar) which improve readability (in the spirit of what we showed
before for ExpW, the expressions for weighted automata).
As we showed in section 6.3, to be completely formal we would have to prove Kleene’s
Theorem and the completeness of the axiomatization for the restricted syntax (as well
as the correctness of the simplifications). The proofs would be based on the ones we
showed for the functor Dω (and the ones for the simplifications similar to what we
showed for ExpW). We omit them here and show instead an example. The expression
a({1/2 · ;⊕1/2 · ;})⊞ a({1/3 · ;⊕2/3 · ;})⊞ b({1 · ;}) is bisimilar to the top-most state
in the simple Segala system depicted in Figure 6.1(i). Using the axiomatization, we

6.4. Probabilistic systems 135

can derive:

a({1/2 · ; ⊕ 1/2 · ;})⊞ a({1/3 · ; ⊕ 2/3 · ;})⊞ b({1 · ;})
≡ a({(1/2+ 1/2) · ;})⊞ a({(1/3+ 2/3) · ;})⊞ b({1 · ;})
≡ a({1 · ;})⊞ a({1 · ;})⊞ b({1 · ;})
≡ a({1 · ;})⊞ b({1 · ;})

Thus, we can conclude that the system presented in Figure 6.1(i) is bisimilar to the
following one:

•
a b

1 1
•

The language and axiomatization we presented above are the same as the ones pre-
sented in [42] (with the slight difference that in [42] a parallel composition operator
was also considered). This is of course reassuring for the correctness of the general
framework we presented. In the next two examples, we will present new results (that
is syntax/axiomatizations which did not exist). This is where the generality starts
paying off: not only one recovers known results but also derives new ones, all of this
inside the same uniform framework.

Stratified systems. Stratified systems are coalgebras for the functor Dω(Id) + (B×
Id)+1. Each state of these systems either performs unlabeled probabilistic transitions
or one B-labeled transition or it terminates. We first derive expressions and axioms
for RId+(B×Pω(Id))+1 and then we restrict the syntax to characterize only Dω(Id)+

(B× Id) + 1-behaviors. This, together with the introduction of some syntactic sugar,
leads to the following syntax and axioms.

ǫ::= µx .ǫ | x | 〈b,ǫ〉 |
⊕

i∈1···n
pi · ǫi | ↓ where b ∈ B, pi ∈ (0,1] and

∑

i∈1...n
pi = 1

(ǫ1 ⊕ ǫ2)⊕ ǫ3 ≡ ǫ1 ⊕ (ǫ2 ⊕ ǫ3) ǫ1⊕ ǫ2 ≡ ǫ2 ⊕ ǫ1 (p1 · ǫ)⊕ (p2 · ǫ)≡ (p1 + p2) · ǫ
ǫ[µx .ǫ/x] ≡ µx .ǫ γ[ǫ/x]≡ ǫ⇒ µx .γ ≡ ǫ
Here ↓, which denotes termination, corresponds to the canonically derived expression
r[r[1]], while 〈b,ǫ〉 corresponds to r[l[l〈b〉 ⊕ r〈{ǫ}〉]].
We can use these axioms (together with Kleene’s theorem) to reason about the system
presented in Figure 6.1(ii). The topmost state of this system is bisimilar to the expres-
sion 1/2 · (1/3 · 〈a,↓〉 ⊕ 2/3 · 〈a,↓〉)⊕ 1/2 · 〈b,↓〉, which in turn is provably equivalent
to 1/2 · (1 · 〈a,↓〉)⊕ 1/2 · 〈b,↓〉. That leads us to conclude that the aforementioned
system is equivalent to the following simpler one.

•
1/2 1/2

•
1

•
b

• a •

136 Chapter 6. Quantitative Kleene coalgebras

The language of expressions we propose for these systems is a subset of the language
originally proposed in [117] (there a parallel composition operator is also consid-
ered). More interestingly, there was no axiomatization of the language in [117] and
thus the axiomatization we present here is completely new.

Pnueli-Zuck systems. These systems are coalgebras for the functor PωDω(Pω(Id)
A).

Intuitively, the ingredient Pω(Id)
A denotes A-labeled transitions to other states. Then,

Dω(Pω(Id))
A corresponds to a probability distribution of labeled transitions and finally

each state of a PωDω(Pω(Id))
A-coalgebra performs a non-deterministic choice amongst

probability distributions of labeled transitions. For an example, consider the system
depicted in Figure 6.1(iii).
The expressions and axioms for these systems are the following.

ǫ:: = ; | ǫ⊞ ǫ | µx .ǫ | x | {ǫ′} where a ∈ A, pi ∈ (0,1] and
∑

i∈1...n
pi = 1

ǫ′::=
⊕

i∈1···n
pi · ǫ′′i

ǫ′′:: = ; | ǫ′′⊞ ǫ′′ | a({ǫ})

(ǫ1 ⊞ ǫ2)⊞ ǫ3 ≡ ǫ1 ⊞ (ǫ2⊞ ǫ3) ǫ1 ⊞ ǫ2 ≡ ǫ2⊞ ǫ1 ǫ⊞ ; ≡ ǫ ǫ⊞ ǫ ≡ ǫ
(ǫ′1 ⊕ ǫ′2)⊕ ǫ′3 ≡ ǫ′1 ⊕ (ǫ′2⊕ ǫ′3) ǫ′1 ⊕ ǫ′2 ≡ ǫ′2⊕ ǫ′1 (p1 · ǫ′′)⊕ (p2 · ǫ′′) ≡ (p1 + p2) · ǫ′′
(ǫ′′1 ⊞ ǫ

