
The Method of Coalgebra:
exercises in coinduction

Jan Rutten

February 2019
261 pages

ISBN 978-90-6196-568-8

Publisher: CWI, Amsterdam,
The Netherlands

The Method of Coalgebra:
exercises in coinduction

Jan Rutten

CWI & RU

jjmmrutten@gmail.com

February 16, 2019

mailto:jjmmrutten@gmail.com

2

Contents

1 Introduction 7

1.1 The method of coalgebra . 7

1.2 History, roughly and briefly . 7

1.3 Exercises in coinduction . 8

1.4 Enhanced coinduction: algebra plus coalgebra 8

1.5 Universal coalgebra . 8

1.6 How to read this book . 8

1.7 Acknowledgements . 9

2 Categories – where coalgebra comes from 11

2.1 The basic definitions . 11

2.2 Category theory in slogans . 12

2.3 Discussion . 16

3 Algebras and coalgebras 19

3.1 Algebras . 19

3.2 Coalgebras . 21

3.3 Discussion . 23

4 Induction and coinduction 25

4.1 Inductive and coinductive definitions . 25

4.2 Proofs by induction and coinduction . 28

4.3 Discussion . 32

5 The method of coalgebra 33

5.1 Basic types of coalgebras . 34

5.2 Coalgebras, systems, automata . 34

6 Dynamical systems 37

6.1 Homomorphisms of dynamical systems . 38

6.2 On the behaviour of dynamical systems . 41

6.3 Discussion . 44

3

4 Contents

7 Stream systems 45
7.1 Homomorphisms and bisimulations of stream systems 46
7.2 The final system of streams . 52
7.3 Defining streams by coinduction . 55
7.4 Coinduction: the bisimulation proof method 60
7.5 Moessner’s Theorem . 67
7.6 The heart of the matter: circularity . 73
7.7 Discussion . 77

8 Deterministic automata 79
8.1 Basic definitions . 80
8.2 Homomorphisms and bisimulations of automata 82
8.3 The final automaton of languages . 89
8.4 Regular languages . 93
8.5 Proving language equality by coinduction 95
8.6 Minimal automata . 100
8.7 Discussion . 107

9 Partial automata 109
9.1 Partiality . 110
9.2 Partial systems with outputs . 113
9.3 Partial automata . 115
9.4 Discussion . 118

10 Non-deterministic automata 119
10.1 The powerset construction . 121
10.2 Language equivalence of non-deterministic automata 122
10.3 Discussion . 126

11 Stream differential equations 129
11.1 Examples of stream differential equations 131
11.2 Introducing the syntactic solution method 134
11.3 GSOS: a general format for stream differential equations 140
11.4 Behavioural differential equations . 147
11.5 Discussion . 148

12 A calculus of streams 151
12.1 Basic stream operations . 151
12.2 Convolution inverse . 158
12.3 Stream composition . 162
12.4 Shuffle product . 164
12.5 Laplace transform . 168
12.6 Solving analytic differential equations . 171

Contents 5

12.7 Newton transform . 175
12.8 Rational streams and linear systems of SDEs 181
12.9 Discussion . 188

13 Mealy automata 189
13.1 Causal stream functions . 190
13.2 Constructing minimal Mealy automata . 192
13.3 Moore automata . 194
13.4 A calculus of bitstreams . 195
13.5 Mealy machines for bitstream functions . 199
13.6 Discussion . 203

14 Weighted stream automata 205
14.1 Representing streams by weighted automata 205
14.2 Splitting stream derivatives . 207
14.3 Weighted automata and linear stream systems 210
14.4 Rational streams and linear stream systems 216
14.5 Minimisation of linear stream systems . 220
14.6 Weighted automata with inputs . 224
14.7 Discussion . 225

15 Universal coalgebra 227
15.1 Lambek’s Lemma . 227
15.2 Homomorphisms . 229
15.3 Coproducts of coalgebras . 229
15.4 Bisimulation and finality . 231
15.5 Enhanced coinduction . 234
15.6 Discussion . 235

16 Notation and preliminaries 237
16.1 Numbers . 237
16.2 Functions . 237
16.3 Products and sums . 238
16.4 Subsets . 239
16.5 Relations . 240
16.6 Words and languages . 241
16.7 Monoids, (semi-)rings, integral domains, fields 241
16.8 Pre-orders and partial orders . 243
16.9 Vector spaces and linear maps . 243
16.10 Functors on sets . 244
16.11 On-line Encyclopedia of Integer Sequences 245

6 Contents

Chapter 1

Introduction

So you heard about coalgebra, and maybe you want to know more. Or you know about
coalgebra, and maybe you want to hear more still, or you just want to see how things are
done here. This is what we will do.

1.1 The method of coalgebra

In Chapters 2 to 5, we will briefly sketch our view on the coalgebraic method. The notion
of coalgebra arises as the dual, in the theory of categories, of the notion of algebra. So this
is what we explain first, in Chapters 2 and 3. Then coalgebras come to life and become
relevant, only after one dualises also the notions of congruence relation and induction, two
of the essential ingredients of the theory of algebras. This yields the notions of bisimulation
and coinduction, explained in Chapter 4. With this in place, we summarise, in Chapter 5,
the method of coalgebra as a general formalism for the study of the behaviour – typically
infinite, stemming from some form of circularity – of state-based, dynamical systems.

1.2 History, roughly and briefly

In the late 1970s, coalgebras occur as the dual of algebras in the work of Arbib and
Manes, in their category theoretic approach to dynamical systems and automata [AM75,
AM82]. Their textbook [MA86] already presents automata as coalgebras and contains an
early proof that the set of formal languages is a final coalgebra (Theorem 153 in Chapter
8 of the present book). Still nothing much happens with coalgebra until (i) Park and
Milner invent bisimulation as a notion of behavioural equivalence for concurrent processes
[Mil80, Par81, Mil89]; and (ii) Aczel needs a notion of strong extensionality for his theory
of non-well-founded sets [Acz88]. To this end, Aczel and Mendler generalise Park and
Milner’s notion of bisimulation to the level of arbitrary coalgebras [AM89]. With this new
notion of coalgebraic bisimulation, it becomes obvious how to formulate a general notion
of coinduction for arbitrary coalgebras. And as a consequence, coalgebra becomes a lively
field of research from the early 1990s onwards.

7

8 1.3. Exercises in coinduction

It follows from the above that the foundations of coalgebra consist of a mix of ingredi-
ents from mathematics (dynamical systems, category theory), computer science (automata
theory, concurrency theory), and logic (axiomatic set theory). The above suggests further
that coinduction is the reason why coalgebra might be interesting.

1.3 Exercises in coinduction

Each of Chapters 6 - 14 deals with a concrete type of coalgebra. These coalgebras include
many familiar mathematical structures, such as dynamical systems, streams (infinite se-
quences), and automata. These mathematical structures themselves are the main subject
of these chapters, but methodologically, each chapter offers a playground for exercises in
coinduction: the coalgebraic method for definitions and proofs.

1.4 Enhanced coinduction: algebra plus coalgebra

In the algebraic approach to the analysis of computational behaviour, one uses algebraic
operators to represent the structure at hand as a composition of substructures. In this
manner, behavioural complexity is reduced to the composition of the smaller complexities
of the substructures, a phenomenon sometimes referred to as divide and conquer. In the
coalgebraic approach, complexity is typically reduced by exploiting circularity, by observing
that after a number of transition steps, essentially the same situation occurs again. As we
shall see, the combination of algebra and coalgebra leads to powerful computational proof
methods, typically referred to as enhanced coinduction or coinduction up-to, where one
constructs bisimulation relations up-to the closure under a given set of algebraic operators.
We will present various concrete instances of bisimulation and coinduction up-to. For more
general accounts, see the references in Section 15.5.

1.5 Universal coalgebra

The classical field of universal algebra deals with general properties of algebras. In universal
coalgebra, one studies general properties of coalgebras, and Chapter 15 gives the reader
a quick impression of this subject. The present book is about exercises in coinduction
with concrete coalgebras. Generality is not our aim here, and so we refer the reader to the
literature for systematic treatments of universal coalgebra.

1.6 How to read this book

For most of this book, very little background in mathematics is required. The brief sketch
of the coalgebraic method in Chapters 2 to 5 may be too technical for some readers but
then again, these chapters can be safely skipped at first reading: nothing in the rest of the

Chapter 1. Introduction 9

book depends on them. Still, we recommend to have at least a quick look at Chapters 2 to
5. Even without understanding much in detail, they do provide a sense of direction which
all of the subsequent chapters follow.

Chapters 6, on dynamical systems; 7, on streams; and 8, on automata, together con-
stitute an already substantial part of the message of this book: coalgebra is interesting
because coinduction is. Having read these three chapters, it might make sense to return
to Chapters 2 to 5, in case they had been skipped initially.

Chapters 11 and 12, on stream differential equations and stream calculus, need nothing
from Chapters 8 – 13. As a consequence, Chapters 6, 7, 11, and 12 can be taken together
as an introduction to the coalgebraic theory of streams.

Chapter 15 gives only a brief impression of the theory of universal coalgebra, by pointing
out examples of implicit generalities that underlie the preceding chapters.

In Chapter 16, we have collected a few basic definitions and notations that are used
throughout the book.

1.7 Acknowledgements

I am most grateful to my former PhD students for the joint study of coalgebra, on which
much of the present book is based. In historical order, and referring to their PhD theses:
Daniele Turi [Tur96], Falk Bartels [Bar04], Clemens Kupke [Kup06], Helle Hansen [Han09],
David Costa [Cos10], Alexandra Silva [Sil10], Georgiana Caltais [Cal13], Joost Winter
[Win14], Jurriaan Rot [Rot16], Henning Basold [Bas18], and Julian Salamanca [Sal18].
(More detailed references will appear throughout the book.)

Thank you very much, Marcello Bonsangue, for many years of inspiring and joyful
collaboration, including the joint supervision of many of the above students.

I am much indebted to the communities of the conferences CMCS (Coalgebraic Methods
in Computer Science) and CALCO (Conference on Algebra and Coalgebra) for many years
of inspiration and instruction.

For discussions and joint work, thank you, Samson Abramsky, Jiŕı Adámek, Farhad
Arbab, Eric Badouel, Adolfo Ballester-Bolinches, Luis Barbosa, Frank de Boer, Michele
Boreale, Alexandru Baltag, Filippo Bonchi, Franck van Breugel, Andrea Corradini, Enric
Cosme Llópez, the late Philippe Darondeau, Jörg Endrullis, Jan van Eijck, Herman Geu-
vers, Clemens Grabmayer, Dimitri Hendriks, Ralf Hinze, Furio Honsell, Bart Jacobs, Jan
Willem Klop, Jan Komenda, Dexter Kozen, Alexander Kurz, Dorel Lucanu, Sun Meng,
Wilfried Meyer-Viol, Stefan Milius, Milad Niqui, José Nuno Oliveira, Prakash Panan-
gaden, Jean-Éric Pin, Damien Pous, Grigore Rosu, Davide Sangiorgi, Jan van Schuppen,
Nico Temme, Tarmo Uustalu, Yde Venema, Erik de Vink, Fer-Jan de Vries.

I am grateful to Jan Willem Klop, Mike Mislove, Ugo Montanari, the late Maurice
Nivat, and Prakash Panangaden for lessons and discussions, and for support during the
early stages of the coalgebraic developments. And to Bart Jacobs, Larry Moss, and Horst
Reichel, for jointly creating the workshop CMCS.

10 1.7. Acknowledgements

Many thanks also to the NII Shonan organisation, Japan, for hosting various workshops
on coinduction.

For many years of friendly instruction in the ways of science and the world, I am much
indebted to my former supervisor, the late Jaco de Bakker.

CWI has offered me an excellent home for all of my scientific life: thank you very much.
I am grateful for having been a guest at the Free University Amsterdam and the Radboud
University Nijmegen. Many thanks also to the Dutch Science Organisation NWO for many
years of project support.

Thank you very much: Henning Basold, Helle Hansen, Jurriaan Rot, Erik de Vink,
Jana Wagemaker and Joost Winter, for your corrections and constructive suggestions.

Tanti baci, Elena Marchiori, for all your patience, help and support

Chapter 2

Categories – where coalgebra comes
from

We discuss some of the main principles of category theory, including duality. This will
allow us to explain, in Chapters 3 and 4, how the notions of coalgebra and coinduction
arise as the dual of the notions of algebra and induction. Since the theory of coalgebra
is essentially categorical, the principles discussed in the present chapter form an integral
part of the coalgebraic method, which will be discussed in Chapter 5.

2.1 The basic definitions

A category C consists of

- objects A,B,C, . . .

- for each pair of objects A,B, a collection C(A,B) of morphisms (or arrows) f : A→ B
with domain A and codomain B.

- an operation of composition of morphisms: for any two morphisms f : A → B and
g : B → C, there is a morphism g ◦ f : A→ C:

A

g ◦ f

%%

f
// B g

// C

- identities: for each object A, there is a morphism 1A : A→ A.

- axioms:

h ◦ (g ◦ f) = (h ◦ g) ◦ f f ◦ 1A = f = 1B ◦ f

11

12 2.2. Category theory in slogans

Our guiding example will be the category Set of sets and functions.

Exercise 1. Show that the family of pre-ordered sets and monotone functions between
them (see Section 16.8 for the definitions) is a category. The same for vector spaces and
linear functions, as defined in Section 16.9.

Exercise 2. Show that a pre-ordered set (P,6) can itself be viewed as a category: objects
are elements p, q in P and we have an arrow p→ q iff p 6 q.

Exercise 3. Show that every monoid (M, · , e) (see Section 16.7 for the definition) can
be viewed as a category that has M as its only object and that has the elements of M as
its arrows.

2.2 Category theory in slogans

Next we discuss some of the basic principles underlying the theory of categories.

Always ask: what are the types? All we have in category theory are objects and
arrows, and for the latter, we always need to be precise about their domain and codomain.
So we shall never say: let f be a function defined for any x by f(x) = . . . , but rather: let
f : X → Y be a function defined for any x ∈ X by f(x) = . . . , thus making the types of
both x and f(x) explicit.

Think in terms of arrows rather than elements. We shall explain this with an
example. We all know the following definitions: A function f : X → Y (between sets) is
injective if

∀x, y ∈ X : f(x) = f(y) =⇒ x = y

and f is surjective if
∀y ∈ Y ∃x ∈ X : f(x) = y

Now let us call a function f : X → Y monic if for all g, h : Z → X,

f ◦ g = f ◦ h =⇒ g = h

and let us call f epic if for all g, h : Y → Z,

g ◦ f = h ◦ f =⇒ g = h

Then f is injective iff f is monic, and f is surjective iff f is epic.

Exercise 4. Prove this.

Chapter 2. Categories – where coalgebra comes from 13

The definitions of injective and surjective function are phrased in terms of elements;
the two definitions are completely different and seem unrelated. The equivalent notions of
monic and epic are defined using arrows; these two definitions are very similar: as we shall
see below, they are dual. This precise and close relationship is not at all visible from the
element-based definitions of injective and surjective.

Ask what mathematical structures do, not what they are. It is in general more
relevant how an object behaves than how it is constructed. Here behaviour of an object
should be understood as the way in which it interacts with other objects, through arrows.
Let’s look at an example. In set theory, the Cartesian product of two sets X and Y is
typically defined as the set of all ordered pairs 〈x, y〉, for elements x ∈ X and y ∈ Y :

X × Y = {〈x, y〉 | x ∈ X, y ∈ Y }

Here an ordered pair 〈x, y〉 is defined by

〈x, y〉 = {{x, y}, y}

Such a definition is by no means canonical, nor does it express the essential properties of
ordered pairs. Categorically, a product is defined by what it does, that is, by specifying by
which arrows it is related to other objects. Formally: a product of two objects A and B is
an object A×B together with two arrows

A A×Bπ1oo
π2 // B (2.1)

(called projections) such that for all objects C and arrows f : C → A and g : C → B there
exists a unique arrow (which we call) 〈f, g〉 : C → A×B satisfying

∀C
f

��

g

��

〈f,g〉∃!
��

A A×Bπ1
oo

π2
// B

That is, π1 ◦ 〈f, g〉 = f and π2 ◦ 〈f, g〉 = g and, moreover, 〈f, g〉 is the unique arrow
satisfying these equations.

Exercise 5. Show that if both C and D are products of A and B then C and D are
isomorphic: there are arrows f : C → D and g : D → C such that f ◦ g = 1D and
g ◦ f = 1C . As a consequence, we say that products are unique up to isomorphism.

Exercise 6. Show that h = 〈π1 ◦ h, π2 ◦ h〉, for any h : C → A×B. Show that 〈f, g〉 ◦ k =
〈f ◦ k, g ◦ k〉, for any k : D → C.

14 2.2. Category theory in slogans

The categorical definition of product stays away from the “coding” that was used in
the set-theoretic definition of ordered pairs. Instead, it emphasises the intrinsic behaviour
of the product by describing its interaction with other objects.

Functoriality! Given that a category consists of objects and arrows, it is only natural
to require operations on categories to act on both. A functor

F : C → D

from a category C to a category D assigns

(i) to each object A in C an object F (A) in D, and

(ii) to each arrow f : A→ B in C an arrow F (f) : F (A)→ F (B) in D, such that

(iii) F preserves composition and identities: F (g ◦ f) = F (g) ◦ F (f) and F (1A) = 1F (A).

Example 7. An example is the powerset functor

P : Set→ Set P(X) = {V | V ⊆ X }
P(f) : P(X)→ P(Y) P(f)(V) = f(V) (f : X → Y , V ⊆ X)

(The image f(V) of V under f is defined in Section 16.2.) For another example, let N be
the set of natural numbers. We define the functor

Str : Set→ Set Str(X) = N×X

where, for a set X, the set N × X is the Cartesian product of the sets N and X. (The
name Str of this functor stands for streams, see Chapter 7.) On functions f : X → Y , we
define

Str(f) = (1N × f) : (N×X)→ (N× Y) (1N × f)(n, x) = (n, f(x))

for all n ∈ N and x ∈ X.

Exercise 8. Show that P and Str are functors. Let (P,6) and (Q,6) be preorders.

Exercise 9. Let (P,6) and (Q,6) be preorders, seen as categories. Show that a function
f : P → Q is a functor f : (P,6)→ (Q,6) if and only if f is monotone:

p 6 q =⇒ f(p) 6 f(q)

(cf. Exercise 2.)

Chapter 2. Categories – where coalgebra comes from 15

Exercise 10. Let C be a category in which the product A×B of any pair of objects (A,B)
exists. (The category Set is an example.) Show that the operation of assigning to (A,B)
their product A×B can be extended to a functor × : C ×C → C. (Note that one needs to
explain what the category C × C looks like.)

Universality! It is often useful to define notions as general as possible, looking beyond
the irrelevant details of a given concrete setting. In category theory, an important class of
examples are definitions that are phrased in terms of universal properties, which typically
are formulated as: for all . . . there exists a unique Here is an example: an object A in
a category C is initial if for every object B in C there exists a unique arrow from A to B:

∀B A
∃!oo

Similarly, an object A is final if for any object B there exists a unique arrow from B to A:

∀B ∃! // A

Exercise 11. Show that initial objects in a category are unique up to isomorphism, that
is, all initial objects are isomorphic (cf. Exercise 5). Similarly for final objects. Describe
initial and final objects in Set.

Exercise 12. Consider two objects A and B in a category C. Let an (A,B)-pairing be a
triple (P, p1, p2) consisting of an object P and two arrows p1 : P → A and p2 : P → B in C.
Think of a suitable notion of morphism of (A,B)-pairings and show that (A × B, π1, π2)
(cf. diagram (2.1) above) is final in the resulting category. Note that as a consequence (cf.
Exercise 11), products are unique up to isomorphism.

Duality! Informally, duality refers to the elementary process of “reversing the arrows”
in a diagram. If this diagram was used to give a definition or to express a property, then
reversing the arrows leads to a new definition or a new property, which is called the dual of
the original one. For instance, we saw that an arrow f : B → C is monic if, for all arrows
g, h : A→ B, the following implication holds:

A

g
((

h

66 B
f

// C =⇒ g = h

If we use a diagram such as the one above, on the left of the implication, then we shall
always silently assume that it is commuting. In the present example, this means that the

16 2.3. Discussion

diagram expresses the assumption that f ◦ g = f ◦h. Reversing the arrows in the diagram,
we obtain

A B
h

hh

g
vv

C
f

oo =⇒ g = h

This implication expresses the property of f being epic. As a consequence, we say that
monic and epic are dual notions.

Here’s a more formal way of expressing duality. The opposite of a category C is the
category Cop that has the same objects as C and precisely one arrow f : B → A for every
arrow f : A→ B in C. (As a consequence, the composition g ◦ f of two arrows f : A→ B
and g : B → C in Cop corresponds to the arrow f ◦ g in C.) The principle of duality now
says that we can dualise any statement about a category C by making the same statement
about Cop.

Exercise 13. Show that an object A is initial in C iff A is final in Cop.

Exercise 14. A coproduct of two objects A and B is an object A + B together with
two arrows κ1 : A → A + B and κ2 : B → A + B (called embeddings) such that for all
objects C and arrows f : A → C and g : B → C there exists a unique arrow (which we
call) [f, g] : A+B → C satisfying

∀C

A

f

44

κ1
// A+B

[f,g]∃!

OO

B

g

jj

κ2
oo

that is, [f, g] ◦κ1 = f and [f, g] ◦κ2 = g. Show that coproducts in Set are given by disjoint
union. Show that C is a coproduct of A and B in C iff C is a product of A and B in
Cop.

2.3 Discussion

The above formulation of category theory by means of slogans has been inspired by Cate-
gories, why and how?, a tutorial presented by Samson Abramsky at the Dagstuhl Seminar
Coalgebraic Semantics of Reflexive Economics, early 2015. See also [AT11] for his lecture
notes on an introduction to category theory.

In the present book, category theory is used explicitly only in Chapters 2 to 5 (and
also in Chapter 15). As we already observed in the introduction, these chapters can be
safely skipped at first reading; at the same time, they do provide a sense of direction
for all the remaining chapters. More generally, we find category theory both interesting,

Chapter 2. Categories – where coalgebra comes from 17

relevant, and beautiful, and would recommend the reader to study some category theory
at some moment in time. A classical reference is Mac Lane’s [ML71], in which motivation
and examples are mostly taken from mathematics. More recent texts, often requiring less
background in mathematics, include [LS97] and [Awo10].

18 2.3. Discussion

Chapter 3

Algebras and coalgebras

We present a categorical definition of the notion of algebra, and arrive at the notion of
coalgebra by applying the categorical principle of duality, introduced in Chapter 2.

3.1 Algebras

Classically, algebras are presented as sets with operations. An example is the algebra

(N, 0, succ) N = {0, 1, 2, . . .} 0 ∈ N succ : N→ N

consisting of the set N of natural numbers, the constant 0 and the successor operation
defined by succ(n) = n + 1, for n > 0. Equivalently, the algebra of natural numbers can
be presented as one function

[zero, succ] : (1 + N)→ N

where 1 = {∗} is the singleton set with element ∗ ; where 1 + N is the coproduct, that is,
the disjoint union, of 1 and N; and where

zero : 1→ N succ : N→ N
zero(∗) = 0 succ(n) = n+ 1

Presented in this manner, the algebra of natural numbers becomes an instance of the
following categorical definition.

Definition 15 (F -algebra). Let F : C → C be a functor from a category C to itself. An
F -algebra is a pair (A,α) consisting of an object A and an arrow

α : F (A)→ A

We call F the type, A the carrier, and α the structure map of the algebra (A,α).

19

20 3.1. Algebras

Defining the functor N : Set → Set, for every set X, by N(X) = 1 + X, we observe
that (N, [zero, succ]) is an N -algebra.

Exercise 16. Consider the ring of integers (Z, 0, 1,+,×,−), consisting of the set Z of
integers, the constants 0 and 1, and the operations of addition +: Z×Z→ Z, multiplication
× : Z × Z → Z and minus − : Z → Z. Show that (Z, 0, 1,+,×,−) is an F -algebra, by
defining a suitable functor F : Set→ Set.

The exercise above illustrates that any algebra, defined as a set with operations, can
be presented as an F -algebra. Examples from mathematics are groups, rings, fields, etc.

The structure map α of an F -algebra (A,α) tells us how the elements of A are con-
structed from other elements in A. Or, equivalently, how by composing elements in A one
obtains new elements. For instance, composing the integers 3 and 2 using the operation of
multiplication, one obtains the number 3× 2 = 6.