′′
2)⊞ ǫ

′′
3 ≡ ǫ′′1 ⊞ (ǫ′′2 ⊞ ǫ′′3) ǫ′′1 ⊞ ǫ′′2 ≡ ǫ′′2 ⊞ ǫ′′1 ǫ′′⊞ ; ≡ ǫ′′ ǫ′′⊞ ǫ′′ ≡ ǫ′′

ǫ[µx .ǫ/x] ≡ µx .ǫ γ[ǫ/x]≡ ǫ⇒ µx .γ≡ ǫ

The expression {1/3 · (a({;})⊞ a({;}))⊕ 2/3 · (b({;})⊞ a({;}))}⊞ {1 · b({;})} specifies
the Pnueli-Zuck system in Figure 6.1(iii). Note that we use the same symbol ⊞ for
denoting two different kinds of non-deterministic choice. This is safe, since they
satisfy exactly the same axioms.
Both the syntax and the axioms we propose here for these systems are to the best of
our knowledge new. In the past, these systems have been studied using a temporal
logic [91].

6.5 A slight variation on the functor

In this section, we show a slight variation on the definition of the monoidal exponen-
tiation functor which would allow for a cleaner derivation of syntax and axioms for
certain functors, among which the probability functor.
In the spirit of [65], where this functor is defined, we shall call it constrained monoi-
dal exponentiation functor.

6.5.1 DEFINITION (Constrained monoidal exponentiation functor). Let M be a com-
mutative monoid and V ⊆M (V being the constraint). The constrained monoidal ex-
ponentiation functorM−

V
: Set→ Set is defined on sets asMS

V
= { f ∈MS

ω |
∑

s∈S

f (s) ∈ V }

and on functions as M−ω. ♣

6.6. Discussion 137

The probability functor Dω coincides now with (R+0)
−
{1} (R+0 denotes the monoid of

positive real numbers).
The expressions associated with this functor are the closed and guarded expressions
given by the following BNF, where x ∈ X and mi ∈M,

ExpM−V ∋ ǫ ::= x | µx .ǫ |
⊕

i∈I

mi · ǫi such that
∑

i∈I

mi ∈ V

We note that instantiating this syntax for (R+0)
−
{1}, one gets precisely the syntax we

proposed in equation (6.8) for Dω.
Providing a Kleene like theorem and a sound and complete axiomatization goes pre-
cisely as before (for the functorM−ω), with the minor difference that the axiom 0·ǫ ≡ ;
has to be replaced by 0 · ǫ ⊕ m · ǫ′ ≡ m · ǫ′, since ; is not a valid expression for this
functor.
All of this seems to indicate that using the constrained monoidal exponentiation func-
tor would have made it easier to define expressions and axiomatizations for quanti-
tative systems. Although this would have been true for systems such as the simple
Segala, it would not completely avoid the use of the technique we described in Sec-
tion 6.3, which allows us to deal with a large class of functors: not only with Dω
(embedded into RId) but also with mixed functors, such the one of stratified sys-
tems. Moreover, using this functor would require extra care when dealing with the
modularity of the axiomatization, which we will illustrate next by means of an ex-
ample. For these reasons, we decided to present the syntax and axiomatizations of
all our running examples as a special instance of the general technique described in
Section 6.3.

6.5.2 EXAMPLE (Reactive probabilistic automata). Let us consider a very simple ver-
sion of reactive probabilistic automata, coalgebras for the functor Dω(−)A = ((R+0)Id{1})

A.
The syntax modularly derived for this functor would be

ǫ::= ; | ǫ⊕ ǫ | x | µx .ǫ | a(ǫ′)
ǫ′::=

⊕

i∈I

pi · ǫi such that
∑

i∈I

pi = 1

In the axiomatization, we would (expect to) have the axiom a(ǫ1)⊕a(ǫ2) ≡ a(ǫ1⊕ǫ2).
But now note how this could lead to an inconsistent specification, since ǫ1 ⊕ ǫ2 will
not be a valid expression anymore for Dω (if

∑

pi = 1 in both ǫ1 and ǫ2 then it will be
2 in ǫ1 ⊕ ǫ2!).
In order to keep the axiomatization compositional we would have to require certain
conditions on the set V in the functorM−

V
. For instance, one of the possible conditions

would be that V would have to be closed with respect to +, which would be a too
strong condition to model Dω. ♠

6.6 Discussion

In this chapter, we presented a general framework to canonically derive expressions
and axioms for quantitative regular behaviors. To illustrate the effectiveness and gen-

138 Chapter 6. Quantitative Kleene coalgebras

erality of our approach we derived expressions and equations for weighted automata,
simple Segala, stratified and Pnueli-Zuck systems.
We recovered the syntaxes proposed in [31,42,117] for the first three models and the
axiomatization of [42]. For weighted automata and stratified systems we derived new
axiomatizations and for Pnueli-Zuck systems both a novel language of expressions
and axioms. The process calculi in [31,42,117] also contained a parallel composition
operator and thus they slightly differ from our languages that are more in the spirit
of Kleene and Milner’s expressions. In order to obtain a language, based on the one
we defined in this chapter, which also includes other (user-defined) operators, such
as parallel composition, we would like to study the connection with bialgebras and
GSOS.
In [15,41,110] expressions without parallel composition are studied for probabilistic
systems. These provide syntax and axioms for generative systems, Segala systems
and alternating systems, respectively. For Segala systems our approach will derive the
same language of [41], while the expressions in [110] differ from the ones resulting
from our approach, since they use a probabilistic choice operator +p. For alternating
systems, our approach could bring some new insights, since in [15] only expressions
without recursion are considered.
The interplay between non-determinism and probabilities, present in some models,
such as Segala or Pnueli-Zuck, is usually a source of challenges when it comes to
define a process calculi and axiomatization. We note that in our framework this
interplay is just functor composition and thus the derivation of expressions and ac-
companying axioms follows in the same canonical way as for any other functor.
The derivation of the syntax and axioms associated with each quantitative functor is
in the process of being implemented in the coinductive prover CIRC [78]. For the
non-deterministic fragment everything can be done automatically, whereas for the
functors described in Section 6.3, such as the probability functor, some user input
is required, in order to define the syntactic restrictions. This will then allow for
automatic reasoning about the equivalence of expressions specifying systems.

Chapter 7

Further directions

There are several ways of extending the work presented in this thesis. In this chapter,
we mention some of the most promising topics for future research.

Additional operators The languages we associated with each functor are mini-
mal in the sense that they have only the necessary operators to describe regular
behaviours. Many process calculi have additional operators, such as parallel compo-
sition which, when added freely in the syntax, can give rise to non-regular behaviours
(for instance, one could describe context-free languages). This leads to two interest-
ing questions:

1. Is it possible to add operators, such as parallel composition, in a safe manner to
the language? That is, can we define and axiomatize additional operators, in a
modular fashion, in order to remain in the world of regular behaviours?

2. Is it possible to take all the research in this thesis to a different dimension and
consider non-regular behaviours? For instance, can we define a coalgebraic
notion of context-free behaviours?

A promising research path in this context is to study the languages associated with
each functor from a bialgebraic perspective [61,113].

Additional systems Enriching the class of systems is a natural research direction.
Variations on the base category of the functors can lead to the treatment of various
systems. Recently, Milius [82] showed how to extend our work for a particular func-
tor in the category of vector spaces, deriving expressions for stream circuits. It is a
challenging question whether the language he proposed can be compositionally ex-
tended to other functors on vector spaces or even to functors on other categories, such
as metric spaces [73, 114, 115]. The latter are of particular interest in the context of
quantitative modelling and verification.

139

140 Chapter 7. Further directions

Additional equivalences The axiomatizations presented in Chapters 4 to 6 are
sound and complete with respect to behavioural equivalence. It is an interesting
research path to provide sound and complete axiomatizations for other equivalences,
such as trace or simulation equivalences. A coalgebraic theory of traces has been pre-
sented by Hasuo, Jacobs and Sokolova in [57] and first steps towards having a generic
notion of coalgebraic simulation have been taken by Jacobs and Hugues in [59] and
Hasuo in [56].

Coalgebraic µ-calculus The languages presented in this thesis resemble a fragment
of the coalgebraic µ-calculus [35]. In this thesis, we provided the expressions with a
final semantics. Alternatively, one can also associate a modal semantics to the expres-
sions, that is, consider a relation from expressions to the states of a coalgebra instead
of a function. We have done this for the particular case of the Mealy expressions [26]
and showed how both semantics relate. It is an interesting research question to in-
vestigate further the connections with the coalgebraic modal µ-calculus.

Rational behaviours Expressions to describe rational behaviours of infinite streams
have been presented by Rutten in [98] and for infinite binary trees by Silva and Rutten
in [107, 108]. Rational streams (respectively trees or, more generally, formal power
series) are streams which can be represented by a finite weighted automaton. Instan-
tiating our framework for the stream functor yields a framework where only regular
streams, that is streams with a finite number of sub-streams, can be represented. For
instance, the stream of natural numbers (1,2,3, . . .) is rational but not regular. Rutten
showed recently [100] that rational streams are represented by finitely dimensional
linear systems (which are coalgebras over vector spaces). Milius [82] explored this
fact to derive expressions for stream circuits, which we mentioned above.
A possible research question is what would be a general coalgebraic notion of rational
behaviours and whether it is possible to define rational expressions for a larger class
of functors.

Practical specification of systems Many operational semantics of languages are
given in terms of transition systems. For instance, for the coordination language
REO [10], Bonsangue, Clarke and Silva [23] proposed an automata model, which
fits in the framework presented in this thesis. It is a promising research direction to
investigate whether the expressions associated with the aforementioned automaton
type can be used to specify and synthesize REO circuits.
Reasoning (automatically) about specifications of systems is also of uttermost im-
portance. The framework presented in this thesis is currently being implemented in
the automatic theorem prover CIRC [22] and we hope to be able to use the tool to
automatically decide on the equivalence of specifications.

Bibliography

[1] Luca Aceto, Zoltán Ésik, and Anna Ingólfsdóttir. Equational axioms for prob-
abilistic bisimilarity. In Hélène Kirchner and Christophe Ringeissen, editors,
AMAST, volume 2422 of Lecture Notes in Computer Science, pages 239–253.
Springer, 2002. pages 111

[2] Luca Aceto and Matthew Hennessy. Termination, deadlock, and divergence. J.