Representing algebras by functors allows us to introduce the following notion.

Definition 17 (algebra homomorphism). Let F : C → C be a functor. A homomor-
phism of F -algebras (A,α) and (B, β) is an arrow f : A→ B such that

F (A)

α
��

F (f)
// F (B)

β
��

A
f

// B

that is, such that f ◦ α = β ◦ F (f).

Note that F needs to be a functor for this definition to make sense: F has to act not
only on objects but also on arrows so that F (f) is well-defined. Since functors preserve
the composition of arrows, the composition of two F -algebra homomorphisms will again
be a homomorphism (cf. Exercise 19).

One can understand mathematical objects by investigating how they interact with
other objects. Sets interact with other sets through functions, and homomorphisms are for
algebras what functions are for sets. As an example, we consider again the functor

N : Set→ Set N(X) = 1 +X

with 1 = {∗}. On functions f : X → Y , the functor N is defined by N(f) = 1 + f , where

(1 + f) : (1 +X)→ (1 + Y) (1 + f)(∗) = ∗ (1 + f)(x) = f(x)

for all x ∈ X. We saw that (N, [zero, succ]) is an N -algebra. If we define another N -algebra

({a, b}, [i, r]) i : 1→ {a, b} r : {a, b} → {a, b}

Chapter 3. Algebras and coalgebras 21

by

i(∗) = a r(a) = b r(b) = a

then the function f : N → {a, b}, defined by f(2n) = a and f(2n + 1) = b, is an example
of a homomorphism of N -algebras:

1 + N

[zero, succ]
��

1 + f
// 1 + {a, b}

[i, r]
��

N
f

// {a, b}

Exercise 18. Let Q be the set of all rational numbers. Consider the N -algebra

(Q, [one, half]) one : 1→ Q half : Q→ Q
one(∗) = 1 half(q) = q/2

Describe all homomorphisms between (N, [zero, succ]) and (Q, [one, half]), in either direc-
tion.

Exercise 19. Show that F -algebras and F -homomorphisms form a category, for any func-
tor F : C → C.

3.2 Coalgebras

The categorical principle of duality, which informally consists of reversing the arrows in a
diagram, gives rise to new definitions and properties. Applying duality to the categorical
notion of algebra leads to the notion of coalgebra.

Definition 20 (F -coalgebra). Let F : C → C be a functor from a category C to itself.
An F -coalgebra is a pair (A,α) consisting of an object A and an arrow

α : A→ F (A)

We call F the type, A the carrier, and α the structure map of the coalgebra (A,α).

22 3.2. Coalgebras

Coalgebras are like algebras, but with the structure map reversed. Formally, (A,α)
is an F -algebra in the category C iff it is an F -coalgebra in the category Cop. For a first
example of a coalgebra, we recall the functor

Str : Set→ Set Str(X) = N×X

from Example 7. Let Nω be the set of all streams – that is, infinite sequences – of natural
numbers:

Nω = {σ | σ : N→ N }
If we define functions

head : Nω → N tail : Nω → Nω

head(σ) = σ(0) tail(σ) = (σ(1), σ(2), σ(3), . . .)

for all σ = (σ(0), σ(1), σ(2), . . .) ∈ Nω, then pairing these functions together

〈head, tail〉 : Nω → (N× Nω)

makes (Nω, 〈head, tail〉) an example of a Str-coalgebra.
The structure map of an F -algebra can intuitively be seen as a way of composing

elements. Dually, the structure map α of an F -coalgebra (A,α) tells us how to decompose
or unfold the elements of the coalgebra. For instance, the structure map of the coalgebra
(Nω, 〈head, tail〉) above describes how a stream σ can be decomposed into (i) a natural
number head(σ), which can be understood as an output of or (partial) observation on σ;
and (ii) a (remainder) stream tail(σ). Thinking of coalgebras as dynamical systems and of
their elements σ as states, we may view tail(σ) as the state that is reached from σ after
one transition step.

We saw that homomorphisms are for algebras what functions are for sets. Similarly,
there is the notion of homomorphism of coalgebras. We can understand the behaviour of
a coalgebra by describing how it interacts with other coalgebras through homomorphisms.

Definition 21 (coalgebra homomorphism). Let F : C → C be a functor and let (A,α)
and (B, β) be F -coalgebras. A homomorphism from (A,α) to (B, β) is an arrow f : A→ B
such that

A

α

��

f
// B

β

��

F (A)
F (f)

// F (B)

that is, β ◦ f = F (f) ◦ α.

For an example of a coalgebra homomorphism, consider the Str-coalgebra

(Nω × Nω, 〈o, tr〉) o : (Nω × Nω)→ N tr : (Nω × Nω)→ (Nω × Nω)

o(σ, τ) = head(σ) tr(σ, τ) = (τ, tail(σ))

Chapter 3. Algebras and coalgebras 23

The function zip : Nω × Nω → Nω, defined by

zip(σ, τ) = (σ(0), τ(0), σ(1), τ(1), σ(2), τ(2), . . .)

is an example of a homomorphism of Str-coalgebras:

Nω × Nω

〈o, tr〉
��

zip
// Nω

〈head, tail〉
��

N× (Nω × Nω)
1× zip

// N× Nω

The commutativity of the diagram above is a consequence of the following equalities:

head(zip(σ, τ)) = head(σ) = o(σ, τ)

tail(zip(σ, τ)) = zip(τ, tail(σ)) = zip(tr(σ, τ))

Exercise 22. (i) Describe all homomorphisms from (Nω, 〈head, tail〉) to itself. Describe
all homomorphisms from (Nω, 〈head, tail〉) to (Nω × Nω, 〈o, tr〉). (ii) Define a different Str-
coalgebra structure on Nω × Nω such that the function f : Nω × Nω → Nω, defined by
f(σ, τ)(n) = σ(n) + τ(n), is a Str-homomorphism.

Exercise 23. Show that the family of all F -coalgebras and F -homomorphisms forms a
category, for any functor F : C → C.

3.3 Discussion

As we mentioned in the introduction, coalgebras occur as the dual of algebras in the
work of Arbib and Manes, in their category theoretic approach to dynamical systems and
automata [AM75, AM82, MA86]. More about algebras and coalgebras can be found in
[Rut00c, JR11]. See also the references at the end of Chapter 15 on universal coalgebra.

24 3.3. Discussion

Chapter 4

Induction and coinduction

We explain how the well-known principle of induction can be formulated categorically,
in terms of initial algebras and congruences. This will allow us to formulate, dually, a
definition and proof principle for coalgebras called coinduction, in terms of final coalgebras
and bisimulations.

4.1 Inductive and coinductive definitions

Remember the definition of an initial object, from Chapter 2.

Definition 24 (initial algebra). Let F : C → C be a functor. An initial F -algebra is an
F -algebra that is an initial object in the category of all F -algebras and F -homomorphisms.
In other words, an F -algebra (A,α) is initial if there exists for every F -algebra (B, β) a
unique F -homomorphism f : (A,α)→ (B, β):

F (A)

α

��

F (f)
// F (B)

∀β
��

A
∃ !f

// B

For an example of an initial algebra, we recall from Section 3.1 the functor N : Set→ Set
defined by N(X) = 1 +X, with 1 = {∗}, and the N -algebra

(N, [zero, succ]) zero : 1→ N succ : N→ N
zero(∗) = 0 succ(n) = n+ 1

As it turns out, the N -algebra (N, [zero, succ]) is initial; that is, for every N -algebra

(T, [zT , sT]) zT : 1→ T sT : N→ T

25

26 4.1. Inductive and coinductive definitions

there exists a unique F -homomorphism f : (N, [zero, succ])→ (T, [zT , sT]):

1 + N

[zero, succ]
��

1 + f
// 1 + T

∀[zT , sT]
��

N
∃ !f

// T

The commutativity of the diagram above is equivalent to the equalities

f(0) = zT (∗) f(n+ 1) = sT (f(n)) (4.1)

which can be read as a definition of the function f by induction.
For an example of such an inductive definition by initiality, consider the N -algebra

(N, [zN, sN]) zN : 1→ N sN : N→ N
zN(∗) = 1 sN(n) = 2× n

By initiality of (N, [zero, succ]), there exists a unique homomorphism

f : (N, [zero, succ])→ (N, [zN, sN])

Because f is a homomorphism of algebras, it satisfies (4.1), yielding

f(0) = 1 f(n+ 1) = 2× f(n)

This can be understood as an inductive definition of the function f : N → N satisfying
f(n) = 2n, for all n > 0.

Exercise 25. Let NN = {φ | φ : N→ N }. Consider the N -algebra

(NN, [zNN , sNN]) zNN : 1→ NN sNN : NN → NN

zNN(∗)(n) = n sNN(φ)(n) = φ(n+ 1)

Describe the unique homomorphism from (N, [zero, succ]) to (NN, [zNN , sNN]).

Next we recall, dually, the definition of a final object, from Chapter 2.

Definition 26 (final coalgebra). Let F : C → C be again a functor. A final F -coalgebra is
an F -coalgebra that is a final object in the category of F -coalgebras and F -homomorphisms.
In other words, an F -coalgebra (B,α) is final if for every F -coalgebra (A,α) there exists a
unique F -homomorphism f : (A,α)→ (B, β):

A

∀α
��

∃ !f
// B

β

��

F (A)
F (f)

// F (B)

Chapter 4. Induction and coinduction 27

For an example of a final coalgebra, we recall the functor Str : Set → Set defined by
Str(X) = N×X from Example 7. In Section 3.2, we saw that the set Nω = {σ | σ : N→ N }
of all streams of natural numbers is a Str-coalgebra (Nω, 〈head, tail〉). As it turns out, this
coalgebra is final; that is, for every Str-coalgebra

(S, 〈oS, trS〉) oS : S → N trS : S → S

there exists a unique F -homomorphism f : (S, 〈oS, trS〉)→ (Nω, 〈head, tail〉):

S

∀〈oS, trS〉
��

∃ !f
// Nω

〈head, tail〉
��

N× S
1× f

// N× Nω

The commutativity of the diagram above is equivalent to the equalities

head(f(s)) = oS(s)

tail(f(s)) = f(trS(s))

which can be read as a definition of f by, well, . . . , by what we will call coinduction! We
observe that these equalities define f in terms of oS and trS, which together constitute the
coalgebra structure on S. If we put

f : S → Nω f(s)(n) = oS(trnS(s))

where tr0
S(s) = s and trn+1

S (s) = trS(trnS(s)), then one can easily prove that f is the unique
function satisfying the equations above.

One of the main goals of the present book is to make the reader familiar with such
coinductive definitions. For now, it suffices to observe that final coalgebras give rise to the
unique existence of a (coalgebra) homomorphism just as, dually, initial algebras give rise to
the unique existence of an (algebra) homomorphism. And since in the latter we recognise
definitions by induction, we call the former, dually, definitions by coinduction.

Exercise 27. (i) Consider the Str-coalgebra

(Nω, 〈oe, tre〉) oe : Nω → N tre : Nω → Nω

oe(σ) = head(σ) tre(σ) = tail(tail(σ))

Show that the function

even : Nω → Nω even(σ) = (σ(0), σ(2), σ(4), . . .)

is the unique homomorphism from (Nω, 〈oe, tre〉) to (Nω, 〈head, tail〉). (ii) Define another
Str-coalgebra structure on Nω such that it induces, by coinduction, the function

odd : Nω → Nω odd(σ) = (σ(1), σ(3), σ(5), . . .)

28 4.2. Proofs by induction and coinduction

Exercise 28. Consider the Str-coalgebra

(Nω × N, 〈os, trs〉) os : Nω × N→ N trs : Nω × N→ Nω × N
os(σ, n) = head(σ) + n trs(σ, n) = (tail(σ), head(σ) + n)

Describe the unique homomorphism from (Nω × N, 〈os, trs〉) to (Nω, 〈head, tail〉).

4.2 Proofs by induction and coinduction

We just saw that initial algebras and final coalgebras give rise to inductive and coinductive
definitions. Next we formulate corresponding inductive and coinductive proof principles.

We all know the principle of mathematical induction: for every subset P ⊆ N,

if: P (0) and (∀n : P (n) =⇒ P (succ(n))) then: ∀n : P (n) (4.2)

In order to arrive at a corresponding coinduction principle for coalgebras, we will first
reformulate (and generalise) the above induction principle (4.2) in the language of category
theory, using the notion of congruence relation on algebras. By duality, we will then
obtain a coinductive proof principle for coalgebras, based on the dual notion of bisimulation
relation on coalgebras.

Definition 29 (F -congruence). Let F : Set→ Set be a functor and let (S, α) and (T, β)
be two F -algebras. A relation R ⊆ S × T is an F -congruence if there exists an F -
algebra structure γ : F (R) → R such that the projections π1 : R → S and π2 : R → T are
F -homomorphisms:

F (S)

α

��

F (R)

γ∃

��

F (π1)
oo

F (π2)
// F (T)

β

��

S Rπ1
oo

π2
// T

The restriction to sets in this definition is just for (notational) convenience. The defi-
nition and all that follows below can be formulated for arbitrary categories as well.

Theorem 30 (induction proof principle). Every congruence relation R ⊆ A × A on
an initial F -algebra (A,α) contains the diagonal ∆ = {(a, a) | a ∈ A} of A:

∆ ⊆ R

Chapter 4. Induction and coinduction 29

Proof: There exists a unique homomorphism ! : A→ R, by initiality of (A,α):

F (A)

α
��

++
F (R)

γ∃
��

kk 33 F (A)

α
��

ss

A
!

** R
π1

jj

π2

44 A
!

tt

Again by initiality, the identity function 1A : A → A is the only F -homomorphism from
(A,α) to itself. It follows that π1◦ ! = 1A = π2◦ !, which implies π1(!(a)) = a = π2(!(a))
and !(a) = (a, a), for all a ∈ A. Thus ∆ =!(A) ⊆ R.

Recall that the natural numbers form an N -algebra (N, [zero, succ]), for the functor
N : Set → Set defined by N(X) = 1 + X, with 1 = {∗}. For the case of the natural
numbers, Theorem 30 is equivalent to the principle of mathematical induction, (4.2) above.
This follows from the fact that a relation R ⊆ N × N is an N -congruence if and only if
(0, 0) ∈ R and, for all (n,m) ∈ N× N,

(n,m) ∈ R =⇒ (succ(n), succ(m)) ∈ R

Exercise 31. (i) Prove the above characterisation of congruences on the algebra of natural
numbers. (ii) Use this fact to show that for the natural numbers, Theorem 30 is equivalent
to Equation (4.2).

The following exercise illustrates that the present notion of congruence does not require
R to be an equivalence relation.

Exercise 32. Consider the following N -algebra:

(X, [f, 1X]) X = {x, y, z} f : 1→ X f(∗) = x

with 1X the identity function on X. Let

R ⊆ X ×X R = { (x, x), (x, y), (y, z) }

Prove that R is an N -congruence and that R is neither reflexive, nor symmetric, nor
transitive.

Since the induction principle above is formulated categorically, in terms of congruences
and initial F -algebras, all of the above can now be easily dualised for coalgebras.

30 4.2. Proofs by induction and coinduction

Definition 33 (F -bisimulation). Let F : Set → Set be a functor and let (S, α) and
(T, β) be two F -coalgebras. A relation R ⊆ S × T is an F -bisimulation if there exists an
F -coalgebra structure γ : R→ F (R) such that the projections π1 : R→ S and π2 : R→ T
are F -homomorphisms:

S

α

��

R

γ∃

��

π1oo
π2 // T

β

��

F (S) F (R)
F (π1)
oo

F (π2)
// F (T)

The definition o af F -bisimulation is obtained from the definition of a congruence above,
that is, by reversing all vertical arrows. Bisimulations are used in the formulation of the
following coinduction proof principle for coalgebras, which is a dual version of the induction
proof principle, Theorem 30 above.

Theorem 34 (coinduction proof principle). Every bisimulation relation R ⊆ B × B
on a final F -coalgebra (B, β) is contained in the diagonal ∆ = {(b, b) | b ∈ B} of B:

R ⊆ ∆

Proof: Because both π1 and π2 are homomorphisms into the final coalgebra(B, β):

B

β

��

R

γ∃

��

π1oo
π2 // B

β

��

F (B) F (R)
F (π1)
oo

F (π2)
// F (B)

they are equal: π1 = π2. This implies R ⊆ ∆.

We mentioned above that one of the main goals of the present book is to make the reader
familiar with coinductive definitions. Another goal, equally important, is to instruct the
reader in the art of coinductive proofs. As a first example – many others will follow in the
subsequent chapters – we discuss next what bisimulations and coinduction look like for the
final Str-coalgebra of streams.

It is a little exercise to prove that a relation R ⊆ Nω × Nω on (Nω, 〈head, tail〉) is a
Str-bisimulation if and only if, for all (σ, τ) ∈ R,

(i) head(σ) = head(τ) and (ii) (tail(σ), tail(τ)) ∈ R (4.3)

Chapter 4. Induction and coinduction 31

For an example of a proof by coinduction, consider the functions

zip : Nω × Nω → Nω even : Nω → Nω

zip(σ, τ) = (σ(0), τ(0), σ(1), τ(1), . . .) even(σ) = (σ(0), σ(2), σ(4), . . .)

We will prove the following equality by coinduction: for all α, β ∈ Nω,

even(zip(α, β)) = α (4.4)

In order to apply coinduction Theorem 34, we define

R ⊆ Nω × Nω R = { (even(zip(α, β)), α) | α, β ∈ Nω }

The relation R contains for every α and β the pair of streams even(zip(α, β)) and α that
we want to prove equal. We show that R is a Str-bisimulation, by verifying (i) and (ii) of
(4.3). Since

head(even(σ)) = head(σ) head(zip(σ, τ)) = head(σ)

for all σ, τ , it follows that

head(even(zip(α, β))) = head(α)

for all α, β, which proves (i). For (ii), we use

tail(even(σ)) = even(tail(tail(σ))) tail(zip(σ, τ)) = zip(τ, tail(σ))

for all σ, τ . Then

tail(even(zip(α, β))) = even(tail(tail(zip(α, β))))

= even(tail(zip(β, tail(α))))

= even(zip(tail(α), tail(β)))

for all α, β, which implies that

(tail(even(zip(α, β))), tail(α)) = (even(zip(tail(α), tail(β))), tail(α)) ∈ R

This proves that R satisfies (ii). Equality (4.4) now follows from Theorem 34.

Exercise 35. Prove by coinduction that odd(zip(α, β)) = β, for all α, β ∈ Nω, where the
function odd : Nω → Nω is defined by odd(σ) = (σ(1), σ(3), σ(5), . . .).

Exercise 36 (fixed point (co)induction). The following classical forms of least fixed
point induction and greatest fixed point coinduction turn out to be special instances of the
algebraic and coalgebraic principles discussed above. Let (P,6) be a pre-ordered set and
let f : P → P be a monotone function. We have the following notions, for p ∈ P :

32 4.3. Discussion

- p is a pre-fixed point of f if f(p) 6 p

- p is a post-fixed point of f if p 6 f(p)

- p is a fixed point of f if p = f(p)

- p is a least fixed point of f if p = f(p) and p 6 q, for all q ∈ P with q = f(q)

- p is a greatest fixed point of f if p = f(p) and q 6 p, for all q ∈ P with q = f(q)

We recall from Exercise 2 that a pre-ordered set (P,6) can be viewed as a category, with
as objects the elements p, q in P and with arrows p → q whenever p 6 q. In Exercise 9,
we moreover saw that any function f : P → P that is monotone:

p 6 q =⇒ f(p) 6 f(q)

is a functor f : (P,6)→ (P,6) from (P,6), viewed as category, to itself. Now observe the
following: f -algebras are pre-fixed points of f , and f -coalgebras are post-fixed points of f .

Next let X be an arbitrary set and consider the following pre-ordered set:

(P,6) P = P(X) V 6 W ⇐⇒ V ⊆ W (V,W ∈ P)

(The pre-ordered set (P,6) is in fact a so-called complete lattice.) Let f : (P,6)→ (P,6)
be a monotone function. We define:

µf =
⋂
{V ∈ P | f(V) ≤ V } νf =

⋃
{V ∈ P | V ≤ f(V) }

One can prove that µf is the unique least fixed point of f , and νf is the unique greatest
fixed point of f . This is known as the Knaster - Tarski Theorem. Show that as a con-
sequence, we have the following induction and coinduction proof principles for monotone
functions:

f(V) 6 V =⇒ µf 6 V (all V ∈ P)

V 6 f(V) =⇒ V 6 νf (all V ∈ P)

Prove that these proof principles are equivalent to the statements that µf is an initial
f -algebra and νf is a final f -coalgebra.

4.3 Discussion

We recall from the introduction that the categorical notion of bisimulation relation for
coalgebras goes back to Aczel and Mendler [AM89], as a generalisation of Park and Milner’s
notion of bisimulation [Mil80, Par81, Mil89] from the theory of parallel processes. Our
presentation of the duality between induction and coinduction is based on [Rut00c]. For
an introduction to bisimulation and the classical fixed point (co)induction discussed in
Exercise 36, see [San12].

Chapter 5

The method of coalgebra

In a nutshell:

- The study of any class of coalgebras begins with the definition of its type, which
is a functor F : Set → Set on the category of sets and functions. (However, other
categories may be used as well.) An F -coalgebra is then a pair (S, α) consisting of a
carrier set S and a structure map α : S → F (S). We typically think of S as the set of
internal states of the coalgebra. Throughout this book, we will often call coalgebras
also by other names: coalgebra = system = automaton.

- We describe what coalgebras do rather than what they are. The basis of the behaviour
of a coalgebra (S, α) is its structure map α : S → F (S), which defines, for each state
in S, the local dynamics and outputs or observations, possibly depending on inputs.
The global behaviour of a coalgebra (S, α) is then given by its interaction with other
coalgebras, that is, by homomorphisms between (S, α) and other coalgebras. The
definition of homomorphism relies on the fact that the type F is a functor, acting
not only on sets but also on functions.

- Many classes of F -coalgebras will contain a final F -coalgebra, which is characterised
by the following universal property: for any coalgebra (S, α), there exists a unique ho-
momorphism to the final one. This homomorphism assigns to every state a canonical
representation of its global behaviour.

- The structure map of an initial algebra tells us how to compose or construct ele-
ments. Dually, the structure map of a final coalgebra specifies how elements can be
decomposed or unfolded.

- Homomorphisms are structure-preserving functions. Similarly, bisimulations are
structure-preserving relations. Bisimulations enlarge our vocabulary for describing
the interaction between coalgebras. Notably, bisimulations are used in the formula-
tion of the coinduction proof principle: if two states of a final coalgebra are related
by some bisimulation relation, then they are equal.

33

34 5.1. Basic types of coalgebras

5.1 Basic types of coalgebras

The type, that is, functor F : Set→ Set, of every class of coalgebras is constructed out of
a small number of elementary functors. Here are four of the most relevant examples:

S

α

��

S

β

��

S

γ

��

S

δ
��

A S SA P(S)

corresponding to the following four possible choices for the functor F : F (S) = A, F (S) =
S, F (S) = SA = {f | f : A→ S}, and F (S) = P(S) = {V | V ⊆ S}, respectively.

In the first example, A is an arbitrary but fixed set, and the structure map α : S → A
assigns to every state s ∈ S an element α(s) ∈ A, which we may think of as an output
value produced by s or as a (partial) observation on s.

In the second example, the structure map β : S → S is a transition function, which
maps a state s ∈ S to a successor state β(s) ∈ S.

In the third example, we think of the elements of A as inputs. The structure map
γ : S → SA assigns to every state s ∈ S a function γ(s) : A→ S, which in turn assigns to
every input a ∈ A a new state γ(s)(a) ∈ S, called the successor of s on input a.

Finally, in the fourth example, the structure map δ : S → P(S) assigns to every state
s ∈ S a set of states δ(s) ⊆ S, which we may think of as the collection of possible next
states out of which the system may choose one non-deterministically.

Coalgebras of more complex type are then obtained by combining (basic) types using
operators such as (Cartesian) product × and coproduct (disjoint union) +.