ACM, 39(1):147–187, 1992. pages 90, 102

[3] Peter Aczel and Nax Paul Mendler. A final coalgebra theorem. In David H.
Pitt, David E. Rydeheard, Peter Dybjer, Andrew M. Pitts, and Axel Poigné, ed-
itors, Category Theory and Computer Science, volume 389 of Lecture Notes in

Computer Science, pages 357–365. Springer, 1989. pages 11

[4] Jirí Adámek, Dominik Lücke, and Stefan Milius. Recursive coalgebras of fini-
tary functors. ITA, 41(4):447–462, 2007. pages 104

[5] Jirí Adámek, Stefan Milius, and Jiri Velebil. Free iterative theories: A coal-
gebraic view. Mathematical Structures in Computer Science, 13(2):259–320,
2003. pages 7, 108

[6] Jirí Adámek, Stefan Milius, and Jiri Velebil. Iterative algebras at work. Mathe-

matical Structures in Computer Science, 16(6):1085–1131, 2006. pages 7, 108

[7] Roberto M. Amadio, editor. Foundations of Software Science and Computational

Structures, 11th International Conference, FOSSACS 2008, Held as Part of the

Joint European Conferences on Theory and Practice of Software, ETAPS 2008,

Budapest, Hungary, March 29 - April 6, 2008. Proceedings, volume 4962 of
Lecture Notes in Computer Science. Springer, 2008. pages 145, 146

141

142 Chapter 7. Bibliography

[8] Allegra Angus and Dexter Kozen. Kleene algebra with tests and program
schematology. Technical Report TR2001-1844, Computing and Information
Science, Cornell University, July 2001. pages 39

[9] Valentin M. Antimirov. Partial derivatives of regular expressions and finite
automaton constructions. Theor. Comput. Sci., 155(2):291–319, 1996. pages
27

[10] Farhad Arbab. Reo: a channel-based coordination model for component com-
position. Mathematical Structures in Computer Science, 14(3):329–366, 2004.
pages 142

[11] Eugene Asarin, Paul Caspi, and Oded Maler. A Kleene theorem for timed auto-
mata. In LICS, pages 160–171, 1997. pages 8

[12] Eugene Asarin and Catalin Dima. Balanced timed regular expressions. Electr.

Notes Theor. Comput. Sci., 68(5), 2002. pages 8

[13] Jos C. M. Baeten, Jan A. Bergstra, and Scott A. Smolka. Axiomization prob-
abilistic processes: Acp with generative probabililties (extended abstract). In
Cleaveland [38], pages 472–485. pages 111

[14] Jos C. M. Baeten and Jan Willem Klop, editors. CONCUR ’90, Theories of

Concurrency: Unification and Extension, Amsterdam, The Netherlands, August

27-30, 1990, Proceedings, volume 458 of Lecture Notes in Computer Science.
Springer, 1990. pages 148, 151

[15] Emanuele Bandini and Roberto Segala. Axiomatizations for probabilistic bisim-
ulation. In Fernando Orejas, Paul G. Spirakis, and Jan van Leeuwen, editors,
ICALP, volume 2076 of Lecture Notes in Computer Science, pages 370–381.
Springer, 2001. pages 111, 140

[16] Falk Bartels. On generalized coinduction and probabilistic specification formats.
PhD thesis, Vrije Universiteit Amsterdam, 2004. PhD thesis. pages 28

[17] Falk Bartels, Ana Sokolova, and Erik P. de Vink. A hierarchy of probabilistic
system types. Theor. Comput. Sci., 327(1-2):3–22, 2004. pages 132, 135

[18] Gérard Berry. The foundations of Esterel. In Plotkin et al. [89], pages 425–454.
pages 2

[19] Gérard Berry and Ravi Sethi. From regular expressions to deterministic auto-
mata. Theor. Comput. Sci., 48(3):117–126, 1986. pages 2, 27, 28, 29, 30

[20] S.L. Bloom and Z. Ésik. Iteration theories: the equational logic of iterative pro-

cesses. EATCS Monographs on Theoretical Computer Science. Springer, 1993.
pages 7, 108

Bibliography 143

[21] Filippo Bonchi, Marcello M. Bonsangue, Jan J. M. M. Rutten, and Alexandra
Silva. Deriving syntax and axioms for quantitative regular behaviours. In Mario
Bravetti and Gianluigi Zavattaro, editors, CONCUR, volume 5710 of Lecture

Notes in Computer Science, pages 146–162. Springer, 2009. pages 108

[22] Marcello M. Bonsangue, Georgiana Caltais, Eugen Goriac, Dorel Lucanu, Jan
J. M. M. Rutten, and Alexandra Silva. Algebra meets coalgebra: A decision
procedure for bisimilarity of generalized regular expressions. draft. pages 142

[23] Marcello M. Bonsangue, Dave Clarke, and Alexandra Silva. Automata for
context-dependent connectors. In John Field and Vasco Thudichum Vascon-
celos, editors, COORDINATION, volume 5521 of Lecture Notes in Computer Sci-
ence, pages 184–203. Springer, 2009. pages 142

[24] Marcello M. Bonsangue and Alexander Kurz. Duality for logics of transition
systems. In Sassone [102], pages 455–469. pages 7, 68, 108

[25] Marcello M. Bonsangue and Alexander Kurz. Presenting functors by operations
and equations. In Luca Aceto and Anna Ingólfsdóttir, editors, FoSSaCS, volume
3921 of LNCS, pages 172–186. Springer, 2006. pages 7, 68, 108

[26] Marcello M. Bonsangue, Jan J. M. M. Rutten, and Alexandra Silva. Coalgebraic
logic and synthesis of Mealy machines. In Amadio [7], pages 231–245. pages
59, 142

[27] Patricia Bouyer and Antoine Petit. A Kleene/büchi-like theorem for clock lan-
guages. Journal of Automata, Languages and Combinatorics, 7(2):167–186,
2002. pages 8

[28] Janusz A. Brzozowski. A survey of regular expressions and their applications.
IRE Transactions on Electronic Computers, 11(0):324–335, 1962. pages 2, 48

[29] Janusz A. Brzozowski. Derivatives of regular expressions. Journal of the ACM,
11(4):481–494, 1964. pages 2, 7, 15, 19, 23, 33, 54, 62, 68, 74, 77, 98, 130

[30] Peter Buchholz. Bisimulation relations for weighted automata. Theor. Comput.

Sci., 393(1-3):109–123, 2008. pages 112, 117, 118

[31] Peter Buchholz and Peter Kemper. Quantifying the dynamic behavior of process
algebras. In Luca de Alfaro and Stephen Gilmore, editors, PAPM-PROBMIV,
volume 2165 of Lecture Notes in Computer Science, pages 184–199. Springer,
2001. pages 115, 123, 140

[32] J. R. Büchi. On a decision method in restricted second order arithmetic. In
In Proceedings of the International Congress on Logic, Method, and Philosophy of

Science, pages 1–12. Stanford University Press, Stanford, CA, 1962. pages 7

144 Chapter 7. Bibliography

[33] Jean-Marc Champarnaud, Florent Nicart, and Djelloul Ziadi. From the ZPC
structure of a regular expression to its follow automaton. IJAC, 16(1):17–34,
2006. pages 30

[34] Jean-Marc Champarnaud and Djelloul Ziadi. Canonical derivatives, par-
tial derivatives and finite automaton constructions. Theor. Comput. Sci.,
289(1):137–163, 2002. pages 27

[35] Corina Cîrstea, Clemens Kupke, and Dirk Pattinson. Exptime tableaux for the
coalgebraic micro;-calculus. In Erich Grädel and Reinhard Kahle, editors, CSL,
volume 5771 of Lecture Notes in Computer Science, pages 179–193. Springer,
2009. pages 142

[36] Corina Cîrstea and Dirk Pattinson. Modular construction of modal logics. In
Philippa Gardner and Nobuko Yoshida, editors, CONCUR, volume 3170 of Lec-

ture Notes in Computer Science, pages 258–275. Springer, 2004. pages 7, 108

[37] Edmund M. Clarke, Steven M. German, Yuan Lu, Helmut Veith, and Dong
Wang. Executable protocol specification in ESL. In Warren A. Hunt Jr. and
Steven D. Johnson, editors, FMCAD, volume 1954 of Lecture Notes in Computer

Science, pages 197–216. Springer, 2000. pages 48, 68

[38] Rance Cleaveland, editor. CONCUR ’92, Third International Conference on Con-

currency Theory, Stony Brook, NY, USA, August 24-27, 1992, Proceedings, vol-
ume 630 of Lecture Notes in Computer Science. Springer, 1992. pages 144, 149

[39] J.H. Conway. Regular algebra and finite machines. Chapman and Hall, 1971.
pages 2, 15, 23

[40] Pedro R. D’Argenio, Holger Hermanns, and Joost-Pieter Katoen. On generative
parallel composition. Electr. Notes Theor. Comput. Sci., 22, 1999. pages 111

[41] Yuxin Deng and Catuscia Palamidessi. Axiomatizations for probabilistic finite-
state behaviors. In Sassone [102], pages 110–124. pages 3, 111, 140

[42] Yuxin Deng, Catuscia Palamidessi, and Jun Pang. Compositional reasoning
for probabilistic finite-state behaviors. In Aart Middeldorp, Vincent van Oost-
rom, Femke van Raamsdonk, and Roel C. de Vrijer, editors, Processes, Terms

and Cycles, volume 3838 of Lecture Notes in Computer Science, pages 309–337.
Springer, 2005. pages 3, 111, 112, 137, 140

[43] Manfred Droste and Paul Gastin. Weighted automata and weighted logics.
In Luís Caires, Giuseppe F. Italiano, Luís Monteiro, Catuscia Palamidessi, and
Moti Yung, editors, ICALP, volume 3580 of Lecture Notes in Computer Science,
pages 513–525. Springer, 2005. pages 111, 115, 117

[44] Manfred Droste and Karin Quaas. A Kleene-Schützenberger theorem for
weighted timed automata. In Amadio [7], pages 142–156. pages 8

Bibliography 145

[45] C.C. Elgot. Monadic computation and iterative algebraic theories. In H.E. Rose
and J.C. Shepherdson, editors, Logic Colloquium ’73. North-Holland Publishers,
1975. pages 7

[46] Paul Gastin, Antoine Petit, and Wieslaw Zielonka. A Kleene theorem for in-
finite trace languages. In Javier Leach Albert, Burkhard Monien, and Mario
Rodríguez-Artalejo, editors, ICALP, volume 510 of Lecture Notes in Computer