5.2 Coalgebras, systems, automata . . .

The types of coalgebra that we will study in this book include the following:

Id : Set→ Set Id(S) = S (dynamical systems)

Str : Set→ Set Str(S) = A× S (stream systems)

dA : Set→ Set dA(S) = 2× SA (deterministic automata)

pA : Set→ Set pA(S) = 2× (1 + S)A (partial automata)

ndA : Set→ Set ndA(S) = 2× P(S)A (non-deterministic automata)

MA : Set→ Set MA(S) = (B × S)A (Mealy automata)

MoA : Set→ Set MoA(S) = B × SA (Moore automata)

wsA : Set→ Set wsA(S) = R× RS
ω (weighted stream automata)

(How these functors act on functions is explained in Section 16.10.) The examples above
illustrate that coalgebras are state-based dynamical systems in which states can make

Chapter 5. The method of coalgebra 35

transitions to successor states, possibly in reaction to a certain input. Furthermore, states
may produce an output, which often means: states may be (partially) observed. It is the
type F of a coalgebra that tells us precisely what this combination of dynamics, inputs,
and outputs/observations looks like.

36 5.2. Coalgebras, systems, automata . . .

Chapter 6

Dynamical systems

Dynamical systems form an elementary class of coalgebras, which is well suited for a first
introduction to the notion of a homomorphism. Formally, a dynamical system is a pair
(S, α) consisting of a set S, of states , and a function

α : S → S

called the transition function.

Remark 37. For those who have already read Chapters 2 to 5: dynamical systems are
Id-coalgebras of the identity functor Id : Set→ Set, which is defined for sets S by Id(S) = S
and for functions f : S → T by Id(f) = f : S → T .

We shall often present dynamical systems pictorially, using the following notation:

s // s′ ⇐⇒ α(s) = s′

We call s′ the successor of s and s a predecessor of s′, and we call the arrow a transition
from s to s′. Here is an example of a finite dynamical system:

s2

��
s1

// s3
// s4

��

s6
oo s7

// s8

s5

>>

In this example, every state has exactly one successor; some but not all states have (one
or more) predecessors; and all states eventually end in a loop or cycle. The latter does not
always happen, as the following example of an infinite dynamical system shows:

(N, succ) = 0 // 1 // 2 // 3 // · · · (6.1)

37

38 6.1. Homomorphisms of dynamical systems

Here the successor function succ : N→ N is given, for all n > 0, by

succ(n) = n+ 1

The next example shows that transition sequences can also be “infinite to the left”:

(N, pre) = ω
�� · · · // 3 // 2 // 1 // 0

��

(6.2)

In this example, N = N ∪ {ω}, and the function pre : N→ N is defined by

pre(ω) = ω pre(n+ 1) = n pre(0) = 0

We call a state s ∈ S of a dynamical system (S, α) a fixed point whenever s = α(s).
More generally, we say that s lies on an n-cycle, for n > 1, whenever s = αn(s), where
α0 = 1S, the identity function on S, and αn+1 = α ◦αn. We also say that s is periodic with
period n.

6.1 Homomorphisms of dynamical systems

Let us first briefly recall some elementary facts about sets. Any two sets S and T can be
conveniently related by functions f : S → T . We are all familiar with the following three
situations: If f is injective:

∀ s, s′ ∈ S : f(s) = f(s′) =⇒ s = s′

then f can be viewed as an embedding of S into T . If f is surjective:

∀ t ∈ T ∃ s ∈ S : f(s) = t

then we call T a quotient of S. In that case, every t ∈ T can be viewed as a representative
for all the elements in the inverse image f−1(t), which is given by

f−1(t) = {s ∈ S | f(s) = t}

And if f is bijective:
f is both injective and surjective

then one can view f as a renaming of the elements in S with names from T . In that case,
the names of the elements of S and T may be different but other than that, S and T can be
regarded as essentially the same. If there exists a bijective function, or bijection between
S and T , then one often writes S ∼= T .

Now (coalgebra) homomorphisms are for dynamical systems what functions are for sets.

Chapter 6. Dynamical systems 39

Definition 38 (homomorphism of dynamical systems).
A homomorphism f : (S, α) → (T, β) of dynamical systems is a function f : S → T such
that

S

α

��

f
// T

β

��

S
f

// T

that is, such that β ◦ f = f ◦ α.

Equivalently, f is a homomorphism if and only if

∀ s ∈ S : s // s′ =⇒ f(s) // f(s′)

Thus a homomorphism between two dynamical systems is a function between the un-
derlying sets of states that preserves transitions. In other words, homomorphisms are
(transition) structure preserving functions.

Exercise 39. Let S be a set. Prove that the identity function 1S : S → S is a homomor-
phism 1S : (S, α)→ (S, α) of dynamical systems, for any α : S → S. Show that if f and g
are homomorphisms that can be composed then also g ◦ f is a homomorphism. For any
homomorphism f : (S, α)→ (T, β), show that if f : S → T is bijective (as a function) then
also f−1 : T → S is a homomorphism f−1 : (T, β) → (S, α). In that case, we call f an
isomorphism and we sometimes write f : (S, α) ∼= (T, β).

In Exercise 4, we saw the equivalence of the notions of injective function and monomor-
phism, and of surjective function and epimorpism. The next exercise contains the same
statements, now for homomorphisms of dynamical systems instead of functions.

Exercise 40 (monomorphism, epimorphism). First do Exercise 4. Then let f be a
homomorphism of dynamical systems. We call f a monomorphism of dynamical systems
if for all (with f composable) homomorphisms g and h,

f ◦ g = f ◦ h =⇒ g = h

Prove that f is a monomorphism of dynamical systems if and only if f (as a function)
is injective. Dually, we call f is an epimorphism of dynamical systems if for all (with f
composable) homomorphisms g and h,

g ◦ f = h ◦ f =⇒ g = h

Prove that f is an epimorphism of dynamical systems if and only if f (as a function) is
surjective.

40 6.1. Homomorphisms of dynamical systems

Exercise 41. Show that any homomorphism f : (S, α)→ (T, β) of dynamical systems can
be written as the composition of an epimorphism and a monomorphism.

One way of seeing that the notion of homomorphism of dynamical systems makes sense,
is to note that isomorphic dynamical systems

(S, α) ∼= (T, β)

have essentially the same dynamics: they have not only the same number of states but also
equal numbers of fixed points, the same number of cycles of length seven, equal numbers
of states that move nine steps before entering a cycle of length four, etc. etc.

Exercise 42. Let f : (S, α)→ (T, β) be a homomorphism. Show that if s ∈ S is part of a
four cycle: α4(s) = s then so is f(s). Under what conditions does the converse hold?

Functions between sets and homomorphisms between dynamical systems are different
in various ways. For instance, if S and T are sets and T is nonempty then there always
exists a function from S to T .

Exercise 43. Show that there exist no homomorphisms (in either direction) between the
following two dynamical systems:

(S, α) = s0
// s1

yy
(T, β) = t0 // t1 // t2

ww

Next, let (R, γ) be a dynamical system and suppose that there exist homomorphisms
f : (R, γ) → (S, α) and g : (R, γ) → (T, β). How many elements must R contain at least?
And is there an upperbound to the size of R? Same questions, but now for

(S, α) = s0
// s1

yy
(T, β) = t0 // t1 // t2 // t3

uu

Here is slightly more subtle example of a difference between functions and homomor-
phisms. If a function of sets f : S → T is injective and S is nonempty then there exists
a function g : T → S with g ◦ f = 1S, where 1S is the identity function on S. Such a
function g is sometimes called a retraction or left-inverse of f .

In contrast, not every injective homomorphism f : (S, α)→ (T, β) has a retraction, that
is, a homomorphism g : (T, β)→ (S, α) such that g ◦ f = 1S.

Exercise 44. Consider the following two dynamical systems:

(S, α) = s1
// s0

(T, β) = t2 // t1 // t0
��

and define f : S → T by f(s1) = t1 and f(s0) = t0. Show that f is a monomomor-
phism. Show that f : S → T , as a function between sets, has two retractions. Show that
f : (S, α)→ (T, β), as a homomorphism between dynamical systems, has none.

Chapter 6. Dynamical systems 41

6.2 On the behaviour of dynamical systems

An essential ingredient of the coalgebraic method is to consider systems as black boxes, with
internal states that are not observable from the outside. Rather than asking what (the
states of) coalgebras are, we will ask instead what coalgebras do. And what coalgebras
do is determined by how they interact with other coalgebras or, more formally, by the
homomorphisms between coalgebras. As a consequence, we will study the behaviour of
coalgebras by investigating their homomorphisms.

Using homomorphisms, one can for instance express the fact that all dynamical systems
are equivalent, in the following sense. Consider the following dynamical system:

(1, id) 1 = {∗} id : 1→ 1 id(∗) = ∗

There is the following trivial fact: there exists a unique homomorphism from any dynamical
system (S, α) to (1, id):

S

α
��

∃! f
// 1

id
��

S
f

// 1

f(s) = ∗ (s ∈ S)

Because of this universal property, (1, id) is called a final dynamical system. We will see
more interesting examples of final coalgebras shortly, in the next chapter. However, the
fact that (1, id) is final does serve to illustrate a point, namely, that any state in any
dynamical system essentially behaves the same as the single state ∗ in (1, id): all a state
can do is to make a transition to a next state, which in turn can make a transition to a
next state, and so on.

We mentioned above that in the coalgebraic method, systems are black boxes and states
are considered to be not observable. What was meant, more precisely, is that the states of
a coalgebra are not observable unless the type of the coalgebra explicitly allows us to do so.
With the present definition of dynamical systems, we cannot make any observations on the
states of the system. In the next chapter, we will study dynamical systems that have not
only a transition function but also an output (or observation) function o : S → A, where
A is a fixed set, indentical for all systems. For instance, if A = {0, 1} then the function o
can be used to signal for each state whether it satisfies a certain property or not. These
observations then become part of the behaviour of the system, and as a consequence,
systems will no longer all be equivalent. This will be reflected by the fact that the family
of all such dynamical systems with observations has a non-trivial final coalgebra.

For now, we stay with our present definition of dynamical systems, without observations
or inputs. In the remainder of this chapter, we will illustrate how one can learn more about
(the internal structure of) a dynamical system (S, α) by probing it from the outside with
homomorphisms.

42 6.2. On the behaviour of dynamical systems

For a first and simple example, there is a bijective correspondence between the set of
all possible homomorphisms (1, id)→ (S, α) and the set of all fixed points of (S, α).

Exercise 45. Let n > 1 and consider the following dynamical system:

(Cn, γn) = 0 // 1 // 2 // · · · // n− 1vv (6.3)

Let (S, α) be an arbitrary dynamical system. For s ∈ S show that αn(s) = s iff there exists
f ∈ H with f(0) = s, where H is the following set of homomorphisms:

H = {f | f : (Cn, γn)→ (S, α) }

Show that H is isomorphic to the set of all points of (S, α) of period n.

Exercise 46. Let (S, α) be a dynamical system such that for all s ∈ S there exists a
homomorphism

1 // 0
�� f

// (S, α)

with s = f(1). What equation does α satisfy?

Exercise 47. Let (S, α) be a dynamical system and consider the set of homomorphisms

H = {f | f : (N, succ)→ (S, α) }

(with (N, succ) as defined in (6.1)). Show that S ∼= H.

Definition 48 (subsystem of dynamical system). Let (S, α) be a dynamical system
and let T ⊆ S. We say that T is closed under transitions if α(s) ∈ T for all s ∈ T . In that
case, we call (T, β) a subsystem of (S, α), where β is the restriction of α to T .

Exercise 49. Consider the following dynamical system:

s2

��
s1

// s3
// s4

��

s6
oo s7

// s8

s5

>>

How many different subsystems does this system have?

Chapter 6. Dynamical systems 43

Exercise 50. Consider two dynamical systems (S, α) and (T, β), and suppose T is a subset
of S. Let i : T → S with i(t) = t, for all t ∈ T . Show that (T, β) is a subsystem of (S, α)
iff i is a homomorphism.

Let (T, β) be a subsystem of (S, α). For a state s ∈ S there are three possibilities:

(i) s is a state of the subsystem (T, β);

(ii) s is not a state of the subsystem (T, β) but a finite number of transitions starting
in s will lead to a state that is in (T, β);

(iii) s is not a state of the subsystem (T, β) and no finite number of transitions starting
in s will ever lead to a state that is in (T, β)

With the above in mind, we can prove the following. There is a one-to-one correspondence
between subsystems of (S, α), on the one hand, and homomorphisms

f : (S, α)→ (N, pre)

on the other hand (with (N, pre) as defined in (6.2)). For the proof in one direction, consider
a subsystem (T, β) of (S, α). We define a mapping f : S → N, for s ∈ S, as follows:

(i) if s satisfies (i) above then we put f(s) = 0;

(ii) if s satisfies (ii) above then we define f(s) as the minimal number of transitions
starting in s that are needed to reach T ;

(iii) finally, if s satisfies (iii) above then we put f(s) = ω.

Exercise 51. Show that f defined in this manner is a homomorphism. Also prove the
other half of the statement: every homomorphism

f : (S, α)→ (N, pre)

uniquely corresponds to a subsystem of (S, α).

One can view the values in N as a kind of generalised truth values, where 0 denotes
truth; ω denotes (permanent) false; and any natural number denotes the distance to truth
or, in terms of condition (ii) above, the number of steps it takes before truth is reached.
The next exercise deals with yet another set of generalised truth values, sometimes called
the chaotic truth values.

44 6.3. Discussion

Exercise 52. Let 2 = {0, 1} and define the set of all bitstreams, that is, infinite sequences
of 0’s and 1’s, by

2ω = {(b0, b1, b2, . . .) | bi ∈ 2}

Consider the transition function

t : 2ω → 2ω t((b0, b1, b2, . . .)) = (b1, b2, b3, . . .)

Let (S, α) be a dynamical system. Prove that there is a one-to-one correspondence between
homomorphisms

f : (S, α)→ (2ω, t)

on the one hand, and subsets V ⊆ S, on the other.

6.3 Discussion

Our explanation of the notion of homomorphisms of dynamical systems has been inspired
by the discussion of structure preserving maps in [LS97]. Exercise 44 above is taken from
[LS97, p.147]. Our discussion of truth values is based on [LS97, Session 32-3].

Chapter 7

Stream systems

Streams over a given set A are infinite sequences

(a0, a1, a2, . . .) (ai ∈ A)

of elements in A. Streams will arise as the behaviour of stream systems, which are thus
coalgebraic representations of streams, and which are formally defined as follows. A stream
system with outputs in a set A is a pair

(S, 〈o, tr〉)

consisting of a set S, of states, and a structure map

〈o, tr〉 : S → A× S o : S → A tr : S → S

which is a pair consisting of an output function o and a transition function tr.
In other words, a stream system (S, 〈o, tr〉) is a dynamical system (S, tr) together with

an additional output function o. In many situations, the output value o(s) ∈ A of a state
s ∈ S contains information about s, thus making it partially observable to someone looking
at the system from the outside.

The set Aω of all streams will turn out to be a final stream system, giving rise to both
definitions and proofs by the coalgebraic principle of coinduction. Because stream systems
have both transitions and outputs, the notion of bisimulation relation becomes highly
relevant, allowing us to compare and reduce stream systems. Furthermore, coinductive
proofs will consist of the construction of suitable bisimulation relations.

All in all, streams have in recent years become for coalgebra and coinduction what the
natural numbers are for algebra and induction: a canonical example.

Remark 53. For those who have already read Chapters 2 to 5: stream systems are coal-
gebras of the functor

Str : Set→ Set Str(S) = A× S (S ∈ Set)

Str(f) : A× S → A× T Str(f) = 1A × f (f : S → T)

45

46 7.1. Homomorphisms and bisimulations of stream systems

with

(1A × f)((a, s)) = (a, f(s))

for a ∈ A and s ∈ S.

7.1 Homomorphisms and bisimulations of stream sys-

tems

Homomorphisms are structure preserving functions, which here means functions that pre-
serve both transitions and outputs.

Definition 54 (homomorphism of stream systems).
A homomorphism f : (S, 〈oS, trS〉)→ (T, 〈oT , trT 〉) of stream systems is a function f : S →
T such that

S

〈oS ,trS〉

��

f
// T

〈oT ,trT 〉

��

A× S
1A×f

// A× T

that is, such that oT ◦ f = oS and trT ◦ f = f ◦ trS.

Homomorphisms are functions that preserve transitions and outputs:

s|a // t|b =⇒ f(s)|a // f(t)|b (7.1)

where we are using the following notation:

s|a // t|b ⇐⇒ oS(s) = a and trS(s) = t and oS(t) = b

Exercise 55. Prove implication (7.1).

Example 56. Here is an example of a finite stream system:

s0|a // s1|b // s2|c // s3|d // s4|e // s5|f
uu

where A = {a, b, c, d, e, f}. Similar to dynamical systems, all finite stream systems have
this lasso shape: a finite number of transitions with at some point a transition looping

Chapter 7. Stream systems 47

back to one of the previous states. For an example of a stream system with infinitely many
states, let A = {a, b} and define

(Z, 〈oZ, trZ〉) oZ : Z→ A trZ : Z→ Z

by

oZ(z) =

{
a if z is even
b if z is odd

trZ(z) = z + 1

where Z is the set of integers. Equivalently, with a picture:

(Z, 〈oZ, trZ〉) = · · · // −1|b // 0|a // 1|b // 2|a // · · ·

The output function oZ : Z → A provides us with partial information on the states of the
system, by signalling whether they are even or odd.

If we define

(S, 〈oS, trS〉) = s0|a // s1|b // s2|a // s3|b // s4|a // s5|bii

(T, 〈oT , trT 〉) = t0|a // t1|b
gg

then the function

f : S → T f(s0) = f(s2) = f(s4) = t0 f(s1) = f(s3) = f(s5) = t1

is a homomorphism of stream systems. There exist no homomorphisms in the other direc-
tion. Also the following function

g : Z→ T g(z) =

{
t0 if z is even
t1 if z is odd

is a homomorphism g : (Z, 〈oZ, trZ〉)→ (T, 〈oT , trT 〉).

Exercise 57. Let (Z, 〈o, tr〉) be defined by

o : Z→ {a, b} tr : Z→ Z

o(z) =

{
b if z > 0
a if z < 0

tr(z) = −2× z

Show that the function

h : Z→ Z h(z) = 2× z

is a homomorphism from (Z, 〈o, tr〉) to itself.

48 7.1. Homomorphisms and bisimulations of stream systems

Exercise 58 (homomorphic images are subsystems). We call a subset V ⊆ S of a
stream system (S, 〈oS, trS〉) a subsystem if it is closed under transitions: if s ∈ V then
tr(s) ∈ V . Show that the image im(f) of a homomorphism f : (S, 〈oS, trS〉)→ (T, 〈oT , trT 〉)
is a subsystem of T .

For the stream systems

s0|a 55
s1|b

uu

t0|a // t1|b // t2|a // t3|b
vv

there exists a single stream homomorphism from right to left, mapping t0 to s0. There exist
no homomorphisms in the other direction. Still one could say that s0 and t0 are equivalent
with respect to their observational behaviour. The infinite transition sequences starting in
s0 and t0 give rise to identical streams of observations:

s0|a // s1|b // s0|a // s1|b // · · ·

t0|a // t1|b // t2|a // t3|b // · · ·

The following notion of bisimulation captures exactly this type of observational or be-
havioural equivalence of stream systems.

Definition 59 (bisimulation of stream systems). A relation R ⊆ S × T is a bisimu-
lation of stream systems (S, 〈oS, trS〉) and (T, 〈oT , trT 〉) if there exists a structure map

〈oR, trR〉 : R→ A×R

such that the projection maps π1 : R→ S and π2 : R→ T are homomorphisms:

S

〈oS, trS〉
��

R

〈oR, trR〉∃
��

π1oo
π2 // T

〈oT , trT 〉
��

A× S A×R
1A × π1

oo

1A × π2

// A× T

(7.2)

Exercise 60. Prove that there exists at most one structure map 〈oR, trR〉 making the
diagram above commute. (For many other types of systems, such as non-deterministic
automata, bisimulation relations can in general be equipped with more than one structure
map.)

Chapter 7. Stream systems 49

Homomorphisms of stream systems are output and transition structure preserving func-
tions. Similarly, bisimulations of stream systems are structure preserving relations. This
is expressed by the following, equivalent, definition of bisimulation, which is easier to work
with than Definition 59.

Definition 61 (bisimulation of stream systems, relational). A relation R ⊆ S × T
is a bisimulation of stream systems if, for all (s, t) ∈ R,

(i) oS(s) = oT (t) and (ii) (trS(s), trT (t)) ∈ R (7.3)

Thus R is a bisimulation if R contains only pairs of states with equal outputs and is
closed under (pair-wise) transitions.

Exercise 62. Prove the equivalence of Definitions 59 and 61.

Exercise 63. Use Definition 61 to prove that the collection of all bisimulation relations
between two given stream systems is closed under (i) arbitrary unions and intersections,
(ii) inverse and (iii) composition (of composable relations).

Definition 64 (bisimilarity of stream systems). The union of all bisimulation relations
between two stream systems (S, 〈oS, trS〉) and (T, 〈oT , trT 〉) is a bisimulation, called the
bisimilarity relation:

∼ =
⋃
{R ⊆ S × T | R is a bisimulation } (7.4)

By definition, ∼ is the greatest bisimulation; we call ∼ the bisimilarity relation. If s ∼ t,
that is, if there exists a bisimulation relation R with (s, t) ∈ R, then we call s and t
bisimilar.

A special case of the above definition is the greatest bisimulation relation between a
stream system S and itself.

Exercise 65. Use Exercise 63 to prove that the bisimilarity relation ∼⊆ S × S between a
stream system and itself is an equivalence relation.

50 7.1. Homomorphisms and bisimulations of stream systems

Exercise 66. Let Rel(S, T) be the set of all relations between S and T and define

Φ: Rel(S, T)→ Rel(S, T)

Φ(R) = { (s, t) ∈ S × T | oS(s) = oT (t) and (trS(s), trT (t)) ∈ R }

Show that Φ is monotone, that R is a bisimulation if and only if R ⊆ Φ(R), and that ∼ is
the greatest fixed point of Φ (with respect to the inclusion order).

Example 67. Consider again the stream systems

(S, 〈oS, trS〉) = s0|a // s1|b // s2|a // s3|b // s4|a // s5|bii

(T, 〈oT , trT 〉) = t0|a // t1|b
gg

(Z, 〈oZ, trZ〉) = · · · // −1|b // 0|a // 1|b // 2|a // · · ·

The following relations are examples of bisimulations of stream systems:

R = {(s0, t0), (s2, t0), (s4, t0), (s1, t1), (s3, t1), (s5, t1)}
R−1 = {(t0, s0), (t0, s2), (t0, s4), (t1, s1), (t1, s3), (t1, s5)}
U = {(z1, z2) ∈ Z× Z | z1 and z2 are both even or both odd }

Note that the latter relation is the greatest bisimulation on (Z, 〈oZ, trZ〉).

Exercise 68 (bisimilarity is product of stream systems). Let (S, 〈oS, trS〉) and
(T, 〈oT , trT 〉) be two stream systems, and consider the system (∼, 〈o, tr〉), consisting of
the bisimilarity relation ∼ on S and T , with o((s, t)) = oS(s) = oT (t) and tr((s, t)) =
(trS(s), trT (t)). Show that (∼, 〈o, tr〉) is the (categorical) product of (S, 〈oS, trS〉) and
(T, 〈oT , trT 〉): for all stream systems (Z, 〈oZ , trZ〉) and homomorphisms f : Z → S and
g : Z → T , there exists a unique (mediating) homomorphism h : Z → ∼ such that

Z

∃!h

��

∀ f

��

∀ g

��

S ∼π1
oo

π2
// T

That is, π1 ◦h = f and π2 ◦h = g and, moreover, h is the unique homomorphism satisfying
these equations.

The following proposition shows that bisimulations on stream systems generalise stream
homomorphisms, in the same way as relations on sets generalise functions.

Chapter 7. Stream systems 51

Proposition 69 (functional bisimulations). Let (S, 〈oS, trS〉) and (T, 〈oT , trT 〉) be two
stream systems. A function f : S → T is a homomorphism of stream systems if and only
if its graph

graph(f) = {(s, f(s)) ∈ S × T | s ∈ S }

is a bisimulation. Such relations are sometimes called functional bisimulations.

Exercise 70. Prove Proposition 69.

The kernel of a stream homomorphism is a stream bisimulation equivalence.

Proposition 71. Let (S, 〈oS, trS〉) and (T, 〈oT , trT 〉) be two stream systems. If f : S → T
is a homomorphism then ker(f) = {(s, s′) ∈ S × S | f(s) = f(s′)} is both a bisimulation
relation and an equivalence relation.