Science, pages 254–266. Springer, 1991. pages 8

[47] Paul Gastin, Antoine Petit, and Wieslaw Zielonka. An extension of Kleene’s and
Ochmanski’s theorems to infinite traces. Theor. Comput. Sci., 125(2):167–204,
1994. pages 8

[48] Alessandro Giacalone, Chi-Chang Jou, and Scott A. Smolka. Algebraic reason-
ing for probabilistic concurrent systems. In M. Broy and C.B Jones, editors,
Proc. of Working Conference on Programming Concepts and Methods. IFIP TC 2,
1990. pages 111

[49] V.M. Glushkov. The abstract theory of automata. Russian Math. Surveys, 16:1–
53, 1961. pages 27

[50] Robert Goldblatt. Equational logic of polynomial coalgebras. In Philippe Bal-
biani, Nobu-Yuki Suzuki, Frank Wolter, and Michael Zakharyaschev, editors,
Advances in Modal Logic 4, pages 149–184. King’s College Publications, 2002.
pages 7, 108

[51] H. Peter Gumm and Tobias Schröder. Monoid-labeled transition systems. Electr.

Notes Theor. Comput. Sci., 44(1), 2001. pages 114, 115

[52] H. Peter Gumm and Tobias Schröder. Products of coalgebras. Algebra Univer-

salis, 46:163–185, 2001. pages 115

[53] H. Peter Gumm and Tobias Schröder. Coalgebras of bounded type. Mathemat-

ical Structures in Computer Science, 12(5):565–578, 2002. pages 11, 114

[54] Helle Hvid Hansen, David Costa, and Jan J. M. M. Rutten. Synthesis of Mealy
machines using derivatives. Electronic Notes in Theoretical Computer Science,
164(1):27–45, 2006. pages 68

[55] Hans Hansson and Bengt Jonsson. A logic for reasoning about time and relia-
bility. Formal Asp. Comput., 6(5):512–535, 1994. pages 111

[56] Ichiro Hasuo. Generic forward and backward simulations. In Christel Baier and
Holger Hermanns, editors, CONCUR, volume 4137 of Lecture Notes in Computer

Science, pages 406–420. Springer, 2006. pages 142

[57] Ichiro Hasuo, Bart Jacobs, and Ana Sokolova. Generic trace semantics via
coinduction. Logical Methods in Computer Science, 3(4), 2007. pages 142

146 Chapter 7. Bibliography

[58] Claudio Hermida and Bart Jacobs. Structural induction and coinduction in a
fibrational setting. Inf. Comput., 145(2):107–152, 1998. pages 12

[59] Jesse Hughes and Bart Jacobs. Simulations in coalgebra. Theor. Comput. Sci.,
327(1-2):71–108, 2004. pages 142

[60] Bart Jacobs. Many-sorted coalgebraic modal logic: a model-theoretic study.
ITA, 35(1):31–59, 2001. pages 7, 108

[61] Bart Jacobs. A bialgebraic review of deterministic automata, regular expres-
sions and languages. In Kokichi Futatsugi, Jean-Pierre Jouannaud, and José
Meseguer, editors, Essays Dedicated to Joseph A. Goguen, volume 4060 of Lec-

ture Notes in Computer Science, pages 375–404. Springer, 2006. pages 7, 15,
28, 36, 37, 108, 141

[62] Chi-Chang Jou and Scott A. Smolka. Equivalences, congruences, and complete
axiomatizations for probabilistic processes. In Baeten and Klop [14], pages
367–383. pages 111

[63] Donald M. Kaplan. Regular expressions and the equivalence of programs. J.

Comput. Syst. Sci., 3(4):361–386, 1969. pages 39

[64] Stephen Kleene. Representation of events in nerve nets and finite automata.
Automata Studies, pages 3–42, 1956. pages 2, 47, 68, 69

[65] Bartek Klin. Structural operational semantics for weighted transition systems.
In Jens Palsberg, editor, Semantics and Algebraic Specification, volume 5700 of
Lecture Notes in Computer Science, pages 121–139. Springer, 2009. pages 138

[66] Dexter Kozen. A completeness theorem for Kleene algebras and the algebra of
regular events. In Logic in Computer Science, pages 214–225, 1991. pages 2,
7, 35, 47, 69

[67] Dexter Kozen. Automata and Computability. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 1997. pages 22, 23, 27, 32

[68] Dexter Kozen. Myhill-nerode relations on automatic systems and the complete-
ness of Kleene algebra. In Afonso Ferreira and Horst Reichel, editors, STACS,
volume 2010 of Lecture Notes in Computer Science, pages 27–38. Springer,
2001. pages 15, 35, 36, 37

[69] Dexter Kozen. Automata on guarded strings and applications. Matemática

Contemporânea, 24:117–139, 2003. pages 3, 7, 8, 15, 40, 41, 42

[70] Dexter Kozen. Nonlocal flow of control and Kleene algebra with tests. In LICS,
pages 105–117. IEEE Computer Society, 2008. pages 15, 39

Bibliography 147

[71] Dexter Kozen. On the coalgebraic theory of Kleene algebra with tests. Tech-
nical Report http://hdl.handle.net/1813/10173, Computing and Information
Science, Cornell University, March 2008. pages 41, 103, 108