Proof: The kernel of any function is an equivalence relation. Because

ker(f) = graph(f) ◦ graph(f)−1

it follows from Exercise 63 and Proposition 69 that ker(f) is a bisimulation relation.

Exercise 72 (quotient of stream system). Prove that the quotient S/R of a stream
system (S, 〈oS, trS〉) with respect to a bisimulation equivalence relation R ⊆ S × S has a
unique stream system structure

(S/R, 〈oR, trR〉) oR : S/R→ A trR : S/R→ S/R

such that the quotient function
[−]R : S → S/R

which maps a state s to its equivalence class [s]R, is a homomorphism.

Proposition 73 (minimisation of stream systems). Let (S/∼, 〈o∼, tr∼〉) be the quo-
tient of a stream system (S, 〈oS, trS〉) with respect to its bisimilarity relation ∼⊆ S × S.

(a) For every surjective homomorphism f : (S, 〈oS, trS〉)→ (T, 〈oT , trT 〉) there is a unique
surjective homomorphism g : (T, 〈oT , trT 〉)→ (S/∼, 〈o∼, tr∼〉) such that

S
∀ f

//

[−]∼

��

T

∃ ! g
ssS/∼

g ◦ f = [−]∼

52 7.2. The final system of streams

(b) Every stream homomorphism f : (S/∼, 〈o∼, tr∼〉)→ (T, 〈oT , trT 〉) is injective.

According to Proposition 73, (S/∼, 〈o∼, tr∼〉) can be viewed as the minimisation of
(S, 〈oS, trS〉): statement (a) says that among all possible quotients of S, the quotient S/∼
makes the most identifications (of behaviourally equivalent states). Statement (b) says
that no further identifications can be made.

Exercise 74. Prove (a) and (b) of Proposition 73. Compute the quotient of (Z, 〈oZ, trZ〉),
from Example 67, with respect to its bisimilarity relation U .

Exercise 75. Compute the minimisation of the stream system (Z, 〈o, tr〉) from Exercise 57.

7.2 The final system of streams

We define the set of all streams over A by

Aω = {σ | σ : N→ A }

that is, the set of all infinite sequences of elements in A. For a stream σ ∈ Aω, we call σ(0)
the initial value of σ. We define the stream derivative of σ as the stream σ′ given by

σ′(n) = σ(n+ 1)

In computer science, the initial value σ(0) and derivative σ′ are often called head(σ) and
tail(σ), but the present notation and terminology are both convenient and will help us,
in Chapter 12, to develop a calculus of streams in close analogy to classical calculus in
analysis.

We shall occasionally write

σ = (σ(0), σ(1), σ(2), . . .)

which makes it easier to refer to the individual elements of a stream. With this notation,
the derivative of σ is given by

σ′ = (σ(1), σ(2), σ(3), . . .)

There is the following obvious and useful relation between the elements of a stream and
its repeated derivatives.

Chapter 7. Stream systems 53

Definition 76 (higher-order stream derivatives). For σ ∈ Aω, we define

σ(0) = σ σ(n+1) = (σ(n))′

Lemma 77. For σ ∈ Aω and n > 0,

σ(n) = σ(n)(0)

Next we define the functions of initial value and derivative by

ist : A
ω → A ist(σ) = σ(0) (7.5)

dst : A
ω → Aω dst(σ) = σ′ (7.6)

Pairing the functions of ist and dst, we have turned the set Aω of all streams into a stream
system (Aω, 〈ist, dst〉) that is final.

Theorem 78 (finality – streams). The stream system (Aω, 〈ist, dst〉) is final: For every
stream system (S, 〈oS, trS〉) there exists a unique homomorphism

S

∀ 〈oS, trS〉
��

∃! J−K
// Aω

〈ist, dst〉
��

A× S
1A × J−K

// A× Aω

By abuse of language, this homomorphism J−K : S → Aω into the final coalgebra will
sometimes be called the final homomorphism.

Proof: For s ∈ S, let s0 = s and sn+1 = trS(sn). We define J−K : S → Aω by
JsK(n) = oS(sn). The function J−K satisfies

JsK(0) = oS(s) JsK′ = JtrS(s)K (all s ∈ S)

which says that it is a homomorphism of stream systems. One easily checks that it is
unique.

We may think of the structure map 〈o, tr〉 as a specification of the local behaviour of
the stream system, consisting for each state s ∈ S of an output o(s) and a single transition
step to a next state tr(s). The final homomorphism J−K assigns to every state s its global
behaviour, which is the stream JsK of all successive outputs. One may view JsK as the
semantics of s, hence our use of semantic brackets.

54 7.2. The final system of streams

Example 79. If

(S, 〈o, tr〉) = s0|a // s1|a // s2|b
((

s3|ahh

then

Js0K = aa(ba)ω Js1K = a(ba)ω Js2K = (ba)ω Js3K = (ab)ω

where (ab)ω = (a, b, a, b, a, b, . . .) and (ba)ω = (b, a, b, a, b, a, . . .).

Exercise 80. Final coalgebras are unique up to isomorphism: prove that if two stream
systems (S, 〈oS, trS〉) and (T, 〈oT , trT 〉) both are final, then they are isomorphic. More
challenging: prove that if (S, 〈oS, trS〉) is final then 〈oS, trS〉 is bijective. (This will be
proved more generally, for arbitrary final coalgebras, in Chapter 15, Theorem 406.)

Exercise 81. Show that the stream system (Aω ×Aω, 〈o, tr〉), defined by o((σ, τ)) = σ(0)
and tr((σ, τ)) = (τ, σ′), for all (σ, τ) ∈ Aω × Aω, is final.

Exercise 82. Consider the stream system (Zω, 〈ist,∆〉) defined by

ist : Zω → Z ∆: Zω → Zω

ist(σ) = σ(0) ∆(σ) = σ′ − σ

for all σ ∈ Zω. Thus ∆(σ)(n) = σ(n + 1) − σ(n), for all n ≥ 0. Prove that (Zω, 〈ist,∆〉)
is final among all stream systems with outputs in Z. (The operation ∆ will be studied in
some detail in Section 12.7.)

Exercise 83. Returning to the dynamical systems of Chapter 6, how would you define a
bisimulation relation on dynamical systems? What does the greatest bisimulation relation
on a dynamical system look like? Construct a dynamical system that is final. What is the
categorical product – cf. Exercise 68 – of two dynamical systems?

The final homomorphism J−K : S → Aω from Theorem 78 maps every state to (a
canonical representation of) its bisimulation equivalence class.

Theorem 84. Let (S, 〈o, tr〉) be a stream system. For all s, t ∈ S,

s ∼ t ⇐⇒ JsK = JtK

Chapter 7. Stream systems 55

Proof: We know that ∼ is a bisimulation on S, with projections π1, π2 : ∼ → S. By
the definition of bisimulation, the projections are homomorphisms. Composition with J−K
gives two homomorphisms from R to Aω. By the finality of Aω, they must be equal, which
proves the implication from left to right. The converse follows from Proposition 71: since
J−K : S → Aω is a homomorphism, its kernel

{ (s, t) | JsK = JtK }

is a bisimulation, hence s ∼ t.

Exercise 85 (minimisation and finality). Prove that it follows from Theorem 84 that
JSK – the image of S under J−K – is isomorphic to the quotient S/∼ . (Note that JSK is
a subsystem of Aω, by Exercise 58, and that S/∼ is a stream system, by Exercises 65 and
72.) By Proposition 73, it follows that JSK is the minimisation of (S, 〈o, tr〉).

7.3 Defining streams by coinduction

The existence of a unique homomorphism from any stream system into the final system
of streams can be used to define streams and stream functions. Such definitions are in a
precise sense – explained in Chapter 4 – dual to definitions by induction, and are therefore
called coinductive or: by coinduction.

More precisely, we say that a stream σ ∈ Aω is defined by coinduction if there exists a
stream system (S, 〈o, tr〉) and a state s ∈ S such that

σ = JsK

where
J−K : (S, 〈o, tr〉)→ (Aω, 〈ist, dst〉)

is the unique homomorphism given by finality, Theorem 78. We may think of the system
(S, 〈o, tr〉) together with the state s ∈ S as a specification of the behaviour of σ or, in
short, as a behavioural specification of σ.

How interesting such a coinductive definition or behavioural specification is, will depend
on how interesting the system (S, 〈o, tr〉) is. For example, any stream σ ∈ Aω can be defined
by coinduction by considering

(S, 〈o, tr〉) = (Aω, 〈ist, dst〉)

with state σ ∈ Aω. Then σ = JσK, which clearly does not tell us much. Another extreme
would be to require S to be finite. As we already saw in Example 56, finite stream systems
are lasso shaped and give rise, as we shall explain below, to a well-defined but rather
restricted class of streams. In practice, one will typically take S to be an infinite, well-
structured set. Below, we limit ourselves to a few elementary examples of coinductive
stream definitions, postponing a more systematic treatment until Chapter 11.

56 7.3. Defining streams by coinduction

Example 86 (coinductive stream definitions). We present several elementary exam-
ples of coinductive definitions of streams and of functions on streams.

(1) Recall the system

(S, 〈o, tr〉) = s0|a // s1|a // s2|b
((

s3|ahh

from Example 79. Since

Js0K = aa(ba)ω Js1K = a(ba)ω Js2K = (ba)ω Js3K = (ab)ω

we can say that the streams aa(ba)ω, a(ba)ω, (ba)ω and (ab)ω are defined by coinduction.
More generally, a stream σ can be defined by coinduction using a finite stream system

if and only if σ is eventually periodic:

σ = v · wω = v · w · w · w · · · · (7.7)

for finite words v, w ∈ A∗. The proof is left as Exercise 87.

(2) Here is an example of a coinductive definition of a stream function. We consider
the following stream system:

(Aω, 〈oe, tre〉) oe : Aω → A tre : Aω → Aω

oe(σ) = σ(0) tre(σ) = σ′′

By finality, there exists a unique homomorphism, which we call even:

even : (Aω, 〈oe, tre〉)→ (Aω, 〈ist, dst〉)

We call this a definition by coinduction of the stream function even : Aω → Aω. Because
even is a homomorphism, by definition, we have

even(σ)(0) = σ(0) even(σ)′ = even(σ′′)

One readily shows by induction that this implies

even(σ) = (σ(0), σ(2), σ(4), . . .)

For another example, we consider

(Aω, 〈oo, tro〉) oo : Aω → A tro : Aω → Aω

oo(σ) = σ(1) tro(σ) = σ′′

Then we obtain, in a similar fashion, a homomorphism

odd : (Aω, 〈oo, tr0〉)→ (Aω, 〈ist, dst〉)

Chapter 7. Stream systems 57

satisfying

odd(σ)(0) = σ(1) odd(σ)′ = odd(σ′′)

and
odd(σ) = (σ(1), σ(3), σ(5), . . .)

(3) For our next example, let

(Nω, 〈o2, dst〉) o2 : Nω → N dst : Nω → Nω

o2(σ) = 2 · σ(0) dst(σ) = σ′

By finality, there exists a unique homomorphism

2× (−) : (Nω, 〈o2, dst)→ (Nω, 〈ist, dst)

It follows that

(2× σ)(0) = 2 · σ(0) (2× σ)′ = 2× σ′

This implies
2× σ = (2 · σ(0), 2 · σ(1), 2 · σ(3), . . .)

More generally, one can define any elementwise stream function in this manner. Let
f : A→ A be a function and let

(Aω, 〈of , dst〉) of : Aω → A dst : A
ω → Aω

of (σ) = f(σ(0)) dst(σ) = σ′

By finality, we obtain a homomorphism

mapf : (Aω, 〈of , dst〉)→ (Aω, 〈ist, dst〉)

satisfying

(mapf (σ))(0) = f(σ(0)) (mapf (σ))′ = mapf (σ
′)

which implies
mapf (σ) = (f(σ(0)), f(σ(1)), f(σ(2)), . . .)

(4) As a final example, consider the stream system

(Aω × Aω, 〈oz, trz〉) oz : Aω → A trz : Aω → Aω

oz((σ, τ)) = σ(0) trz((σ, τ)) = (τ, σ′)

By finality, there exists a homomorphism

zip : (Aω × Aω, 〈oz, trz〉)→ (Aω, 〈ist, dst〉)

58 7.3. Defining streams by coinduction

satisfying

zip(σ, τ)(0) = σ(0) zip(σ, τ)′ = zip(τ, σ′)

This implies

zip(σ, τ) = (σ(0), τ(0), σ(1), τ(1), . . .)

Exercise 87 (eventually periodic streams). Show that a stream σ can be defined by
coinduction using a finite stream system if and only if σ is eventually periodic (defined in
Equation (7.7)).

Exercise 88 (sum). Define by coinduction the function +: Nω × Nω → Nω that maps
two streams σ, τ ∈ Nω to their elementwise sum:

σ + τ = (σ(0) + τ(0), σ(1) + τ(1), σ(2) + τ(2), . . .)

Verify that it satisfies

(σ + τ)(0) = σ(0) + τ(0) (σ + τ)′ = σ′ + τ ′

Exercise 89. Define the following function by coinduction:

zip3 : (Aω)3 → Aω zip3(σ, τ, ρ) = (σ(0), τ(0), ρ(0), σ(1), τ(1), ρ(1), . . .)

Use the function zip3 to define the function

zip2,1 : (Aω)2 → Aω zip2,1(σ, τ) = (σ(0), σ(1), τ(0), σ(2), σ(3), τ(1), . . .)

Define the function

alt : (Aω)2 → Aω alt(σ, τ) = (σ(0), τ(1), σ(2), τ(3), σ(4), τ(5), . . .)

by coinduction.

Exercise 90. Consider the stream system

(Nω, 〈o, tr〉) o : Nω → N tr : Nω → Nω

o(σ) = σ(0) tr(σ) = (σ(0) + σ(1), σ(2), σ(3), . . .)

By finality, there exists a unique homomorphism f : Nω → Nω. What is f(σ)(n)?

Chapter 7. Stream systems 59

For every stream and stream function that we have defined by coinduction so far, it
is easy to come up with a formula describing its nth element. For instance, even(σ)(n) =
σ(2n). The next exercise illustrates that this is not always the case.

Exercise 91 (ordered merge). Use coinduction to define a function ‖ : Nω × Nω → Nω

satisfying

(σ ‖ τ)(0) =

{
σ(0) if σ(0)< τ(0)
τ(0) if σ(0) > τ(0)

(σ ‖ τ)′ =

σ′ ‖ τ if σ(0)< τ(0)
σ′ ‖ τ ′ if σ(0) = τ(0)
σ ‖ τ ′ if σ(0)> τ(0)

(Convince yourself by looking at some examples that σ ‖ τ is an ordered increasing stream
of natural numbers whenever both σ and τ are.) Try to find a formula describing the nth
element of σ ‖ τ .

Here is an example to illustrate that for the coinductive definition of streams and stream
functions, we often need stream systems with some additional structure.

Example 92. Let 2 = {0, 1} and consider the following stream system:

(2× Aω, 〈oex, trex〉) oex : (2× Aω)→ A trex : (2× Aω)→ (2× Aω)

defined by

oex(x, σ) =

{
σ(1) if x = 1
σ(0) if x = 0

trex(x, σ) =

{
(0, σ) if x = 1
(1, σ′′) if x = 0

By finality, there exists a unique homomorphism

f : (2× Aω, 〈oex, trex〉)→ (Aω, 〈ist, dst〉)

We define a function

exchange : Aω → Aω exchange(σ) = f((1, σ))

Because f is a homomorphism, it follows that

exchange(σ)(0) = σ(1) exchange(σ)(1) = σ(0) exchange(σ)′′ = exchange(σ′′)

As a consequence,
exchange(σ) = (σ(1), σ(0), σ(3), σ(2), . . .)

Intuitively, the role of the additional component 2 in the carrier set 2×Aω of the defining
stream system is to store the information on which value to output and on when to take
the double derivative.

60 7.4. Coinduction: the bisimulation proof method

Exercise 93. Give a coinductive definition of the function

exchange3 : Aω → Aω exchange3(σ) = (σ(2), σ(1), σ(0), σ(5), σ(4), σ(3), . . .)

Exercise 94 (shuffle product). We define the shuffle product ⊗ : Nω × Nω → Nω, for
σ, τ ∈ Nω and n > 0, by

(σ ⊗ τ)(n) =
n∑
k=0

(
n

k

)
· σ(k) · τ(n− k) (7.8)

Prove that the shuffle product of σ and τ satisfies

(σ ⊗ τ)(0) = σ(0) · τ(0) (σ ⊗ τ)′ = (σ′ ⊗ τ) + (σ ⊗ τ ′) (7.9)

where + denotes the elementwise sum of streams (Exercise 88), by using Pascal’s rule for
binomial coefficients: (

n

k

)
+

(
n

k + 1

)
=

(
n+ 1

k + 1

)
In Exercise 108, we shall see that ⊗ is the only function satisfying (7.9). In Section 12.4,
the shuffle product will be studied in more detail.

Exercise 95. Consider an arbitrary stream σ ∈ Aω. What is the smallest stream system
(S, 〈o, tr〉) with the property that σ = JsK, for some s ∈ S?

7.4 Coinduction: the bisimulation proof method

Finality of Aω gives rise to the following proof principle.

Theorem 96 (coinduction proof principle for streams). For all streams σ, τ ∈ Aω,

σ ∼ τ ⇐⇒ σ = τ

Proof: Taking (S, 〈o, tr〉) = (Aω, 〈ist, dst〉) in Theorem 84, this follows from the fact
that the identity map is the only homomorphism from (Aω, 〈ist, dst〉) to itself.

By the implication from left to right in Theorem 96 above:

σ ∼ τ =⇒ σ = τ (7.10)

one can prove the equality of two streams σ and τ by finding a bisimulation R ⊆ Aω ×Aω
with (σ, τ) ∈ R. Using the characterisation of stream bisimulation relations in (7.3), this

Chapter 7. Stream systems 61

amounts to the construction of a relation R ⊆ Aω×Aω such that (σ, τ) ∈ R, and such that
for all (α, β) ∈ R,

(i) α(0) = β(0) and (ii) (α′, β′) ∈ R (7.11)

This method of proving equality by the construction of a bisimulation relation is often
called the bisimulation proof method. Since such proofs are in a precise sense – explained in
Chapter 4 – dual to proofs by induction, they are also called coinductive or: by coinduction.

The intuition behind proofs by coinduction is that in order to prove that two streams
are the same, it suffices to show that they behave the same. And showing that two streams
behave the same amounts precisely to finding a bisimulation relating them.

We present a number of examples of proofs by coinduction. All streams and stream
functions used in these examples have been introduced in Example 86.

Example 97. (1) Let A = {a, b}. We shall prove

even((ab)ω) = aω

by coinduction. We always start the construction of a candidate bisimulation relation with
the set containing the pair(s) of streams that we want to prove equal. So let R be the
following singleton set:

R = { (even((ab)ω), aω) }

In order to show that R is a stream bisimulation relation, we have to demonstrate (7.11)
above. For (7.11)(i), we note that

even((ab)ω)(0) = (ab)ω(0) = a = aω(0)

and for (7.11)(ii) we have

even((ab)ω)′ = even(((ab)ω)′′) = even(((ba)ω)′) = even((ab)ω)

Since (aω)′ = aω, it follows that

(even((ab)ω)′, (aω)′) ∈ R

Thus R is a stream bisimulation relation, which proves even((ab)ω) ∼ aω. The equality
even((ab)ω) = aω now follows by coinduction (7.10).

(2) Next we prove by coinduction that

zip(aω, bω) = (ab)ω

Again we start with the corresponding singleton relation:

R = { (zip(aω, bω), (ab)ω) }

62 7.4. Coinduction: the bisimulation proof method

for which we try to establish (7.11) above. Computing initial values gives

zip(aω, bω)(0) = aω(0) = a = (ab)ω(0)

which proves (7.11)(i). Computing derivatives

zip(aω, bω)′ = zip(bω, (aω)′) = zip(bω, aω) ((ab)ω)′ = (ba)ω

we find that
(zip(aω, bω)′, ((ab)ω)′) = (zip(bω, aω), (ba)ω) 6∈ R

which contradicts (ii) in (7.11) above. The way out is as simple as it is generally applicable:
we extend the relation R with the pair of derivatives that we have just found, by defining

S = R ∪ { (zip(bω, aω), (ba)ω) }

Next we check whether the new candidate relation S is a bisimulation. We had already
established (i) for the pair of streams in R. Note that by extending R to S we have trivially
proved (ii) for this pair as well. Thus what remains to be proved are (i) and (ii) for the
newly added pair. Computing initial values gives

zip(bω, aω)(0) = b = (ba)ω(0)

which proves (i). For (ii), we compute the derivatives

(zip(bω, aω)′, ((ba)ω)′) = (zip(aω, bω), (ab)ω) ∈ S

Thus S is a bisimulation and the equality we set out to prove follows by coinduction. We
have in fact proved two equalities, one for each pair in S:

zip(aω, bω) = (ab)ω zip(bω, aω) = (ba)ω

(3) Extending a candidate bisimulation relation with missing pairs will most certainly
not allow us to prove the equality of just any pair of streams: condition (i) of a bisimulation
relation will prevent that. For example, let A = {a, b, c} and consider the streams (ab)ω

and (ac)ω. With the aim of proving (ab)ω = (ac)ω by coinduction, let

R = { ((ab)ω, (ac)ω) }

Both streams in this pair have the same initial value a. Computing the pair of derivatives
gives ((ba)ω, (ca)ω), which is not in R. As before, we define a new candidate bisimulation
relation by

S = R ∪ { ((ba)ω, (ca)ω) }

Trying to prove that S is a bisimulation will now fail: the initial values of the streams in
the newly added pair are b and c, which are different. We have proved that the streams
(ab)ω and (ac)ω are not equal and we have done so by giving a counter-example to their

Chapter 7. Stream systems 63

equality: the attempt of constructing a bisimulation relation led to the observation that
these streams differ in their second element. Trivial as this may be for the present example,
it illustrates that coinduction is also a very useful principle for disproving equalities.

(4) The next example deals with the equality of two stream functions :

even ◦ zip : (Aω × Aω)→ Aω π1 : (Aω × Aω)→ Aω

(even ◦ zip)(σ, τ) = even(zip(σ, τ)) π1(σ, τ) = σ

For a proof by coinduction that

even(zip(σ, τ)) = σ (σ, τ ∈ Aω)

we consider the following infinite relation:

R = { (even(zip(σ, τ)), σ) | σ, τ ∈ Aω }

To prove that R is a stream bisimulation, let (even(zip(σ, τ)), σ) ∈ R, for arbitrary but
fixed σ, τ ∈ Aω. Computing initial values gives

even(zip(σ, τ))(0) = zip(σ, τ)(0) = σ(0)

which proves (i) in (7.11) above. For the derivatives, we have

even(zip(σ, τ))′ = even(zip(σ, τ)′′) = even(zip(τ, σ′)′) = even(zip(σ′, τ ′))

We see that
(even(zip(σ, τ))′, σ′) = (even(zip(σ′, τ ′)), σ′) ∈ R

which proves (7.11)(ii). Since the pair we started with, was arbitrary, we have proved that
R is a bisimulation. Now the equality

even ◦ zip = π1

follows by coinduction.

Exercise 98. Show that the function zip ◦ 〈even, odd〉 : Aω → Aω with

zip ◦ 〈even, odd〉(σ) = zip(even(σ), odd(σ))

is a stream homomorphism from (Aω, 〈ist, dst〉 to itself. Use this to prove

zip(even(σ), odd(σ)) = σ

for all σ ∈ Aω. Alternatively, construct a suitable stream bisimulation on Aω to prove the
same fact by coinduction (7.10).

64 7.4. Coinduction: the bisimulation proof method

Exercise 99. For all functions f : A→ A and g : A→ A, prove that

applyg ◦ applyf = applyg◦f

by coinduction.

Exercise 100. Prove by coinduction that the operation of sum σ+τ , as defined in Exercise
88, is commutative and associative.