[72] Dexter Kozen and Maria-Christina Patron. Certification of compiler optimiza-
tions using Kleene algebra with tests. In John W. Lloyd, Verónica Dahl, Ul-
rich Furbach, Manfred Kerber, Kung-Kiu Lau, Catuscia Palamidessi, Luís Moniz
Pereira, Yehoshua Sagiv, and Peter J. Stuckey, editors, Computational Logic,
volume 1861 of Lecture Notes in Computer Science, pages 568–582. Springer,
2000. pages 39

[73] Dexter Kozen and Nicholas Ruozzi. Applications of metric coinduction. Logical

Methods in Computer Science, 5(3), 2009. pages 108, 141

[74] Orna Kupferman and Moshe Y. Vardi. µ-calculus synthesis. In Mogens Nielsen
and Branislav Rovan, editors, MFCS’00, volume 1893 of Lecture Notes in Com-

puter Science, pages 497–507. Springer, 2000. pages 68

[75] Clemens Kupke and Yde Venema. Coalgebraic automata theory: Basic results.
Logical Methods in Computer Science, 4(4), 2008. pages 7, 68, 108

[76] Kim Guldstrand Larsen and Arne Skou. Bisimulation through probabilistic test-
ing. Inf. Comput., 94(1):1–28, 1991. pages 111

[77] Kim Guldstrand Larsen and Arne Skou. Compositional verification of proba-
bilistic processes. In Cleaveland [38], pages 456–471. pages 111

[78] Dorel Lucanu, Eugen-Ioan Goriac, Georgiana Caltais, and Grigore Rosu. Circ:
A behavioral verification tool based on circular coinduction. In Alexander Kurz,
Marina Lenisa, and Andrzej Tarlecki, editors, CALCO, volume 5728 of Lecture

Notes in Computer Science, pages 433–442. Springer, 2009. pages 109, 140

[79] Alan B. Marcovitz. Introduction to Logic Design. McGraw-Hill, 2005. pages 47

[80] Robert McNaughton and H. Yamada. Regular expressions and state graphs for
automata. IRE Transactions on Electronic Computers, 9(0):39–47, 1960. pages
2, 27, 48

[81] G.H. Mealy. A method for synthesizing sequential circuits. Bell System Technical

Journal, 34:1045–1079, 1955. pages 3

[82] Stefan Milius. A sound and complete calculus for finite stream circuits. In
LICS, 2010. To appear. pages 108, 141, 142

[83] Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes

in Computer Science. Springer, 1980. pages 3

[84] Robin Milner. A complete inference system for a class of regular behaviours. J.

Comput. Syst. Sci., 28(3):439–466, 1984. pages 3, 69, 73

148 Chapter 7. Bibliography

[85] Michael W. Mislove, Joël Ouaknine, and James Worrell. Axioms for probability
and nondeterminism. Electr. Notes Theor. Comput. Sci., 96:7–28, 2004. pages
111

[86] Larry Moss. Coalgebraic logic. Annals of Pure and Applied Logic, 96, 1999.
pages 7, 108

[87] Edward Ochmanski. Regular behaviour of concurrent systems. Bulletin of the

EATCS, 27:56–67, 1985. pages 7

[88] Scott Owens, John H. Reppy, and Aaron Turon. Regular-expression derivatives
re-examined. J. Funct. Program., 19(2):173–190, 2009. pages 27

[89] Gordon D. Plotkin, Colin Stirling, and Mads Tofte, editors. Proof, Language,

and Interaction, Essays in Honour of Robin Milner. The MIT Press, 2000. pages
144, 151

[90] Amir Pnueli and Roni Rosner. On the synthesis of a reactive module. In
POPL’89, pages 179–190, 1989. pages 68

[91] Amir Pnueli and Lenore D. Zuck. Probabilistic verification by tableaux. In LICS,
pages 322–331. IEEE Computer Society, 1986. pages 111, 138

[92] Michael O. Rabin. Probabilistic automata. Information and Control, 6(3):230–
245, 1963. pages 111

[93] Michael O. Rabin and D. Scott. Finite automata and their decision problems.
IBM Journal of Research and Development, 3:114–125, 1959. pages 27

[94] Martin Rößiger. Coalgebras and modal logic. Electronic Notes in Theoretical

Computer Science, 33, 2000. pages 7, 108

[95] Jan J. M. M. Rutten. Automata and coinduction (an exercise in coalgebra).
In Davide Sangiorgi and Robert de Simone, editors, CONCUR, volume 1466 of
Lecture Notes in Computer Science, pages 194–218. Springer, 1998. pages 6,
15, 68, 108

[96] Jan J. M. M. Rutten. Universal coalgebra: a theory of systems. Theor. Comput.