Exercise 101 (2-step coinduction). Let us call a relation R ⊆ Aω ×Aω a 2-step bisim-
ulation if, for all (σ, τ) ∈ R,

(i) σ(0) = τ(0), σ(1) = τ(1) and (ii) (σ′′, τ ′′) ∈ R

Let ∼2 be the union of all 2-step bisimulation relations. (a) Prove the following principle
of what could be called 2-step coinduction: for all σ, τ ∈ Aω,

σ ∼2 τ =⇒ σ = τ

using the principle of (ordinary) coinduction (7.10). (b) Use 2-step coinduction to prove

exchange(σ) = zip(odd(σ), even(σ))

for all σ ∈ Aω, with exchange as defined in Example 92.

Exercise 102. Use coinduction to prove that the function ‖ : Nω × Nω → Nω introduced
in Exercise 91 is idempotent: σ ‖ σ = σ, commutative: σ ‖ τ = τ ‖ σ, and associative:
(σ ‖ τ) ‖ ρ = σ ‖ (τ ‖ ρ), for all σ, τ, ρ ∈ Nω.

In the following example, we illustrate a general technique that is often helpful in the
construction of suitable bisimulation relation.

Example 103 (distributivity of shuffle product). We show by coinduction that shuffle
product distributes over sum:

σ ⊗ (τ + ρ) = (σ ⊗ τ) + (σ ⊗ ρ) (7.12)

Sum and shuffle product were defined in Exercises 88 and 94, from which we repeat the
following identities:

(σ + τ)(0) = σ(0) + τ(0) (σ + τ)′ = σ′ + τ ′

(σ ⊗ τ)(0) = σ(0) · τ(0) (σ ⊗ τ)′ = (σ′ ⊗ τ) + (σ ⊗ τ ′) (7.9)

Chapter 7. Stream systems 65

We define R ⊆ Nω × Nω by

R = { (σ ⊗ (τ + ρ), (σ ⊗ τ) + (σ ⊗ ρ)) | σ, τ, ρ ∈ Nω }

and check whether R is a bisimulation. The initial values of the streams in every pair
are equal (because the product of natural numbers distributes over sum). Computing
derivatives gives

(σ ⊗ (τ + ρ))′ = (σ′ ⊗ (τ + ρ)) + (σ ⊗ (τ + ρ)′)

= (σ′ ⊗ (τ + ρ)) + (σ ⊗ (τ ′ + ρ′))

((σ ⊗ τ) + (σ ⊗ ρ))′ = (σ ⊗ τ)′ + (σ ⊗ ρ)′

= ((σ′ ⊗ τ) + (σ ⊗ τ ′)) + ((σ′ ⊗ ρ) + (σ ⊗ ρ′))
= ((σ′ ⊗ τ) + (σ′ ⊗ ρ)) + ((σ ⊗ τ ′) + (σ ⊗ ρ′))

where in the last equality we have used the fact that + is commutative and associative
(Exercise 100). Clearly, the resulting pair of derivatives

((σ ⊗ (τ + ρ))′ , ((σ ⊗ τ) + (σ ⊗ ρ))′) =

((σ′ ⊗ (τ + ρ)) + (σ ⊗ (τ ′ + ρ′)) , ((σ′ ⊗ τ) + (σ′ ⊗ ρ)) + ((σ ⊗ τ ′) + (σ ⊗ ρ′)))

is not in R, and so R is not a bisimulation. Note, however, that the latter pair is of the
shape

(α1 + α2, β1 + β2)

for streams α1, α2, β1, β2 with (α1, β1) ∈ R and (α2, β2) ∈ R. This suggests the definition
of the following extension of R. We define R+ ⊆ Nω×Nω as the smallest relation satisfying

1. R ⊆ R+

2. if (α1, β1) ∈ R+ and (α2, β2) ∈ R+ then (α1 + α2, β1 + β2) ∈ R+

It is now straightforward to prove that R+ is a bisimulation, which implies (7.12), by
coinduction.

Exercise 104. Prove the distributivity of ⊗ over + without coinduction, using the defining
Equation (7.8) from Exercise 94.

The relation R in the coinductive proof in Example 103 above is not a bisimulation,
but its closure under sum, R+, is. For that reason, we call such a relation R a bisimulation
up-to-sum.

66 7.4. Coinduction: the bisimulation proof method

Definition 105 (bisimulation up-to-sum). A relation R ⊆ Nω × Nω is called a bisim-
ulation up-to-sum if, for all (σ, τ) ∈ R,

(i) σ(0) = τ(0) and (ii) (σ′, τ ′) ∈ R+

where R+ ⊆ Nω × Nω is the smallest relation such that

1. R ⊆ R+

2. if (α1, β1) ∈ R+ and (α2, β2) ∈ R+ then (α1 + α2, β1 + β2) ∈ R+

Proposition 106 (coinduction up-to-sum). If R ⊆ Nω×Nω is a bisimulation up-to-sum
and (σ, τ) ∈ R, then σ = τ .

Proof: If R is a bisimulation up-to-sum, then one easily shows that R+ is a bisimula-
tion, by induction on its definition. Since (σ, τ) ∈ R ⊆ R+, the equality σ = τ follows by
coinduction, Theorem 96.

The notion of bisimulation up-to-sum and the corresponding proof principle of coin-
duction up-to-sum are particular instances of a far more general situation, in which a
coalgebraic structure – here the coalgebra of streams – is combined with an algebraic
structure – here streams together with the operation sum.

Exercise 107 (associativity of shuffle product). For all σ, τ, ρ ∈ Nω,

(σ ⊗ τ)⊗ ρ = σ ⊗ (τ ⊗ ρ)

Prove this, first without coinduction, using the defining Equation (7.8) from Exercise 94,
and then by coinduction up-to-sum, using the identities in (7.9).

Exercise 108. Use coinduction up-to-sum to prove that if two functions f, g : Nω ×Nω →
Nω both satisfy the same equations as the shuffle product ((7.9) in Exercise 94):

f(σ, τ)(0) = σ(0) · τ(0) f(σ ⊗ τ)′ = f(σ′, τ) + f(σ, τ ′)

g(σ, τ)(0) = σ(0) · τ(0) g(σ ⊗ τ)′ = g(σ′, τ) + g(σ, τ ′)

then they must be equal: f = g.

Chapter 7. Stream systems 67

7.5 Moessner’s Theorem

As a further illustration of the power of the coinduction proof method, we present a coin-
ductive proof of an entertaining and non-trivial characterisation of the family of streams

(1n, 2n, 3n, . . .) (n > 2)

It is well-known that if, from the stream of positive natural numbers,

nat = (1, 2, 3, . . .)

one drops every second element, obtaining the stream of odd natural numbers,

(1, 3, 5, . . .)

and finally one forms the corresponding stream of its partial sums,

(1, 1 + 3, 1 + 3 + 5, . . .)

then one has obtained the stream of all the positive natural numbers squared:

(12, 22, 32, . . .)

The cubes of the natural numbers can be obtained in a similar fashion, by dropping from
the stream of positive natural numbers every third element, obtaining

(1, 2, 4, 5, 7, 8, . . .)

then forming the corresponding stream of partial sums:

(1, 1 + 2, 1 + 2 + 4, . . .)

and then, as above, dropping every second element:

(1, 7, 19, . . .)

and finally forming the corresponding stream of partial sums again:

(1, 1 + 7, 1 + 7 + 19, . . .)

One then has obtained the stream of all positive natural numbers cubed:

(13, 23, 33, , . . .)

Moessner [Moe51] described how the above procedure of repeatedly alternating a drop
and a partial sum operation can be generalised to obtain the stream

(1n, 2n, 3n, . . .)

68 7.5. Moessner’s Theorem

for every n > 1: drop every nth element and form the subsequent stream of partial sums,
then drop every (n− 1)th element and form the subsequent stream of partial sums, etc.

Below we shall first formalise Moessner’s procedure by introducing corresponding stream
functions. Then we shall prove the theorem by coinduction up-to-sum (Proposition 106).

First, we define the following family of drop operators :

Dn : Nω → Nω (n > 2)

Dn(σ) = (σ(0), . . . , σ(n− 2), σ(n), . . . , σ(2n− 2), σ(2n), . . .) (7.13)

which drop the elements

(σ(n− 1), σ(2n− 1), σ(3n− 1), . . .)

from the stream σ. Then we define the operator of partial sums :

Σ: Nω → Nω

Σ(σ) = (σ(0), σ(0) + σ(1), σ(0) + σ(1) + σ(2), . . .) (7.14)

Finally, we define the Hadamard product :

� : (Nω × Nω)→ Nω

σ � τ = (σ(0) · τ(0), σ(1) · τ(1), σ(2) · τ(2), . . .) (7.15)

We define
1 = (1, 1, 1, . . .)

and note that 1� σ = σ.

Notation 109. We will write

σ〈0〉 = 1 σ〈k+1〉 = σ〈k〉 � σ

Note the difference between σ〈n〉 and σ(n) : the latter is the notation for higher-order stream
derivatives, introduced in Definition 76.

Moessner’s Theorem can now be formally expressed as the following equality of streams:

ΣD2ΣD3 · · ·ΣDn nat = nat〈n〉 (7.16)

for all n > 2. Note that on the left, we are using the following notationally convenient
shorthand:

ΣD2ΣD3 · · ·ΣDn nat = (Σ ◦D2 ◦ Σ ◦D3 ◦ · · · ◦ Σ ◦Dn) (nat)

It will furthermore be convenient to reformulate this expression as follows:

ΣD2ΣD3 · · ·ΣDn nat = ΣD2ΣD3 · · ·ΣDnΣ 1 (since nat = Σ(1))

= ΣD2ΣD3 · · ·ΣDnΣDn+1 1 (since 1 = Dn+1(1))

All in all, we have obtained the following formalisation of Moessner’s theorem.

Chapter 7. Stream systems 69

Theorem 110 (Moessner).

ΣD2ΣD3 · · ·ΣDn+1 1 = nat〈n〉 (n > 1)

Exercise 111. Try and prove ΣD2ΣD3 1 = nat � nat without coinduction. The same
question for ΣD2ΣD3ΣD4 1 = nat� nat� nat. Any thoughts about the general case?

Before embarking on a coinductive proof of Theorem 110, we first collect a number of
basic properties of the operators above. For the drop operators, we have

Dn(σ)(i) = σ(i) (0 6 i 6 n− 2)

Dn(σ)(n−1) = Dn

(
σ(n)

)
(7.17)

(Higher-order stream derivatives were defined in Definition 76.) For the stream of partial
sums, we have

Σ(σ)(0) = σ(0) Σ(σ)′ = σ(0) + Σ(σ′) (7.18)

with

m = (m,m,m, . . .) (m > 0)

For the higher-order derivatives of Σ(σ), we have, for all k > 1,

Σ(σ)(k) = σ[k] + Σ(σ(k)) (7.19)

where we write
σ[k] = σ(0) + σ(1) + · · ·+ σ(k − 1) (7.20)

The proof of identity (7.19) is straightforward and uses, for all l,m > 0,

l +m = l +m

If we define
kσ = (k · σ(0), k · σ(1), k · σ(2), . . .)

then

(k + l)σ = kσ + lσ k = k1

Exercise 112. Let f : Nω → Nω be a function on streams satisfying

f(σ)(0) = σ(0) f(σ)′ = σ′ + f(σ)

Show that f(σ) = Σ(σ). (The above equation was suggested by Jurriaan Rot.)

70 7.5. Moessner’s Theorem

Both Dn and Σ preserve sums:

Dn(σ + τ) = Dn(σ) + Dn(τ) Σ(σ + τ) = Σ(σ) + Σ(τ) (7.21)

Furthermore,

Dn(kσ) = k Dn(σ) Σ(kσ) = kΣ(σ) (7.22)

The Hadamard product satisfies

(σ � τ)(0) = σ(0) · τ(0) (σ � τ)′ = σ′ � τ ′

Moreover, Hadamard product is commutative and associative, and distributes over sum:

σ � (τ + ρ) = (σ � τ) + (σ � ρ)

Finally, we observe that for the stream nat, we have

nat′ = (1, 2, 3, . . .)′

= (2, 3, 4, . . .)

= (1, 1, 1, . . .) + (1, 2, 3, . . .)

= 1 + nat (7.23)

Exercise 113. Warming up: prove ΣD2ΣD3 1 = nat� nat by coinduction.

Now we are sufficiently prepared to prove Moessner’s Theorem 110. We define

R ⊆ Nω × Nω

by

R = {(1, 1)} ∪ {
(

ΣD2ΣD3 · · ·ΣDn+1 1, nat〈n〉
)
| n > 1} (7.24)

We will show that R is a bisimulation up-to-sum, satisfying conditions (i) and (ii) from
Definition 105. For (i), we observe that the initial values of all streams in R are 1. For (ii),
we compute the derivatives of all streams in R. Starting with the stream nat〈n〉, we have

(nat〈n〉)′ = (nat′)〈n〉

= (1 + nat)〈n〉 (by (7.23))

=

(
n

0

)
1 +

(
n

1

)
nat +

(
n

2

)
nat〈2〉 + · · ·+

(
n

n

)
nat〈n〉 (7.25)

Chapter 7. Stream systems 71

We will be able to conclude that R satisfies (ii) from Definition 105 if we can prove that(
ΣD2ΣD3 · · ·ΣDn+1 1

)′
(7.26)

=

(
n

0

)
1 +

(
n

1

)
ΣD2 1 +

(
n

2

)
ΣD2ΣD3 1 + · · · +

(
n

n

)
ΣD2ΣD3 · · ·ΣDn+1 1

To this end, we compute as follows:

(ΣD2ΣD3ΣD4 · · ·ΣDn+11)′

= (D2ΣD3ΣD4 · · ·ΣDn+1 1)[1] + Σ(D2ΣD3ΣD4 · · ·ΣDn+1 1)′ (by (7.19))

= a0 + ΣD2(ΣD3ΣD4 · · ·ΣDn+1 1)(2) (by (7.17))

where
a0 = (D2ΣD3ΣD4 · · ·ΣDn+1 1)[1]

the value of which we will worry about in a second. We continue with

= a0 + ΣD2

(
(D3ΣD4 · · ·ΣDn+1 1)[2] + Σ(D3ΣD4 · · ·ΣDn+1 1)(2)

)
(by (7.19))

= a0 + ΣD2

(
a1 + ΣD3(ΣD4 · · ·ΣDn+1 1)(3)

)
(by (7.17))

= a0 + (ΣD2a1) +
(
ΣD2ΣD3(ΣD4 · · ·ΣDn+11)(3)

)
(by (7.21))

with
a1 = (D3ΣD4 · · ·ΣDn+1 1)[2]

Continuing this way, we ultimately arrive at

= · · ·
= a0 + (ΣD2a1) + · · · + (ΣD2ΣD3 · · ·ΣDn an−1) +

(
ΣD2ΣD3 · · ·ΣDn+1 (1)(n+1)

)
where

ai = (Di+2ΣDi+3 · · ·ΣDn+11)[i+ 1] (0 6 i 6 n− 1)

Since
1

(n+1)
= 1

the (n+ 1)th derivative evaporates in the next step, yielding

= a0 + (ΣD2a1) + · · · + (ΣD2ΣD3 · · ·ΣDnan−1) +
(
ΣD2ΣD3 · · ·ΣDn+11

)
Finally, we use

ΣDim = mΣDi 1 (m > 0)

to obtain:

= a01 +
(
a1ΣD2 1

)
+ · · · +

(
an−1ΣD2ΣD3 · · ·ΣDn 1

)
+
(
ΣD2ΣD3 · · ·ΣDn+1 1

)

72 7.5. Moessner’s Theorem

We conclude the proof of (7.26) by showing that

ai =

(
n

i

)
(0 6 i 6 n− 1)

By the definition of ai above, this is equivalent to

(
Dk+1ΣDk+2Σ · · ·DnΣDn+1 1

)
[k] =

(
n

k − 1

)
(7.27)

for all n > 1 and 1 6 k 6 n, which we prove next. We begin by observing that(
Dk+1ΣDk+2Σ · · ·DnΣDn+1 1

)
[k] = Σn−k (1) [k] (7.28)

where as usual,

Σ0 = id Σm+1 = Σ ◦ Σm

Identity (7.28) follows from the observation that, for any stream σ, the value of

σ[k] = σ(0) + σ(1) + · · ·+ σ(k − 1)

depends on only the first k values of σ. The proof of (7.27) is then concluded with

Σn−k (1) [k] = Σn−k+1
(
1
)

(k − 1) =

(
n

n− k + 1

)
=

(
n

k − 1

)
where the second equality follows from Pascal’s triangle: for all m > 1,

Σm
(
1
)

= (

(
m

m

)
,

(
m+ 1

m

)
,

(
m+ 2

m

)
, . . .) (7.29)

This concludes our proof that R, defined in (7.24), is a bisimulation up-to-sum. Moessner’s
Theorem 110 now follows by coinduction up-to-sum, Proposition 106.

Exercise 114. Prove identity (7.29).

Exercise 115. Prove the following generalisation of Moessner’s Theorem, due to Long
and Salié: for all n, a, d > 1,

ΣD2ΣD3 · · ·ΣDn+1 (a, d, d, d, . . .) = (Σ (a, d, d, d, . . .))� nat〈n−1〉 (7.30)

Chapter 7. Stream systems 73

7.6 The heart of the matter: circularity

Moessner’s Theorem is formulated as the equality of two streams: for all n > 1,

ΣD2ΣD3 · · ·ΣDn+1 1 = nat〈n〉 (Theorem 110)

We proved, by coinduction up-to-sum, that these two streams are the same by showing
that they behave the same. And we proved that they behave the same by constructing
a bisimulation relation up-to-sum, which can be viewed as a witness of the behavioural
equivalence of the two streams.

The behaviour of any stream σ consists of a transition to its derivative σ′ in combination
with an output, given by its initial value σ(0). With a picture, we can represent the
transitions of σ to its consecutive derivatives σ′, σ(2), σ(3), . . . as

σ // σ′ // σ(2) // σ(3) // · · ·

Here and below, we omit the respective outputs σ(i) from this graphical representation of
the behaviour of a stream σ.

For instance, for the stream 1 = (1, 1, 1, . . .), which is the starting point of Moessner’s
construction, we have

1 // 1 // 1 // · · ·

or, equivalently:

1
yy

(7.31)

We clearly prefer the second picture because it is finite and because of its graphical emphasis
on the circularity of the behaviour of 1. For the stream nat = (1, 2, 3, . . .), we have

nat // 1 + nat (nat′ = 1 + nat, identity (7.23))

There is implicit circularity also in this picture, since the stream nat occurs both at the
left and at the right of the transition arrow. Using the algebraic operation of sum:

+: (Nω × Nω)→ Nω

we can make this circularity explicit by splitting the transition from nat to 1 + nat into two
transitions, as follows:

nat nat1oo 1 // 1

Writing the left transition as a self arrow, and combining this picture with that of (7.31)
above, we obtain the following graphical representation of the behaviour of nat:

nat1

** 1 // 1 1ee

74 7.6. The heart of the matter: circularity

More generally, if the derivative of a stream σ ∈ Nω can be split into a finite number of
summands:

σ′ = k0τ0 + k1τ1 + · · · + kmτm

for ki > 0 and τi ∈ Nω, then we will write

σk0

��

k1
��

km

##
τ0 τ1 · · · τm

We shall see later, in Chapter 14, that this is actually a graphical notation for so-called
weighted stream automata, but for now, we simply view it as a convenient representation
of derivatives that can be written as finite sums.

Using this notation, we can represent the behaviour of function applications, such as
Σ(nat) and D2(nat), as well: since

Σ(nat)′ = 1 + Σ
(
1 + nat

)
= 1 + nat + Σ(nat)

D2(nat)′ = D2

(
nat(2)

)
= D2

(
2 + nat

)
= 2(1) + D2(nat)

we have

Σ(nat) 1 //

1

		

1

66nat

1

�� 1 // 1 1ee D2(nat) 2 //

1

		

1 1ee

Returning now to the proof of Moessner’s Theorem, the characterisation of the derivative
of nat〈n〉, in (7.25), can be expressed by the following picture:

1(0
0)

%%
nat

(1
0)

oo

(1
1)

EE nat〈2〉
(2
1)

oo

(2
0)

yy

(2
2)
��

· · ·
(3
2)

oo nat〈n〉

(n
n)
��(n

n−1)
oo

(n
2)

mm

(n
1)

ii

(n
0)

ee

Based on (7.26), the derivative of ΣD2ΣD3 · · ·ΣDn+1 1 gives rise to exactly the same
picture. Because of the structural similarity between the split derivatives of both streams
in the equation of Moessner’s Theorem 110, it was possible to define a bisimulation up-to-
sum relation R, in (7.24), and thereby prove the theorem by coinduction up-to-sum.

Chapter 7. Stream systems 75

Exercise 116 (factorial numbers). Observe that the stream φ = (0!, 1!, 2!, . . .) satisfies

φ′ = φ� nat (7.32)

Use Equation (7.32) to prove that

φ
(0
0)

// φ1

(1
0)

��

(1
1)

((
φ2

(2
0)

oo

(2
1)

��

(2
2)

((· · · φn

(n
n−1)

��(n
n−2)

oo

(n
1)

kk

(n
0)

ff

(n
n)

// φn+1

where φn = φ� nat〈n〉.

Example 117 (Paasche’s Theorem). Moessner’s construction uses drop operators

Dn : Nω → Nω (n > 2)

satisfying

Dn(σ)(i) = σ(i) (0 6 i 6 n− 2)

Dn(σ)(n−1) = Dn

(
σ(n)

)
((7.17))

The operators Dn drop elements at regular intervals of length n. The following operators

dn : Nω → Nω (n > 2)

are similar but drop elements at intervals of increasing length:

dn(σ)(i) = σ(i) (0 6 i 6 n− 2)

dn(σ)(n−1) = dn+1

(
σ(n)

)
On the right, we now have dn+1 instead of dn, implying that a next element will be dropped
after n+ 1 instead of n elements. For instance, we have

d2(nat) = (1, 6 2, 3, 4, 6 5, 6, 7, 8, 6 9, . . .)

The operators dn are used in the following variant of Moessner’s construction, called
Paasche’s Theorem. Starting again with the stream 1 of ones, we construct a new stream
π by repeatedly carrying out the following procedure. We take the initial value of 1 and
define

π(0) = 1(0) = 1 = 0!

Next we take the derivative of 1 and apply first d2 and then Σ to it, yielding:

Σ
(
d2

(
1
′
))

= Σ
(
d2

(
1
))

= Σ
(
1
)

= nat

76 7.6. The heart of the matter: circularity

We continue by applying the same procedure to the resulting stream nat. We define

π(1) = nat(0) = 1 = 1!

and compute

Σ (d2 (nat′)) = Σ (d2 ((2, 3, 4, . . .))) = Σ(2, 4, 5, 7, 8, 9, . . .) = (2, 6, 11, 18, 26, . . .)

Then we define
π(2) = (2, 6, 11, 18, 26, . . .)(0) = 2 = 2!

and continue with

Σ (d2 ((2, 6, 11, 18, 26, . . .)′)) = Σ (d2 ((6, 11, 18, 26, . . .))) = (6, 24, . . .)

The next value of π is
π(3) = (6, 24, . . .)(0) = 6 = 3!

and so on. Paasche proved that the result of this procedure is π = (0!, 1!, 2!, . . .).

Exercise 118 (proof of Paasche’s Theorem). The construction in Example 117, of
repeatedly taking the initial value of a stream and then continuing with applying Σ after
d2 to its derivative, can be formalised as follows. If we define

P : Nω → Nω P (σ)(0) = σ(0) P (σ)′ = P (Σ (d2 (σ′)))

and

π = P
(
1
)

φ = (0!, 1!, 2!, . . .)

then Paasche’s Theorem is the following equality:

π = φ (7.33)

Towards a proof by coinduction, let

πn = PΣd2Σd3 · · ·Σdn+1 1 (n > 2)

By definition of P , we have π′ = π1. Prove, for all n > 2,

πn
′ =

(
n

0

)
π1 +

(
n

1

)
π2 +

(
n

2

)
π3 + · · · +

(
n

n− 1

)
πn +

(
n

n

)
πn+1 (7.34)

Recall the definition of φn = φ� nat〈n〉 from Exercise 116 and show that

{(π, φ)} ∪ {(πn, φn) | n > 1} (7.35)

is a bisimulation up-to-sum. Paasche’s Theorem follows by coinduction up-to-sum.