Sci., 249(1):3–80, 2000. pages 3, 10, 11, 13, 28, 70, 72, 117, 129, 132

[97] Jan J. M. M. Rutten. Behavioural differential equations: a coinductive calculus
of streams, automata, and power series. Theor. Comput. Sci., 308(1-3):1–53,
2003. pages 6, 15, 34, 51

[98] Jan J. M. M. Rutten. A coinductive calculus of streams. Mathematical Structures

in Computer Science, 15(1):93–147, 2005. pages 142

[99] Jan J. M. M. Rutten. Algebraic specification and coalgebraic synthesis of Mealy
automata. Electr. Notes Theor. Comput. Sci., 160:305–319, 2006. pages 51, 68

Bibliography 149

[100] Jan J. M. M. Rutten. Rational streams coalgebraically. Logical Methods in

Computer Science, 4(3), 2008. pages 142

[101] Arto Salomaa. Two complete axiom systems for the algebra of regular events.
J. ACM, 13(1):158–169, 1966. pages 2, 21, 47

[102] Vladimiro Sassone, editor. Foundations of Software Science and Computational

Structures, 8th International Conference, FOSSACS 2005, Held as Part of the

Joint European Conferences on Theory and Practice of Software, ETAPS 2005,

Edinburgh, UK, April 4-8, 2005, Proceedings, volume 3441 of Lecture Notes in
Computer Science. Springer, 2005. pages 145, 146

[103] Lutz Schröder and Dirk Pattinson. Modular algorithms for heterogeneous
modal logics. In Lars Arge, Christian Cachin, Tomasz Jurdzinski, and Andrzej
Tarlecki, editors, ICALP, volume 4596 of Lecture Notes in Computer Science,
pages 459–471. Springer, 2007. pages 7, 108

[104] Marcel Paul Schützenberger. On the definition of a family of automata. Infor-
mation and Control, 4(2-3):245–270, 1961. pages 3, 8, 111, 115, 117

[105] Roberto Segala. Modeling and verification of randomized distributed real-time

systems. PhD thesis, MIT, Dept. of EECS, 1995. pages 111

[106] Roberto Segala and Nancy A. Lynch. Probabilistic simulations for probabilis-
tic processes. In Bengt Jonsson and Joachim Parrow, editors, CONCUR, vol-
ume 836 of Lecture Notes in Computer Science, pages 481–496. Springer, 1994.
pages 3, 111

[107] Alexandra Silva and Jan J. M. M. Rutten. Behavioural differential equations
and coinduction for binary trees. In Daniel Leivant and Ruy J. G. B. de Queiroz,
editors, WoLLIC, volume 4576 of Lecture Notes in Computer Science, pages 322–
336. Springer, 2007. pages 142

[108] Alexandra Silva and Jan J. M. M. Rutten. A coinductive calculus of binary
trees. Inf. Comput., 208(5):578–593, 2010. pages 142

[109] Scott A. Smolka and Bernhard Steffen. Priority as extremal probability. In
Baeten and Klop [14], pages 456–466. pages 111

[110] Eugene W. Stark and Scott A. Smolka. A complete axiom system for finite-state
probabilistic processes. In Plotkin et al. [89], pages 571–596. pages 111, 140

[111] Ken Thompson. Programming techniques: Regular expression search algo-
rithm. Commun. ACM, 11(6):419–422, 1968. pages 27

[112] Simone Tini and Andrea Maggiolo-Schettini. Compositional synthesis of gen-
eralized Mealy machines. Fundamenta Informaticae, 60(1-4):367–382, 2004.
pages 68

150 Chapter 7. Bibliography

[113] Daniele Turi and Gordon D. Plotkin. Towards a mathematical operational se-
mantics. In LICS, pages 280–291, 1997. pages 141

[114] Daniele Turi and Jan J. M. M. Rutten. On the foundations of final coalgebra
semantics: non-well-founded sets, partial orders, metric spaces. Mathematical

Structures in Computer Science, 8(5):481–540, 1998. pages 108, 141

[115] Franck van Breugel and James Worrell. Approximating and computing be-
havioural distances in probabilistic transition systems. Theor. Comput. Sci.,
360(1-3):373–385, 2006. pages 108, 141

[116] Rob J. van Glabbeek, Scott A. Smolka, and Bernhard Steffen. Reactive, gener-
ative and stratified models of probabilistic processes. Inf. Comput., 121(1):59–
80, 1995. pages 109

[117] Rob J. van Glabbeek, Scott A. Smolka, and Bernhard Steffen. Reactive, gener-
ative and stratified models of probabilistic processes. Inf. Comput., 121(1):59–
80, 1995. pages 111, 112, 138, 140

[118] Moshe Y. Vardi. Automatic verification of probabilistic concurrent finite-state
programs. In FOCS, pages 327–338. IEEE, 1985. pages 111

	Preface
	Contents
	Introduction
	Coalgebra
	Kleene …
	…and followers
	Our aim
	Kleene coalgebra
	Thesis outline and summary of the contributions
	Related work

	Preliminaries
	Sets
	Coalgebras

	Automata as coalgebras
	Deterministic automata and regular expressions
	From deterministic automata to regular expressions
	From regular expressions to deterministic automata
	Non-deterministic automata and the subset construction
	Kleene algebras

	Automata on guarded strings and KAT expressions

	Kleene meets Mealy
	Mealy machines
	Regular expressions for Mealy machines
	Expressions form a Mealy coalgebra
	A Kleene theorem for Mealy coalgebras

	An algebra for Mealy machines
	Discussion

	Non-deterministic Kleene coalgebras
	Non-deterministic coalgebras
	A language of expressions for non-deterministic coalgebras
	Brzozowski derivatives for non-deterministic expressions
	From coalgebras to expressions
	From expressions to coalgebras

	A sound and complete axiomatization
	Two more examples
	Polynomial and finitary coalgebras
	Discussion

	Quantitative Kleene coalgebras
	The monoidal exponentiation functor
	A non-idempotent algebra for quantitative regular behaviors
	Extending the class of functors
	Probabilistic systems
	A slight variation on the functor
	Discussion

	Further directions
	Bibliography