Chapter 7. Stream systems 77

7.7 Discussion

The present chapter is based on [Rut03a, Rut05a]. The first proof of Moessner’s Theo-
rem was given by Perron [Per51]. An alternative proof and further generalisations were
provided by Paasche [Paa52] and Salié [Sal52]. All these proofs are based on a detailed
bookkeeping of the elements of all the intermediate streams, and use nested inductions,
involving binomial coefficients and falling factorial numbers. More details about the clas-
sical proofs of Moessner’s theorem can be found in recent work [Hin08, Hin11] by Hinze,
in which he has given a new proof of Moessner’s theorem (and its generalisations), in a
calculational style. In [KS13], Kozen and Silva give a short algebraic proof, using multi-
variate generating functions, of a general theorem that contains Moessner’s and Paasche’s
theorems (and some further generalisations) as special cases. A first proof of Moessner’s
theorem by coinduction, rather more complicated than the one presented above, was given
by Niqui en Rutten [NR11]; (a minor variation of) that proof was later formally verified
by Krebbers, Parlant and Silva [KPS16], using the theorem prover COQ.

78 7.7. Discussion

Chapter 8

Deterministic automata

Let A be a set and 2 = {0, 1}. A deterministic automaton with outputs in 2 and inputs
from A is a pair

(S, 〈o, tr〉) 〈o, tr〉 : S → 2× SA o : S → 2 tr : S → SA

consisting of a set S of states and a structure map 〈o, tr〉. This structure map is a pair
consisting of an output function o and a transition function tr. The output function o maps
every state s ∈ S to an output o(s) ∈ 2. The transition function

tr : S → SA SA = { f | f : A→ S }
assigns to every state s ∈ S a function tr(s) : A→ S that maps any input a ∈ A to a next
state tr(s)(a) ∈ S. In the present chapter, we shall call a deterministic automaton with
outputs in 2 and inputs from A simply by the name automaton.

The transition function of deterministic automata differs from that of stream systems
in that it depends on inputs. As a consequence, the behaviour of automata will be charac-
terised in terms of languages over the set of inputs A. The set P(A∗) of all such languages
turns out to be a final automaton. The present chapter offers further possibilities to
become familiar with both definitions and proofs by coinduction.

The present automata are called deterministic because applying the transition function
tr to s ∈ S and a ∈ A yields a unique successor state tr(s)(a). In Chapter 10, we shall
discuss automata with non-deterministic transitions, where on the same input, different
states may be reached.

The output of a deterministic automaton is either 0 or 1, and depends only on the
present state and not on the input. In Chapter 13, we shall discuss Mealy automata, which
are more general in allowing arbitrary sets of outputs, and in which the output of a state
may depend on the input.

Remark 119. For those who have already read Chapters 2 to 5: deterministic automata
are coalgebras of the functor

dA : Set→ Set dA(S) = 2× SA (S ∈ Set)

dA(f) :
(
2× SA

)
→
(
2× TA

)
dA(f) = 1× fA (f : S → T)

79

80 8.1. Basic definitions

with (
1× fA

)
((a, g)) = (a, f ◦ g)

for a ∈ 2 and g : A→ S.

8.1 Basic definitions

For an automaton (S, 〈o, tr〉), the following notation is often convenient:

sε = s sw·a = tr(sw)(a) (s ∈ S, w ∈ A∗)

where ε denotes the empty word. We call sw the state reached from the state s on input
w. We denote transitions of automata by

s
a // t ⇐⇒ t = sa

which we read as: when the automaton is in the state s and receives input a, it makes a
transition to the state t. We will use also transitions with more than one label, such as

s
a,b

// t ⇐⇒ s
a // t and s

b // t

Since outputs of automata are binary, it suffices in diagrams of automata to mark only
those states s ∈ S with o(s) = 1, which we shall do by simply underlining them.

Example 120. Let A = {a, b}. Here is an example of an automaton:

(S, 〈o, tr〉) = s0

a
''

b

��
s1

a //

b

gg s2

a,b

The definitions of o and tr can be read from the diagram: o(s0) = o(s1) = 0 and o(s2) = 1
and, for instance, (s1)b = tr(s1)(b) = s0 and (s2)a = tr(s2)(a) = s2.

The behaviour of automata can be conveniently described in terms of the acceptance of
languages, that is, sets of words of inputs. Automata are therefore also called language ac-
ceptors. As we shall see later, in Theorem 153, this definition of the behaviour of automata
will be precisely captured by the final automaton of languages.

Definition 121 (acceptance of words, languages). We call a state s in an automaton
(S, 〈o, tr〉) accepting if o(s) = 1 and non-accepting if o(s) = 0. We say that s accepts a
word w ∈ A∗ if o(sw) = 1. We denote the set of all words accepted by a state s by

l(s) = {w ∈ A∗ | o(sw) = 1}

and we call l(s) the language accepted by s.

Chapter 8. Deterministic automata 81

In other words, a state s accepts a word w = a0a1 · · · an−1 ∈ A∗ if starting in s and
inputting the consecutive inputs in w leads to a sequence of transitions ending in an
accepting state:

s
a0 // sa0

a1 // sa0a1
a2 // · · · an−1

// sw

In this diagram, we have underlined only the accepting state sw. Some of the other states
are possibly accepting as well, but this is irrelevant for the acceptance of w by s. Also note
that an accepting state always accepts the empty word ε.

For the automaton in Example 120, we observe that the state s0 accepts all words that
contain at least two consecutive a’s; s1 accepts all words that either start with a, or start
with b and contain at least two consecutive a’s; and state s2 accepts all words:

l(s0) = {vaaw | v, w ∈ {a, b}∗ }
l(s1) = {aw | w ∈ {a, b}∗ } ∪ {bvaaw | v, w ∈ {a, b}∗ }
l(s2) = {a, b}∗

Exercise 122. Consider the following automaton:

(T, 〈o, tr〉) = t0
a //

b
��

t1 a
//

b
��

t2

a,b

��

Describe the language accepted by the state t0.

Example 123. Consider the following automaton with inputs from A = {0, 1}:

s0

1
**

0

		

s1

1

jj

0

		
s2

1
**

0

JJ

s3

1

jj

0

II

The state s0 accepts the language consisting of all words w ∈ {0, 1}∗ that contain both an
even number of 0’s and an even number of 1’s.

Exercise 124. Describe the languages accepted by the states s1, s2, s3 in the automaton
of Example 123. Design an automaton that accepts all words that have an even number
of 0’s and a number of 1’s that is a multiple of 3.

82 8.2. Homomorphisms and bisimulations of automata

Example 125. Here is an example of an infinite automaton with inputs from A = {a, b}:

s0 a
//

b

��

s1 a
//

b

��

s2 a
//

b

��

s3 a
//

b

��

· · ·

t0

a,b

22 t1
a,b

oo t2
boo

a

jj t3
boo

a

hh · · ·boo

The state s0 of this automaton accepts the following language:

l(s0) = {anbn | n > 0 }

Exercise 126. Describe the languages accepted by each of the states si and ti in the
automaton of Example 125. Design an automaton that accepts the language of all words
that contain the same number of a’s and b’s.

8.2 Homomorphisms and bisimulations of automata

The interaction between different automata can be described by means of homomorphisms
and bisimulations.

Definition 127 (homomorphism of deterministic automata). A homomorphism
f : (S, 〈oS, trS〉) → (T, 〈oT , trT 〉) of deterministic automata is a function f : S → T such
that

S

〈oS, trS〉
��

f
// T

〈oT , trT 〉
��

2× SA
1× fA

// 2× TA

that is, such that oT ◦ f = oS and trT ◦ f = fA ◦ trS, where the function fA : SA → TA is
defined, for g : A→ S, by fA(g) = f ◦ g : A→ T .

If f is a homomorphism then s is accepting iff f(s) is; and if s a // t then f(s) a // f(t).

Chapter 8. Deterministic automata 83

Example 128. Let A = {0, 1} and consider the following two automata:

s0

1

%%

0

��
s1

1 //
0

oo s2

0

gg

1

t0

1
&&

0
��

t1
0

ff

1
��

The function f : {s0, s1, s2} → {t0, t1} defined by

f(s0) = f(s1) = t0 f(s2) = t1

is a homomorphism of automata. Note hat there does not exist a homomorphism in the
opposite direction.

Definition 129 (mono-, epi-, and isomorphisms). A homomorphism of automata
f is called a monomorphism if f is injective; an epimorphism if f is surjective; and an
isomorphism if f has an inverse f−1 that is also a homomorphism.

Exercise 130. Prove that, equivalently, a homomorphism of automata f is a monomor-
phism if for all (with f composable) homomorphisms g and h,

f ◦ g = f ◦ h =⇒ g = h

Similarly, show that a homomorphism f is an epimorphism iff for all (with f composable)
homomorphisms g and h,

g ◦ f = h ◦ f =⇒ g = h

Finally, prove that if a homomorphism f is bijective then it is an isomorphism.

Next we define the notion of bisimulation for automata, in the by now familiar way,
using homomorphisms.

Definition 131 (bisimulation of deterministic automata). A relation R ⊆ S × T is
a bisimulation of deterministic automata (S, 〈oS, trS〉) and (T, 〈oT , trT 〉) if there exists a
structure map

〈oR, trR〉 : R→ 2×RA

such that the projection maps π1 : R→ S and π2 : R→ T are homomorphisms of automata:

S

〈oS, trS〉
��

R

〈oR, trR〉∃
��

π1oo
π2 // T

〈oT , trT 〉
��

2× SA 2×RA

1× πA1
oo

1× πA2
// 2× TA

84 8.2. Homomorphisms and bisimulations of automata

As in the case of stream bisimulation, there is also a relational equivalent of the defini-
tion of bisimulation that is more convenient for actual computations.

Definition 132 (bisimulation of deterministic automata, relational). A relation
R ⊆ S × T is a bisimulation of deterministic automata if, for all (s, t) ∈ R,

(i) oS(s) = oT (t) and (ii) ∀ a ∈ A : (sa, ta) ∈ R (8.1)

where we recall that sa = trS(s)(a) and ta = trT (t)(a).

Exercise 133. Check that both definitions of bisimulation of automata are equivalent.
Also check some of the other properties that we saw earlier, in Chapter 7, for stream
bisimulations, such as: the family of bisimulations is closed under inverse, union and
intersection; the graph of a homomorphism of automata is a bisimulation; etc. etc.

We define the bisimilarity relation between two automata as the union of all bisimula-
tion relations.

Definition 134 (bisimilarity of deterministic automata). The union of all bisim-
ulation relations between two automata (S, 〈oS, trS〉) and (T, 〈oT , trT 〉) is a bisimulation,
called the bisimilarity relation:

∼ =
⋃
{R ⊆ S × T | R is a bisimulation } (8.2)

By definition, ∼ is the greatest bisimulation. If s ∼ t, that is, if there exists a bisimulation
relation R with (s, t) ∈ R, then we call s and t bisimilar.

Bisimilarity captures exactly the notion of behavioural equivalence in terms of language
acceptance: as we shall see shortly, in Corollary 157, two states are bisimilar if and only if
they accept the same language of input words.

Example 135. In the first automaton of Example 128, we have s0 ∼ s1, since

{(s0, s1), (s0, s0), (s1, s1), (s2, s2)}

is a bisimulation of automata. Note that both s0 and s1 accept the same language, con-
sisting of the empty word together with all words ending with a 0. Also note that s0 and
s2 are not bisimilar.

Chapter 8. Deterministic automata 85

Exercise 136. Compute the bisimilarity relation between the first and the second au-
tomaton of Example 128.

Example 137. Here is an automaton with inputs from a one-element set A = {a} and
with no accepting states. The numbered, dashed lines represent six pairs of states that
together form a bisimulation relation between the states s1 and t1:

s1
a //

1

4

s2
a //

25

s3

a

ss

6

3

t1
a

,, t2
a

jj

Note that the numbers indicate the order in which the pairs have been added during the
construction of the bisimulation relation, which started with the pair (s1, t1).

The following notion will help, in many cases such as the one above, to construct a
much smaller relation that already suffices to conclude that two states are bisimilar.

Definition 138 (bisimulation up-to-equivalence). Let (S, 〈o, tr〉) be a deterministic
automaton. A relation R ⊆ S × S is a bisimulation up-to-equivalence if, for all (s, t) ∈ R,

(i) o(s) = o(t) and (ii) ∀ a ∈ A : (sa, ta) ∈ Re (8.3)

where Re ⊆ S × S – the equivalence closure of R – is the smallest relation such that

1. R ⊆ Re

2. Re is an equivalence relation, that is, such that

(a) (s, s) ∈ Re (reflexivity)

(b) if (s, t) ∈ Re then (t, s) ∈ Re (symmetry)

(c) if (s, t) ∈ Re and (t, u) ∈ Re then (s, u) ∈ Re (transitivity)

for all s, t, u ∈ S.

There is the corresponding proof principle.

86 8.2. Homomorphisms and bisimulations of automata

Proposition 139 (coinduction up-to-equivalence). If R ⊆ S × S is a bisimulation
up-to-equivalence and (s, t) ∈ R, then s ∼ t.

Proof: Let R be a bisimulation up-to-equivalence. It suffices to show that its equiva-
lence closure Re is an ordinary bisimulation relation. Thus we have to show that conditions
(i) and (ii) in (8.3) above hold, for all (s, t) ∈ Re. We prove this by induction on the defining
clauses of Re. 1. For all pairs in R, (8.3) holds by the assumption that R is a bisimulation
up-to-equivalence. 2(a). Any pair (s, s) trivially satisfies (8.3). 2(b). Assume that (s, t)
satisfies (8.3). Then o(s) = o(t) and (sa, ta) ∈ Re, for all a ∈ A. This implies, by symmetry
of Re, that (ta, sa) ∈ Re, for all a ∈ A. It follows that (t, s) satisfies (8.3). 2(c). Assuming
that (s, t) and (t, u) satisfy (8.3), it follows, similarly, by the transitivity of Re that (s, u)
satisfies (8.3).

Example 140. Returning to the automaton of Example 137, the construction of the
bisimulation could have stopped after step 4, since the relation consisting of the pairs

{1, 2, 3, 4} = {(s1, t1), (s2, t2), (s3, t1), (s1, t2)}

is a bisimulation up-to-equivalence:

s1
a //

1

4

s2
a //

25

s3

a

ss

3

t1
a

,, t2
a

jj

This follows from the fact that

(s2, t2), (t2, s1), (s1, t1) ∈ {1, 2, 3, 4}e

implies, by transitivity, that (s2, t1) ∈ {1, 2, 3, 4}e, which was the 5th pair to be added.
Thus {1, 2, 3, 4} is a bisimulation up-to-equivalence and we conclude, by Proposition 139,
that s1 and t1 are bisimilar.

Exercise 141. Let n > 3. Consider the following automaton:

s1
a // · · · a // sn

a

tt t1
a // · · · a // tn−1

a

tt

What are the smallest bisimulation and bisimulation up-to-equivalence relations containing
the pair (s1, t1)?

Chapter 8. Deterministic automata 87

As for dynamical and stream systems, there are the following by now familiar connec-
tions between homomorphisms and bisimulations.

Proposition 142 (homomorphisms and bisimulations of deterministic automata).
A function f : S → T is a homomorphism of automata if and only if

graph(f) = {(s, f(s)) ∈ S × T | s ∈ S }

is a bisimulation. If f : S → T is a homomorphism then

ker(f) = {(s, s′) ∈ S × S | f(s) = f(s′)}

is (both an equivalence relation and) a bisimulation. Conversely, if R ⊆ S × S is both a
bisimulation and an equivalence relation, then there exists a unique automaton structure

(S/R, 〈oR, trR〉) oR : S/R→ 2 trR : S/R→ (S/R)A

such that the quotient function

[−]R : S → S/R

which maps a state s to its equivalence class [s]R, is a homomorphism of automata.

The notion of subautomaton is defined as follows.

Definition 143 (subautomata). We call an automaton (V, 〈oV , trV 〉) a subautomaton of
a deterministic automaton (S, 〈oS, trS〉) if V ⊆ S and the inclusion map i : V ⊆ S is a
homomorphism of automata.

Exercise 144. Prove that (V, 〈oV , trV 〉) is a subautomaton of (S, 〈oS, trS〉) iff V is closed
under transitions and oV and trV are the restrictions of oS and trS to the set V . Show that
(V, 〈oV , trV 〉) is a subautomaton of (S, 〈oS, trS〉) iff the diagonal ∆V = {(v, v) | v ∈ V } is
a bisimulation relation of automata.

Exercise 145 (homomorphic (pre)images are subautomata). Let f : S → T be a
homomorphism of automata. Show that f(S) is a subautomaton of T and f−1(T) is a
subautomaton of S.

88 8.2. Homomorphisms and bisimulations of automata

Definition 146 (generated subautomaton). Let (S, 〈oS, trS〉) be an automaton. For
every V ⊆ S, we define the subautomaton generated by V by

(〈V 〉, 〈o, tr〉) o : 〈V 〉 → 2 tr : 〈V 〉 → 〈V 〉A

where
〈V 〉 = {sw | s ∈ V and w ∈ A∗}

and where o and tr are the restrictions of oS : S → 2 and trS : S → SA to the set 〈V 〉.

Exercise 147. Show that the collection of all subautomata of an automaton S is closed un-
der intersections and unions. Show for every V ⊆ S that 〈V 〉 is the smallest subautomaton
of S that contains V .

Next we show that every homomorphism of automata factors through an epimorphism
followed by a monomorphism. The proof will use the following lemma.

Lemma 148. Let S, T , and U be three automata and consider three functions

S g
//

f

''
U

h
// T

with f = h ◦ g.

1. If g is surjective and f and g are homomorphisms, then h is a homomorphism.

2. If h is injective and f and h are homomorphisms, then g is a homomorphism.

Exercise 149. Prove Lemma 148.

Theorem 150 (first isomorphism theorem). For every homomorphism of automata
f : S → T , there exists the following factorization:

S
f

//

f

,,

e

((

T

f(S)

⊆

CC

S/ker(f)

∼=

OO

m

MM

Chapter 8. Deterministic automata 89

Proof: For every function f : S → T , we have such a factorisation, satisfying

e(s) = [s]ker(f)
m([s]ker(f)

) = f(s)

If f is moreover a homomorphism of automata, then S/ker(f) is a quotient automaton,
by Proposition 142, and f(S) is a subautomaton of T , by Exercise 145. This makes the
quotient map e an epimorphism, and the inclusion map ⊆ a monomorphism. By Lemma
148, it follows that f : S → f(S) is an epimorphism; that m is a monomorphism; and that
the bijection between S/ker(f) and f(S) is an isomorphism.

8.3 The final automaton of languages

We define the set of all languages over a set A by

P(A∗) = {λ | λ ⊆ A∗ }
The set P(A∗) can be turned into an automaton as follows.

Definition 151 (initial value, input derivative). We define the initial value λ(ε) of a
language λ ∈ P(A∗) by

λ(ε) =

{
1 if ε ∈ λ
0 if ε 6∈ λ

For a ∈ A, we define the input derivative or a-derivative of λ by

λa = {w ∈ A∗ | aw ∈ λ }
For v ∈ A∗, we define, more generally, the v-derivative of λ by

λv = {w ∈ A∗ | vw ∈ λ }

Next we define two functions

il : P(A∗)→ 2 dl : P(A∗)→ P(A∗)A

il(λ) = λ(ε) dl(λ)(a) = λa (λ ∈ P(A∗), a ∈ A)

Pairing these two functions, we define the automaton of languages by

(P(A∗), 〈il, dl〉)
In this (infinite) automaton, a state λ is accepting if and only if λ(ε) = 1 or equivalently,
ε ∈ λ. The transitions of λ are determined by its input derivatives. For instance, here is a
little fragment (in fact a subautomaton) of the automaton (P(A∗), 〈il, dl〉):

{a, ab, ac} a //

b,c ..

{ε, b, c} b,c
//

a

))

{ε}

a,b,c
��

∅
a,b,c

RR

90 8.3. The final automaton of languages

Exercise 152. Describe the languages accepted by each of the states of the above au-
tomaton.

The automaton of languages is final.

Theorem 153 (finality – languages). For every automaton (S, 〈o, tr〉) there exists a
unique homomorphism J−K : (S, 〈o, tr〉)→ (P(A∗), 〈il, dl〉):

S

∀ 〈o, tr〉
��

∃! J−K
// P(A∗)

〈il, dl〉
��

2× SA
1× J−KA

// 2× P(A∗)A

Proof: We define

J−K : S → P(A∗) JsK = l(s) = {w ∈ A∗ | o(sw) = 1} (s ∈ S, w ∈ A∗)

One easily verifies that J−K is the only function making the diagram above commute.

The final homomorphism J−K assigns to every state s its global behaviour, consisting
of the language l(s) of all words accepted by s.

Exercise 154. Show that in the automaton (P(A∗), 〈il, dl〉) the language accepted by a
state λ ∈ P(A∗) is the language λ itself.

Example 155. Returning to the automaton of Example 120,

s0

a
''

b

��
s1

a //

b

gg s2

a,b

we have

Js0K = {vaaw | v, w ∈ {a, b}∗ }
Js1K = {aw | w ∈ {a, b}∗ } ∪ {bvaaw | v, w ∈ {a, b}∗ }
Js2K = {a, b}∗

The final homomorphism from Theorem 153 maps every state to (a canonical represen-
tation of) its bisimilarity equivalence class, as expressed by the following theorem.

Chapter 8. Deterministic automata 91

Theorem 156. Let (S, 〈o, tr〉) be an automaton. For all s, t ∈ S,

s ∼ t ⇐⇒ JsK = JtK

Proof: The proof is essentially the same as that of the corresponding Theorem 84,
for streams. Consider a bisimulation relation on S, with projections π1, π2 : R → S. By
the definition of bisimulation, the projections are homomorphisms. Composition with J−K
gives two homomorphisms from R to P(A∗). By finality, they must be equal, which proves
the implication from left to right. The converse follows from the fact that the kernel of
every homomorphism of automata is a bisimulation relation, Proposition 142.

We saw in the proof of Theorem 153 that JsK = l(s), which implies the following.

Corollary 157 (coinduction proof principle for automata). Let (S, 〈o, tr〉) be an
automaton. For all s, t ∈ S,

s ∼ t ⇐⇒ l(s) = l(t)

According to Corollary 157, one can prove that two states s1 and t1 in S accept the
same language by showing that they are bisimilar. In other words, if we want to prove
l(s1) = l(t1), it suffices to find a relation R ⊆ S × S with (s1, t1) ∈ R that satisfies
conditions (i) and (ii) from Definition 132: for all (s, t) ∈ R,

(i) oS(s) = oT (t) and (ii) ∀ a ∈ A : (sa, ta) ∈ R

Similar to Theorem 96, Corollary 157 is directly based on finality, here of the automaton
of languages. It is in a precise sense, explained in Chapter 4, dual to the principle of
induction. Therefore we call it the coinduction proof principle for automata.

Example 158. Consider the following two automata:

s0
a

""

b

��

s1

b
++

a

��

s2

a

��

b

ss

s3

a

II

b

33 s4
boo

a
II

s5
aoo

b

HH

t0

a,b

��

t1
aoo b // t2

a
))

b

��

t3
a //

b

ii t4

b
))

a

��

t5
a

ii

b

rr

As a first illustration of the coinduction proof principle for automata, we will prove

l(s0) = l(t0)

92 8.3. The final automaton of languages

by constructing a bisimulation relation containing the pair (s0, t0). We start our construc-
tion by considering the relation

R0 = {(s0, t0)}

The pair (s0, t0) satisfies condition (i) of (8.1) above, since both s0 and t0 are accepting. In
order to check condition (8.1)(ii), we compute the a- and b-derivatives of s0 and t0. This
gives two new pairs (s4, t0) and (s3, t0), which are not in R0. We extend R0 by simply
adding the new pairs:

R1 = R0 ∪ {(s4, t0), (s3, t0)}

The newly added pairs both satisfy condition (i), since all of s4, t0 and s3 are accepting.
In order to check condition (ii), for the newly added pairs, we again compute the a- and
b-derivatives, yielding (s4, t0) and (s3, t0), for (s4, t0), and (s0, t0) and (s3, t0), for (s3, t0).
All of these pairs are contained in R1, so we conclude that R1 is a bisimulation relation.
Now l(s0) = l(t0) follows by coinduction, Corollary 157.

In a similar fashion, one can prove l(s1) = l(t1) by constructing a bisimulation relation
S with (s1, t1) ∈ S. Starting with that pair and adding all elementwise w-derivatives
((s1)w, (t1)w), for all w ∈ A∗, we obtain

S = { (s1, t1), (s4, t0), (s3, t0), (s0, t0), (s2, t2), (s5, t3), (s4, t4), (s3, t5), (s0, t4) }

By construction, S is closed under transitions. And since for all pairs (x, y) ∈ S, x is
accepting iff y is accepting, we conclude that conditions (i) and (ii) from (8.1) are satisfied.
Thus S is a bisimulation relation and l(s1) = l(t1) follows by coinduction, Corollary 157.

Finally, we show how the attempt to construct a bisimulation between two states may
also lead to a proof that they accept different languages. For a simple example, let us
try to find a bisimulation relation containing the pair (s1, t4). Starting with the singleton
relation U = {(s1, t4)}, we observe that condition (i) from (8.1) is satisfied since both s1

and t4 are accepting. Computing a- and b-derivatives gives the pairs (s4, t4) and (s2, t5).
Adding these pairs to U will now not yield a bisimulation relation, however, since t5 is
accepting whereas s2 is not. Since both pairs of derivatives (s4, t4) and (s2, t5) have to be
contained in any bisimulation relation that contains the starting pair (s1, t4), we conclude
that there exist no such relation. As a consequence, we conclude that l(s1) 6= l(t4), again
by Corollary 157.

On the positive side, we note that our attempt to construct a bisimulation relation
for the pair (s1, t4) presents us with a witness for the inequality of l(s1) and l(t4): since
(s1)b = s2 and (t4)b = t5, and since t5 is accepting and s2 is not, we observe that b ∈ l(t4)
and b 6∈ l(s1).

Exercise 159. Compute the bisimilarity relations for the automata in Example 158.

We saw that the finality of the automaton of languages gives rise to a coinduction
proof principle for automata, Theorem 156 and Corollary 157. Applying Theorem 156 to

Chapter 8. Deterministic automata 93

the final automaton of languages itself, gives a coinduction proof principle for languages.
(Finality forms the basis for coinductive language definitions as well, cf. Section 11.4.)

Theorem 160 (coinduction proof principle for languages).

κ ∼ λ ⇐⇒ κ = λ (κ, λ ∈ P(A∗))

Proof: Taking (S, 〈o, tr〉) = (P(A∗), 〈il, dl〉) in Theorem 156, the theorem follows from
the observation that the identity map is the only homomorphism from (P(A∗), 〈il, dl〉) to
itself.

Exercise 161. Give an elementary proof of the implication from left to right in Theorem
160, using induction on the length of words.

By the implication from left to right, one can prove that κ = λ by showing that κ ∼ λ,
that is, by constructing a bisimulation relation R ⊆ P(A∗) × P(A∗) with (κ, λ) ∈ R.
Spelling out Definition 132 for the automaton of languages, R is a bisimulation iff for all
(µ, ν) ∈ R:

(i) µ(ε) = ν(ε) and (ii) ∀ a ∈ A : (µa, νa) ∈ R (8.4)

We shall see many examples of the coinduction proof principle for languages of Theorem
160 in Section 8.5.

8.4 Regular languages

Next we introduce the so-called regular operators on languages. These operators provide
us with a vocabulary to define interesting examples and classes of languages, notably, the
class of regular languages, which are – as we shall see in Theorem 189 – precisely those
languages that can be represented by a finite automaton.

Definition 162 (regular operators). We define the constant languages

0 = ∅ 1 = {ε} a = {a} (a ∈ A)

(Note that we use a to denote the language consisting of the word a, which consists of the
single letter a.) We define the operators of sum and concatenation by

κ+ τ = κ ∪ τ κ× τ = {vw | v ∈ κ, w ∈ τ } (κ, λ ∈ P(A∗))

The operation of Kleene star is defined by

κ∗ =
⋃
n>0

κn (κ ∈ P(A∗))

where κ0 = 1 and κn+1 = κ× κn.

94 8.4. Regular languages

The following elementary properties of the regular operators are an immediate conse-
quence of their definitions.

Proposition 163. For all κ, λ, µ ∈ P(A∗),

κ+ 0 = κ κ× 0 = 0 0× κ = 0

κ+ κ = κ κ× 1 = κ 1× κ = 0

κ+ λ = λ+ κ (κ+ λ) + µ = κ+ (λ+ µ) (κ× λ)× µ = κ× (λ× µ)

Languages that can be defined in terms of only the regular constants and operators are
called regular.

Definition 164 (regular languages). Let A be finite. We call a language λ ∈ P(A∗)
regular if it can defined by the following syntax:

λ ::= 0 | 1 | a | λ1 + λ2 | λ1 × λ2 | λ∗

The following characterisation of the initial values and input derivatives of the regular
operators will help us to construct bisimulation relations for our proofs by coinduction.

Lemma 165 (initial values and derivatives of regular operators). For all κ, λ ∈
P(A∗) and a, b ∈ A, we have the following initial values

0(ε) = 0 1(ε) = 1 (κ+ λ)(ε) = max{κ(ε), λ(ε)}
b(ε) = 0 (κ∗)(ε) = 1 (κ× λ)(ε) = min{κ(ε), λ(ε)}

and derivatives

0a = 0 1a = 0 ba =

{
1 if b = a
0 if b 6= a

(κ+ λ)a = κa + λa (κ∗)a = κa × κ∗ (κ× λ)a =

{
κa × λ if κ(ε) = 0
(κa × λ) + λa if κ(ε) = 1

The identities in Lemma 165 are easy consequences of the definition of the regular
operators. As we shall see later, in Section 11.4, Lemma 165 itself could also be taken as
a (coinductive) definition of the regular operators.

Notation 166 (κλ = κ × λ). We shall usually simply write κλ for κ × λ. For instance,
a∗(ba∗)∗ will be short for a∗ × (b× a∗)∗.

Chapter 8. Deterministic automata 95

8.5 Proving language equality by coinduction

We prove various language equalities by coinduction, Theorem 160.

Example 167. Let A = {a, b}. We prove

(a+ b)∗ = a∗(ba∗)∗

by coinduction. Using Lemma 165 and some of the elementary properties from Proposition
163, we compute

(a+ b)∗a = (a+ b)a(a+ b)∗ (a+ b)∗b = (a+ b)b(a+ b)∗

= (aa + ba)(a+ b)∗ = (ab + bb)(a+ b)∗

= (1 + 0)(a+ b)∗ = (0 + 1)(a+ b)∗

= 1(a+ b)∗ = 1(a+ b)∗

= (a+ b)∗ = (a+ b)∗

(a∗(ba∗)∗)a = a∗a(ba
∗)∗ + (ba∗)∗a (a∗(ba∗)∗)b = a∗b(ba

∗)∗ + (ba∗)∗b
= aaa

∗(ba∗)∗ + (ba∗)a(ba
∗)∗ = aba

∗(ba∗)∗ + (ba∗)b(ba
∗)∗

= 1a∗(ba∗)∗ + baa
∗(ba∗)∗ = 0a∗(ba∗)∗ + bba

∗(ba∗)∗

= a∗(ba∗)∗ + 0a∗(ba∗)∗ = 0 + 1a∗(ba∗)∗

= a∗(ba∗)∗ = a∗(ba∗)∗

We see that ((a+ b)∗, a∗(ba∗)∗) satisfies condition (ii) in (8.4). Since

(a+ b)∗(ε) = 1 = a∗(ba∗)∗(ε)

it also satisfies condition (8.4)(i). Thus

{((a+ b)∗, a∗(ba∗)∗) }

is a bisimulation relation. The equality now follows by coinduction, Theorem 160.
For a second example, we prove

(a+ b)∗ = (a∗b∗)∗

again by coinduction. We define

R0 = { ((a+ b)∗, (a∗b∗)∗) }

and check whether it is a bisimulation relation. The initial value of both languages is 1.
We already computed the derivatives of (a+ b)∗. For (a∗b∗)∗, we have

(a∗b∗)∗a = (a∗b∗)a(a
∗b∗)∗ (a∗b∗)∗b = (a∗b∗)b(a

∗b∗)∗

= (a∗ab
∗ + b∗a)(a

∗b∗)∗ = (a∗bb
∗ + b∗b)(a

∗b∗)∗

= (aaa
∗b∗ + bab

∗)(a∗b∗)∗ = (aba
∗b∗ + bbb

∗)(a∗b∗)∗

= (1a∗b∗ + 0b∗)(a∗b∗)∗ = (0a∗b∗ + 1b∗)(a∗b∗)∗

= a∗b∗(a∗b∗)∗ = b∗(a∗b∗)∗

96 8.5. Proving language equality by coinduction

Thus R0 is not closed under derivatives. Adding the new pairs, we get

R1 = R0 ∪ { ((a+ b)∗, a∗b∗(a∗b∗)∗), ((a+ b)∗, b∗(a∗b∗)∗) }

and we check whether R1 is a bisimulation. The initial value of all these languages is 1.
Computing the derivatives of the newly added languages, we find

(a∗b∗(a∗b∗)∗)a = a∗b∗(a∗b∗)∗ (a∗b∗(a∗b∗)∗)b = b∗(a∗b∗)∗

(b∗(a∗b∗)∗)a = a∗b∗(a∗b∗)∗ (b∗(a∗b∗)∗)b = b∗(a∗b∗)∗

Thus R1 is a bisimulation, and (a+ b)∗ = (a∗b∗)∗ follows, by coinduction.

Exercise 168. Prove by coinduction that [(b∗a)∗ab∗]∗ = 1+a(a+b)∗+(a+b)∗aa(a+b)∗.

Coinduction is not restricted to pairs of individual languages, but also applies to general
laws.

Example 169. We prove by coinduction that

λ∗ = 1 + λλ∗ (8.5)

for all λ ∈ P(A∗). Let
R0 = { (λ∗, 1 + λλ∗) | λ ∈ P(A∗) }

For every λ ∈ P(A∗),

λ∗(ε) = 1 = (1 + λλ∗)(ε)

For every a ∈ A, λ∗a = λaλ
∗. For the computation of (1 + λλ∗)a, we have to make a case

distinction. If λ(ε) = 0 then

(1 + λλ∗)a = 1a + (λλ∗)a = 0 + λaλ
∗ = λaλ

∗

And if λ(ε) = 1 then

(1 + λλ∗)a = 1a + (λλ∗)a = 0 + (λaλ
∗ + λ∗a) = 0 + λaλ

∗ + λaλ
∗ = λaλ

∗

We see that R0 is not closed under derivatives: (λaλ
∗, λaλ

∗) 6∈ R0. If we put

R1 = R0 ∪ { (λ, λ) | λ ∈ P(A∗) }

then R1 is a bisimulation relation. Now λ∗ = 1 + λλ∗ follows, by coinduction.
For a second example, we show that concatenation distributes over sum:

κ(λ+ µ) = κλ+ κµ (8.6)

Chapter 8. Deterministic automata 97

for all κ, λ, µ ∈ P(A∗). We define, as usual optimistically,

S0 = { (κ(λ+ µ), κλ+ κµ) | κ, λ, µ ∈ P(A∗) }

and try to prove that S0 is a bisimulation. One readily shows that

(κ(λ+ µ))(ε) = (κλ+ κµ)(ε) (κ, λ, µ ∈ P(A∗))

Because of the presence of concatenation, we again have to make a case distinction in the
computation of derivatives. If κ(ε) = 0 then

(κ(λ+ µ))a = κa(λ+ µ) (κλ+ κµ)a = (κλ)a + (κµ)a

= κaλ+ κaµ

If κ(ε) = 1 then

(κ(λ+ µ))a = κa(λ+ µ) + (λ+ µ)a (κλ+ κµ)a = (κλ)a + (κµ)a

= κa(λ+ µ) + (λa + µa) = (κaλ+ λa) + (κaµ+ µa)

= (κaλ+ κaµ) + (λa + µa)

Thus S0 is not a bisimulation but one can easily prove that the relation

S1 = { (κ(λ+ µ) + ν, κλ+ κµ+ ν) | κ, λ, µ, ν ∈ P(A∗) }

which contains S0 (by taking ν = 0), is. Identity (8.6) now follows by coinduction.
For a third example, consider

λ∗ = λ∗λ+ 1 (8.7)

for all λ ∈ P(A∗). Let

T0 = { (λ∗, λ∗λ+ 1) | λ ∈ P(A∗) }

Initial values match, and computing derivatives gives λ∗a = λaλ
∗ and

(λ∗λ+ 1)a = (λ∗λ)a + 1a = (λ∗aλ+ λa) + 0 = λaλ
∗λ+ λa = λa(λ

∗λ+ 1)

where the last equality uses (8.6). As before, we see that our initial attempt at defining a
bisimulation fails, but once again, the computation demonstrating this failure also shows
the way out. If we extend T0 to

T1 = { (κλ∗, κ(λ∗λ+ 1)) | κ, λ ∈ P(A∗) }

then one easily checks that T1 a bisimulation, and Equation (8.7) follows by coinduction.

98 8.5. Proving language equality by coinduction

Exercise 170 (derivative of concatenation). The case distinctions in the proofs in
Example 169 are due to the following equality from Lemma 165:

(κ× λ)a =

{
κa × λ if κ(ε) = 0
(κa × λ) + λa if κ(ε) = 1

The following equivalent equation avoids such a case distinction:

(κ× λ)a = (κa × λ) + (κ(ε)× λa) (8.8)

Here we interpret κ(ε), which is either 0 or 1, as the language 0 = ∅ or 1 = {ε}, respectively;
and we read κ(ε)×λa as language concatenation. With this new convention, now redo the
proof of Equation (8.6) above.

In all three coinductive proofs of Example 169, we start the construction of a bisim-
ulation relation by taking the most obvious candidate: the relation containing precisely
the pairs of languages that we want to prove equal. None of these relations R0, S0 and
T0 was closed under derivatives and in order to become a bisimulation, all of them had to
be extended. All of these extensions were obvious, dictated by the shape of the computed
derivatives. The extensions consisted of adding the diagonal to R0; closing the relation S0

under additional summands; and closing T0 under concatenation with arbitrary languages.
We next introduce a general way of dealing with such extensions by introducing the

notion of bisimulation up-to-congruence.

Definition 171 (bisimulation up-to-congruence). We call

R ⊆ P(A∗)× P(A∗)

a bisimulation up-to-congruence (bisimulation up-to, for short) if, for all (κ, λ) ∈ R,

(i) κ(ε) = λ(ε) and (ii) ∀ a ∈ A : (κa, λa) ∈ Rc (8.9)

Here

Rc ⊆ P(A∗)× P(A∗)

is the congruence closure of R (with respect to the regular operators), which is defined as
the smallest relation such that

1. R ⊆ Rc

2. Rc is an equivalence relation

3. if (κ, λ), (µ, ν) ∈ Rc then (κ+ µ, λ+ ν), (κµ, λν), (κ∗, λ∗) ∈ Rc

Chapter 8. Deterministic automata 99

Note that any bisimulation up-to-congruence is by definition also a bisimulation up-to-
equivalence, Definition 138. All the relations R0, S0 and T0, in Example 169, are examples
of a bisimulation up-to-congruence.

There is again a corresponding coinduction principle.

Proposition 172 (coinduction up-to-congruence). If R ⊆ P(A∗)×P(A∗) is a bisim-
ulation up-to-congruence and (κ, λ) ∈ R, then κ = λ.

Proof: Let R be a bisimulation up-to-congruence. It suffices to show that Rc is a
bisimulation; the proposition then follows by coinduction Theorem 160. Thus we show, by
induction on the defining clauses of Rc, that for all (µ, ν) ∈ Rc:

(i) µ(ε) = ν(ε) and (ii) ∀ a ∈ A : (µa, νa) ∈ Rc (8.10)

1. For all pairs in R, conditions (i) and (ii) are satisfied by the assumption that R is
a bisimulation up-to-congruence. 2. Any pair (µ, µ) trivially satisfies (8.10). If (µ, κ)
and (κ, ν) satisfy (8.10) then so do (κ, µ) and (µ, ν). 3. Suppose (κ, λ) and (µ, ν) satisfy
(8.10). Then (κ + µ)(ε) = (λ + ν)(ε), since by assumption, κ(ε) = λ(ε) and µ(ε) = ν(ε).
Furthermore, (κa, λa) ∈ Rc and (µa, νa) ∈ Rc, by assumption. Since Rc is closed under
sum, this implies (κa + µa, λa + νa) ∈ Rc. Thus (κ+ µ, λ+ ν) satisfies (8.10). The cases of
concatenation and Kleene star can be proved similarly.

Example 173 (Arden’s rule). Following [RBR13b, RBR16], we prove, for all languages
κ, λ, µ ∈ P(A∗),

if κ = λκ+ µ and λ(ε) = 0 then κ = λ∗µ (8.11)

by coinduction up-to-congruence. Consider κ, λ, µ with κ = λκ + µ and λ(ε) = 0, and
define R = { (κ, λ∗µ) }. The initial values match, and computing the derivatives gives

κa = (λκ+ µ)a (λ∗µ)a = λ∗aµ+ µa

= λaκ+ µa = (λaλ
∗)µ+ µa

= λa(κ) + µa = λa(λ
∗µ) + µa

It follows that (κa, (λ∗µ)a) ∈ Rc. Thus R is a bisimulation up-to and κ = λ∗µ follows by
Theorem 172.

Exercise 174. Prove by coinduction up-to-congruence that

(λ+ µ)κ = λκ+ µκ (8.12)

for all κ, λ, µ ∈ P(A∗).

100 8.6. Minimal automata

Exercise 175. Prove by coinduction up-to-congruence that, for all κ, λ, µ ∈ P(A∗),

λκ+ µ ⊆ κ =⇒ λ∗µ ⊆ κ (8.13)

κλ+ µ ⊆ κ =⇒ µλ∗ ⊆ κ (8.14)

using that κ ⊆ λ if and only if κ+ λ = λ.

Exercise 176. Prove the following implications by coinduction up-to-congruence:

λλ = 1 =⇒ λ = 1 (λ ∈ P(A∗))

λλ = λ =⇒ λ∗ = 1 + λ

Exercise 177 (simulations and language inclusion). Here is an alternative way to
prove language inclusions such as those of equations (8.13) and (8.14) in Exercise 175. A
relation R ⊆ P(A∗)× P(A∗) is a simulation if for all (µ, ν) ∈ R:

(i) µ(ε) 6 ν(ε) and (ii) ∀ a ∈ A : (µa, νa) ∈ R

Note that (i) says that if ε ∈ µ then ε ∈ ν. Now prove the following variation on coinduction
for languages, Theorem 160:

µ ⊆ ν ⇐⇒ (µ, ν) ∈ R (for a simulation relation R)

Use the implication from right to left to prove Equation (8.13). Improve on this by intro-
ducing simulations up-to-congruence (possibly consulting [RBR16] for details).

8.6 Minimal automata

Every automaton can be minimised by identifying all states that accept the same language.

Definition 178 (minimal automata). An automaton S is minimal if the final homo-
morphism (from Theorem 153):

J−K : S → P(A∗)

is a monomorphism.

In other words, S is minimal if the final homomorphism is injective. The phrasing
of Definition 178 is somewhat abstract, which has the advantage that it can be easily
generalised to different kinds of systems, that is, coalgebras of different functors.

Chapter 8. Deterministic automata 101

However, the meaning of Definition 178 in the present setting of automata is concrete
enough: since JsK = l(s) (the language accepted by s), an automaton is minimal iff it does
not contain any two different states that accept the same language.

By Corollary 157, two states of an automaton accept the same language iff they are
bisimilar. Therefore, every automaton can be minimised by taking the quotient with
respect its bisimilarity relation.

Theorem 179 (minimisation of automata). For every automaton S, the quotient au-
tomaton S/∼ is minimal.

Proof: By Corollary 157, ker(J−K) =∼. By Theorem 150, we have

S
J−K

//

J−K

,,

e = [−]∼

))

P(A∗)

JSK

⊆

@@

S/∼

∼=

OO

m

LL

where the final homomorphism m : S/∼ // P(A∗) is a monomorphism. Thus S/∼ is
minimal, according to Definition 178.

Note that by (the proof of) Theorem 179, the minimisation S/∼ of an automaton S is
isomorphic to the subautomaton JSK of P(A∗).

Exercise 180. Show that the following are equivalent: (i) an automaton S is minimal;
(ii) R ⊆ ∆S = {(s, s) | s ∈ S}, for every bisimulation relation R ⊆ S × S; (iii) every
epimorphism f : S → T is an isomorphism.

Exercise 181. Show that for every epimorphism f : S → T there is a unique epimorphism
g : T → S/∼ such that

S

∀ f
��

[−]∼
// S/∼

T
∃ ! g

??

Exercise 182. Compute the minimisation of each of the automata in Example 158 (cf.
Exercise 159).

102 8.6. Minimal automata

The following theorem describes for every language how to construct a minimal au-
tomaton accepting it.

Theorem 183 (minimal automaton for a language). For every language λ ∈ P(A∗),
the automaton generated by λ:

〈λ〉 = {λw | w ∈ A∗}

is a minimal automaton that accepts λ.

Proof: By Exercise 154, l(λ) = λ so 〈λ〉 accepts λ. Since 〈λ〉 ⊆ P(A∗) and inclusion of
subautomata is a monomorphism, 〈λ〉 is minimal.

Exercise 184 (Myhill-Nerode equivalence). Let λ ∈ P(A∗) and define the automaton
(A∗, 〈o, tr〉) by

o(w) =

{
1 if w ∈ λ
0 if w 6∈ λ tr(w)(a) = wa

Show that the final homomorphism J−K : A∗ → P(A∗) satisfies, for all w ∈ A∗,

JwK = λw JA∗K = 〈λ〉

Define R ⊆ A∗ × A∗ by

vRw iff ∀u ∈ A∗ : vu ∈ λ ⇐⇒ wu ∈ λ

and show that A∗/R ∼= 〈λ〉 is an isomorphism of automata.

Example 185. Let A = {a, b, c}. We compute 〈κ〉 for κ = {a, ab, ac}:

κa = {ε, b, c} κaa = 0 κaba = 0 κaca = 0

κb = 0 κab = 1 κabb = 0 κacb = 0

κc = 0 κac = 1 κabc = 0 κacc = 0

Thus we find

κ a //

b,c ..

κa
b,c

//

a

((

1

a,b,c
��

0

a,b,c

QQ

Chapter 8. Deterministic automata 103

For a second example, let A = {a, b} and λ = (a+ b)∗. Then 〈λ〉 is

λ

a,b

rr

since we saw in Example 167 that (a+ b)∗a = (a+ b)∗b = (a+ b)∗.
For a last example, we compute 〈µ〉 for the language µ = (a∗b∗)∗, whose derivatives

were computed already in Example 167:

µa = a∗b∗(a∗b∗)∗ µaa = µa µba = µa

µb = b∗(a∗b∗)∗ µab = µb µbb = µb

This leads to the following 3-state automaton:

(a∗b∗)∗
b

��

a

��

a∗b∗(a∗b∗)∗

b

**

a

RR
b∗(a∗b∗)∗

a

jj

b

RR

The state (a∗b∗)∗ above accepts the language (a∗b∗)∗. However, this automaton is not the
minimal automaton 〈(a∗b∗)∗〉 we are after. We saw in Example 167 that

{ ((a+ b)∗, (a∗b∗)∗), ((a+ b)∗, a∗b∗(a∗b∗)∗), ((a+ b)∗, b∗(a∗b∗)∗) }

is a bisimulation, which implies that all three states in the automaton above are equal, to
(a + b)∗. It follows that 〈(a∗b∗)∗〉 is identical to the 1-state automaton 〈(a + b)∗〉 of the
previous example, which is precisely the minimisation of the 3-state automaton above.

As we shall see below, in Kleene’s Theorem 189, the minimal automaton 〈λ〉 is finite
iff the language λ is regular (Definition 164).

Exercise 186. Let λ ∈ P(A∗) be a language satisfying the equation

λ = aλb+ 1

Compute the minimal automaton 〈λ〉 and compare the result with Example 125.

According to Theorem 179, computing the minimisation of an automaton amounts
to the construction of the quotient with respect to its bisimilarity relation ∼. A naive
procedure for the computation of ∼ on a given automaton S is to determine, for every pair
(s, t) of states in S, whether s and t are bisimilar by trying to construct a bisimulation

104 8.6. Minimal automata

relation containing (s, t). One either finds a bisimulation containing (s, t), which proves
s ∼ t, or not, which implies s 6∼ t. Doing this for all (s, t) ∈ S × S computes ∼. If both
the alphabet A and the set of states S are finite, then the procedure terminates.

The following algorithm for the computation of ∼ is more efficient than the naive
procedure described above. It will mark (unordered) pairs of states {s, t} with s 6= t as
soon as a reason is discovered why s and t are not bisimilar. For an automaton (S, 〈o, tr〉),
do the following:

1. Write down a table of pairs {s, t}, for all s, t ∈ S, s 6= t.

2. Mark all pairs {s, t} with o(s) 6= o(t).

3. Repeat the following until no more changes occur: if there exists an unmarked pair
{s, t} such that {sa, ta} is marked, for some a ∈ A, then mark {s, t}.

4. When done, define m = {(s, t) | s, t ∈ S s.t. {s, t} is marked }.

Proposition 187. Let A be finite. For a finite automaton (S, 〈o, tr〉), the algorithm above
terminates and computes the bisimilarity relation: for all s, t ∈ S,

s ∼ t ⇐⇒ {s, t} 6∈ m

Proof: Since there are only finitely many unordered pairs of elements in S, and because
each time step 3 is executed, one more pair is marked, the algorithm terminates. For its
correctness, note that

s 6∼ t ⇐⇒ l(s) 6= l(t) (Corollary 157)

⇐⇒ ∃w ∈ A∗ s.t. o(sw) 6= o(tw) (l(s) = {w ∈ A∗ | o(sw) = 1})
⇐⇒ the pair {s, t} is marked

where the last equivalence can be proved by induction on the length of w. As a consequence,
s and t are bisimilar if and only if the pair {s, t} is unmarked.

Exercise 188. Compute the bisimilarity relations of each of the two automata in Example
158, using Proposition 187.

Kleene’s celebrated theorem states that a language λ is regular (Definition 164) iff λ is
accepted by a finite automaton. Since the automaton 〈λ〉 generated by λ is minimal, by
Theorem 183, Kleene’s theorem can be formulated, equivalently, as follows.

Theorem 189 (Kleene’s Theorem). Let A be finite. For every language λ ∈ P(A∗),

λ is regular ⇐⇒ 〈λ〉 is finite

Chapter 8. Deterministic automata 105

Proof: Let λ be regular. Since 〈λ〉 = {λw | w ∈ A∗}, we have to show that the number of
w-derivatives of λ is finite. We prove this by induction on the definition of regular language.
If λ is 0, 1, or a, then 〈λ〉 is {0}, {0, 1}, or {0, 1, a}, respectively. Next we observe, for all
κ, µ ∈ P(A∗), that

(κ+ µ)w = κw + µw

(κµ)w = κwµ+ µ1 + · · ·+ µn (for some n > 0 and µ1, . . . , µn ∈ 〈µ〉)
(κ∗)w = κ1κ

∗ + · · ·+ κmκ
∗ (for some m > 1 and κ1, . . . , κm ∈ 〈κ〉)

which easily follows by induction of the length of w ∈ A∗, using the computation rules
for regular languages from Lemma 165. Suppose now that κ and µ are regular languages
and assume that both 〈κ〉 and 〈µ〉 are finite. Using associativity, commutativity and
idempotency of the sum (Proposition 163), it follows from the three equations above that
〈λ〉 is finite if λ = κ+ µ, λ = κµ, or λ = κ∗.

Suppose, conversely, that 〈λ〉 = {λ1, . . . , λl}, with λ = λ1. We prove that λ is regular.
Let A = {a1, . . . , ak}. First we observe that every language κ ∈ P(A∗) satisfies

κ = a1κa1 + · · ·+ akκak + κ(ε) (8.15)

where we read κ(ε), whose value is either 0 or 1, as the corresponding language. Applying
(8.15) to each of the languages in 〈λ〉 gives equations

λi = a1(λi)a1 + · · ·+ ak(λi)ak + λi(ε)

for all 1 6 i 6 l. Since (λi)aj ∈ 〈λ〉, for all 1 6 j 6 k, we have obtained a system of l
equations in l many variables λi. Using Arden’s rule (Example 173):

if α = βα + γ and β(ε) = 0 then α = β∗γ (8.11)

and the distributivity of concatenation over sum:

α(β + γ) = αβ + αγ (β + γ)α = βα + γα (8.16)

for all languages α, β, γ ∈ P(A∗), one can show by induction on the number of equations
that all the languages λi are regular.

Example 190. Let λ ∈ P(A∗) be language for which 〈λ〉 is finite and given by

λ
b

++

a

��

κ
a

ll

b

{{
µ

a

UU

b

WW

106 8.6. Minimal automata

We show that λ is regular. By (8.15), we obtain the following system of equations:

λ = aµ+ bκ

κ = aλ+ bµ+ 1

µ = aλ+ bµ

Applying Arden’s rule (8.11) to the last equation (with α = µ, β = b, and γ = aλ) gives
µ = b∗aλ. Substituting µ in the second equation gives

κ = aλ+ bb∗aλ+ 1

Substituting µ and κ in the first equation gives

λ = aµ+ bκ

= ab∗aλ+ b(aλ+ bb∗aλ+ 1)

= ab∗aλ+ baλ+ bbb∗aλ+ b (8.16)

= (ab∗a+ ba+ bbb∗a)λ+ b (8.16)

Applying (8.11) to the last equation (with α = λ, β = ab∗a+ ba+ bbb∗a, and γ = b) gives
λ = (ab∗a+ ba+ bbb∗a)∗b.

Example 191 (finite versus minimal). Consider again the regular language µ = (a∗b∗)∗,
the last example from Example 185. There we saw that the automaton

〈µ〉 = {µw | w ∈ A∗} = {(a∗b∗)∗, a∗b∗(a∗b∗)∗, b∗(a∗b∗)∗}

is finite, in accordance with Kleene’s Theorem 189. In that same Example 185, we also
observed that all these three languages are identical, and that we are looking here in
fact at a singleton set. We conclude that the computation rules for the derivatives of
regular languages in Lemma 165, together with the use of associativity, commutativity
and idempotency of the sum, are sufficient to guarantee that 〈λ〉 is finite whenever a
language λ is regular, as we saw in the proof of Kleene’s Theorem. However, in general
not all possible identifications will have been made in the representation of 〈λ〉 thus found,
and the minimal automaton for λ will only be obtained after computing its quotient with
respect to bisimilarity. Which is precisely what we did for µ, in Example 185.

Exercise 192. Compute a minimal automaton for the language ((b∗a)∗ab∗)∗.

Chapter 8. Deterministic automata 107

Example 193 (non-regularity). Kleene’s Theorem 189 can also be used to prove that
a language is not regular, by showing that the number of its derivatives is infinite. For
instance, let κ = {anbn | n > 0}, where as usual a0 = 1 and an+1 = aan. Since all of the
derivatives κak = {an−kbn | n > k} are different, 〈κ〉 is infinite. Thus κ is not regular.

For a second example, let λ = {w ∈ A∗ |]a(w) =]b(w)}, consisting of all words
containing an equal number of a’s and b’s. All of the derivatives λak are different, since
bn ∈ λak iff n = k, for all n and k. Thus 〈λ〉 is infinite and λ is not regular.

Exercise 194. Decide whether the languages {a2n | n > 0} and {an2 | n > 0} are regular
or not.

8.7 Discussion

General references for the classical theory of deterministic automata and formal languages
are [Eil74] and [HMU07]. The coalgebraic treatment in the present chapter is largely based
on parts of [Rut98] and [RBR13b, RBR16]. Lemma 165 goes back to [Brz64] and, in the
form presented here, to [Con71]. Proposition 187 has been taken from [Koz97]; minimiza-
tion of deterministic automata has been extensively studied in the literature, including
[Hop71]. Kleene’s Theorem was proved in [Kle56]. The up-to techniques, in coinduction
up-to-equivalence, Proposition 139, and coinduction up-to-congruence, Proposition 172,
are based on [RBR13b, RBR16] and [BP13, BP15]. See also the brief discussion in Section
15.5.

108 8.7. Discussion

Chapter 9

Partial automata

Systems without outputs, such as the dynamical systems (S, α) from Chapter 6 consisting
of a set S of states and a transition function

α : S → S

are trivial in the sense that all states are behaviourally equivalent. This is reflected by
the fact that the family of all dynamical systems has a trivial final coalgebra, namely, any
dynamical system consisting of only one state (cf. Section 6.2).

Also systems with inputs but still without outputs, such as the dynamical systems with
inputs introduced in the following exercise, are all behaviourally equivalent: they have
again a trivial final coalgebra.

Exercise 195. Let A be a set. We define a dynamical system with inputs from A by

(S, α) α : S → SA

The transition function α maps a state s ∈ S to a function α(s) : A→ S, which assigns to
every (input) element a ∈ A a next state α(s)(a) ∈ S. If (S, α) and (T, β) are dynamical
systems with inputs from A, then a function f : S → T is a homomorphism if

β(f(s))(a) = f (α(s)(a)) (s ∈ S, a ∈ A)

Prove the existence of a final dynamical system with inputs from A.

As we saw in Chapter 7, the situation changes when we consider dynamical systems
with outputs in a set A, that is, stream systems

(S, 〈o, tr〉) 〈o, tr〉 : S → A× S o : S → A tr : S → S

The output function o makes the states of such stream systems partially observable. As a
consequence, not all stream systems are equivalent and the set Aω of all streams is a non-
trivial final stream system, Theorem 78. Similarly, dynamical systems with both outputs

109

110 9.1. Partiality

and inputs, such as the automata in Chapter 8, have non-trivial behaviour, as reflected by
the fact that the set of all languages is a final automaton, Theorem 153.

In the present short chapter, we will look at yet another possible feature of dynamical
systems that gives them non-trivial observable behaviour, namely systems of which the
transitions are given by a partial function.

9.1 Partiality

A partial (dynamical) system is a pair

(S, α) α : S → 1 + S 1 = {∗}

where + denotes disjoint union. We use the following notation:

s ↑ ⇐⇒ α(s) = ∗ s // s′ ⇐⇒ α(s) = s′ (s, s′ ∈ S)

If α(s) = ∗ then we say that the dynamical system terminates; and if α(s) = s′, then we
say that the system takes a transition step to the new state s′. The structure map α is
partial in that not all states are mapped to a next state.

It follows that for every state s ∈ S, there are two posibilities: either there exist n > 0
and states s0, s1, . . . , sn in S such that

s = s0
// s1

// · · · // sn ↑ (9.1)

or there exists an infinite sequence of states s0, s1, s2, . . . in S such that

s = s0
// s1

// s2
// · · · (9.2)

That is, starting in s, the system either terminates after n transition steps or it never
terminates, taking infinitely many transition steps. This global behaviour of partial systems
is now reflected by the (existence of a) final partial system, which we shall describe next,
in Theorem 198. First we introduce the notions of homomorphism and bisimulation.

Definition 196 (homomorphism and bisimulation of partial systems). A homo-
morphism f : (S, α) → (T, β) of partial systems is a function f : S → T such that for all
s ∈ S, either both s and f(s) terminate, or both s and f(s) take a transition step and
β(f(s)) = f(α(s)).

A relation R ⊆ S × T is a bisimulation of partial systems if for all (s, t) ∈ R, either
both s and t terminate, or both s and t take a transition step and (α(s), β(t)) ∈ R. We
write s ∼ t if there exists a bisimulation R ⊆ S × T with (s, t) ∈ R.

Chapter 9. Partial automata 111

Exercise 197. Observe that partial systems are F -coalgebras of the functor F : Set→ Set
that is defined for sets S by F (S) = 1 + S, and for functions f : S → T by

F (f) = id+ f : (1 + S)→ (1 + T)

which maps ∗ to ∗ and s ∈ S to f(s) ∈ T . Prove that with this definition of F , the notion
of F -bisimulation, introduced in Definition 33, coincides with the definition of bisimulation
given in Definition 196.

Next we consider the set N of the extended natural numbers:

N = {0, 1, 2, . . . , } ∪ {∞}

consisting of the natural numbers augmented with an extra element ∞. The predecessor
function, defined by

pre : N→ 1 + N pre(0) = ∗ pre(n+ 1) = n pre(∞) = ∞

turns the set N into a final partial system (N, pre).

Theorem 198 (finality – extended natural numbers). For every partial system (S, α)
there exists a unique homomorphism J−K : (S, α)→ (N, pre):

S

∀α
��

∃! J−K
// N

pre
��

1 + S
1 + J−K

// 1 + N

Proof: We define J−K : S → N by JsK = n, if s terminates in n steps (as in (9.1)),
or JsK = ∞, if s does not terminate (as in (9.2)). This is the only function making the
diagram above commute.

The following example illustrates that finality gives rise to coinductive definitions.

Example 199. Consider the partial system (N× N, f) with

f : N× N → 1 + (N× N) f(x, y) =

(pre(x), y) if x 6= 0
(x, pre(y)) if x = 0, y 6= 0
∗ if x = 0 = y

for x, y ∈ N. By finality, there exists a (unique) homomorphism ⊕ : N×N→ N. It satisfies:

pre(x⊕ y) =

pre(x)⊕ y if x 6= 0
x⊕ pre(y) if x = 0, y 6= 0
∗ if x = 0 = y

112 9.1. Partiality

It is easy to see that n⊕m = n+m for n,m ∈ N and n⊕∞ =∞ =∞⊕ n (see Example
202 below), so that ⊕ behaves like a natural extension of addition on the natural numbers
to the set of the extended natural numbers.

As usual, finality gives rise to a coinduction proof principle.

Theorem 200 (coinduction proof principle for extended natural numbers).

x ∼ y ⇐⇒ x = y (x, y ∈ N)

Exercise 201. Prove this.

Example 202. Towards a proof by coinduction of

x⊕∞ = ∞ (x ∈ N)

we define
R = { (x⊕∞, ∞) | x ∈ N }

If x = 0 then
pre(x⊕∞) = x⊕ pre(∞) = x⊕∞

If x 6= 0 then
pre(x⊕∞) = pre(x)⊕∞

Since pre(∞) = ∞, it follows that (pre(x ⊕ ∞), pre(∞)) ∈ R, for all (x ⊕ ∞, ∞) ∈ R.
Thus R is a bisimulation and the result follows by coinduction.

Exercise 203 (commutativity of ⊕). Prove that x ⊕ y = y ⊕ x, for all x, y ∈ N, by
coinduction. You will find it helpful to prove by coinduction, first, that

pre(x)⊕ 1 = x

for all x ∈ N with x 6= 0, and second, that

x⊕ (y ⊕ 1) = (x⊕ 1)⊕ y

for all x, y ∈ N.

Remark 204. We saw in Exercise 197 that partial systems are coalgebras of the functor
N : Set→ Set defined, for sets S, by N(S) = 1 + S. In Chapter 4, we saw that the set N
of natural numbers, with [zero, succ] : 1 +N→ N is an initial N-algebra. By Theorem 198,
the set of extended natural numbers N, with pre : N→ 1 +N, is a final N-coalgebra. For a
discussion of the close relationship between initial algebras and final coalgebras of functors
from Set to Set, such as N and N, see [Bar93].

Chapter 9. Partial automata 113

9.2 Partial systems with outputs

The following is a minor variation on the definition of partial system. A partial system
with outputs in a set A is a pair (S, α) consisting of a set S of states and a structure map

α : S → A+ S

The structure map α now either sends a state s ∈ S to a value a ∈ A, in which case we
write

s ↑ a ⇐⇒ α(s) = a (9.3)

and say: s terminates with output a. Or α sends s, as before, to a new state s′ ∈ S:

s // s′ ⇐⇒ α(s) = s′ (9.4)

In the following exercises, a few basic notions, properties and examples of partial systems
with outputs are sketched.

Remark 205. Observe that partial systems with outputs in A are F -coalgebras of the
functor F : Set → Set that is defined for sets S by F (S) = A + S and, for functions
f : S → T by

F (f) = (1A + f) : (A+ S)→ (A+ T)

which acts as the identity function on A and as the function f on S. Formulate the notions
of homomorphism and bisimulation of partial systems with outputs, either by instantiating
Definition 33 or by simply varying Definition 196.

Exercise 206 (final partial system with outputs). We define

A× N = (A× N) ∪ {∞}

and preA : A× N→ A+ A× N by

preA((a, 0)) = a preA((a, n+ 1)) = (a, n) preA(∞) = ∞

Prove that (A× N, preA) is a final partial system with outputs in A.

Example 207 (while programs). Let Σ be an abstract set of program states and let
the set Prog of while programs be given by the following syntax:

P ::= a | P ;Q | if c then P else Q | while c do P (a ∈ Act, c ∈ Cond)

114 9.2. Partial systems with outputs

where the sets of atomic actions and conditions are defined by

Act = { a | a : Σ→ Σ } Cond = { c | c ⊆ Σ }

Clearly, more concrete versions of Σ, Act and Cond could be defined. States would typically
be given as functions from variables to values, skip statements and assignments would be
typical atomic actions, and Boolean expressions could be used as a syntax for conditions.

In order to define the behaviour of while programs by coinduction, we define a partial
system with outputs in Σ:

(Prog× Σ, α) α : (Prog× Σ) → Σ + (Prog× Σ)

where α is defined, using the notation from (9.3) and (9.4) above, as follows. Actions
a ∈ Act terminate in one step:

(a, σ) ↑ a(σ)

The behaviour of composite programs is defined by induction on their syntactic structure,
by the following rules:

(P, σ) // (P ′, σ′)

(P ;Q, σ) // (P ′;Q, σ′)

(P, σ) ↑ σ′

(P ;Q, σ) // (Q, σ′)

σ ∈ c
(if c then P else Q, σ) // (P, σ)

σ 6∈ c
(if c then P else Q, σ) // (Q, σ)

σ ∈ c
(while c do P, σ) // (P ; while c do P, σ)

σ 6∈ c
while c do P, σ) ↑ σ

By finality of Σ× N, there exists a unique homomorphism

J−K : (Prog× Σ) → Σ× N

It sends a pair (P, σ) either to∞, in case the computation is diverging, or to a pair (σ′, n),
consisting of an output σ′ and a natural number n representing the number of steps that
it took to compute σ′.

Exercise 208. Coinduction may now be used to establish some familiar identities. To
this end, first formulate a coinduction proof principle for Σ× N. Then use it to prove, for
instance, that

J(if c then P else Q , σ)K = J(if Σ− c then Q else P , σ)K

Chapter 9. Partial automata 115

for all σ ∈ Σ. Observe that the present semantics of while programs is not very abstract.
For instance, if 1 is the identity function on Σ (corresponding to a skip statement) then,
generally,

J(1;P, σ)K 6= J(P, σ)K

See [Rut99c] for a semantics that abstracts away from the actual number of computation
steps, and a discussion of a related coinductive proof principle based on so-called weak
bisimulation.

9.3 Partial automata

Partial automata combine the automata from Chapter 8, having both inputs and outputs,
and the partial systems from Section 9.1, having a transition function that is partial.

Formally, they are defined as follows. A partial automaton with inputs from a set A
and outputs in the set 2 = {0, 1} is a pair (S, 〈o, tr〉), consisting of a set S of states, and a
structure map

〈o, tr〉 : S → 2× (1 + S)A o : S → 2 tr : S → (1 + S)A

The function o maps every s ∈ S to an output o(s) ∈ 2. The function tr assigns to s a
function tr(s) : A→ (1 + S), which for an input a ∈ A is either undefined: tr(s)(a) = ∗, in
which case we write

s 6 a→
or for which tr(s)(a) ∈ S, in which case we say that s accepts the input a, denoted by
tr(s)(a) = sa, and write

s
a // sa

We will also write, for w ∈ A∗,
s

w //

to denote that s consecutively accepts all the inputs in the word w.

Example 209. Let A = {a, b} and S = {s0, s1, s2, s3, s4, s5}. The following diagram
defines a partial automaton:

s0

b
**

a

��

s2

b
**

a

��

s4

a

��
s1 s3

b

++ s5

where we have underlined, as in Chapter 8, all states s ∈ S with o(s) = 1. We observe
that the states s0 and s2 accept both the inputs a and b, s1 and s5 accept neither a nor b,
s3 accepts b but not a, and s4 accepts a but not b.

116 9.3. Partial automata

Remark 210. For those who have already read Chapters 2 to 5: partial automata are
coalgebras of the functor

pA : Set→ Set pA(S) = 2× (1 + S)A (S ∈ Set)

which is defined for functions f : S → T by

pA(f) : 2× (1 + S)A → 2× (1 + T)A pA(f) = 1× (id+ f)A

Here 1 is the identity function on the set 2 = {0, 1} and the function

(id+ f)A : (1 + S)A → (1 + T)A

is defined by (
(id+ f)A(g)

)
(a) =

{
∗ if g(a) = ∗
f(g(a)) if g(a) ∈ S

for all g : A→ (1 + S) and a ∈ A.

Exercise 211. Use the above functor to define the notion of homomorphism for partial
automata, instantiating the notion of F -homomorphism from Chapter 3.

Intuitively, there are two aspects to the behaviour of a state s in a partial automaton
S, when presented with an input word w ∈ A∗. First, there is the question whether

s w //

that is, whether all the input letters in the word w are accepted (by s and the subsequent
states). If this is the case then there is, secondly, the question whether the state sw thus
reached on input w has o(sw) = 0 or o(sw) = 1.

The above intuition is captured formally by the following description of a final partial
automaton.

Definition 212 (partial languages). We define the set

pL ⊆ P(A∗)× P(A∗)

of partial languages by

pL = { (κ, λ) | κ ⊆ λ ⊆ A∗, λ 6= ∅, λ is prefix-closed }

where λ is prefix-closed if w ∈ λ and w = v · u implies v ∈ λ, for all u, v, w ∈ A∗.

Chapter 9. Partial automata 117

We see that partial languages are pairs of classical languages, that is, pairs of sets of
words. The set pL of partial languages can be turned into a partial automaton

(pL, 〈ipl, dpl〉) ipl : pL→ 2 dpl : pL→ (1 + pL)A

by defining the output and transition functions as follows: for all (κ, λ) ∈ pL,

ipl(κ, λ) =

{
0 if ε 6∈ κ
1 if ε ∈ κ dpl(κ, λ)(a) =

{
(κa, λa) if a ∈ λ
∗ if a 6∈ λ

where we recall, from Section 8.3, the definition of a-derivative of a language:

λa = {w ∈ A∗ | a · w ∈ λ }

Note that if a ∈ λ and (κ, λ) ∈ pL then also (κa, λa) ∈ pL.
The automaton (pL, 〈ipl, dpl〉) is final.

Theorem 213 (finality – partial languages). For every partial automaton (S, 〈o, tr〉)
there exists a unique homomorphism J−K : (S, 〈o, tr〉)→ (pL, 〈ipl, dpl〉):

S

∀ 〈o, tr〉
��

∃! J−K
// pL

〈ipl, dpl〉
��

2× (1 + S)A
id× J−KA

// 2× (1 + pL)A

Exercise 214. Define J−K : S → pL, for s ∈ S, by

JsK = ({w ∈ A∗ | s w // and o(sw) = 1 }, {w ∈ A∗ | s w // })

Prove that J−K is the only function making the diagram above commute.

Exercise 215. Prove that the set of partial languages pL is isomorphic to the set

{ f : A∗ → 1 + 2 | f−1(2) 6= ∅ and f−1(2) is prefix-closed }

Define a partial automaton structure on this set making it isomorphic to (pL, 〈ipl, dpl〉).

118 9.4. Discussion

Example 216. Returning to Example 209,

s0

b
**

a

��

s2

b
**

a

��

s4

a

��
s1 s3

b

++ s5

we have

Js0K = (a+ bab∗, 1 + a+ b+ bab∗ + bb+ bba)

Exercise 217. In the diagram below,

S
κ2 //

〈o, tr〉

��

1 + S ∃!h //

〈o, tr〉
tt

P(A∗)

〈il, dl〉
��

2× (1 + S)A
1× hA

// 2× P(A∗)A

the function κ2 : S → 1 + S is the embedding of S into the disjoint union 1 + S. Turn the
partial automaton (S, 〈o, tr〉) into a corresponding deterministic automaton, by defining
functions o and tr. The aim is to obtain by finality a homomorphism h such that the
composition h ◦ κ2 defines a notion of behaviour in terms of ordinary languages that is
“consistent” with the final semantics of Theorem 213 in terms of partial languages. (The
diagram above closely resembles the one of the powerset construction for non-deterministic
automata, which we shall see shortly, in Definition 221.)

9.4 Discussion

Partial automata have been used as models for so-called supervised control of discrete event
systems [RW87] in [Rut99b, Rut00b]. There a variation of the standard coalgebraic notion
of bisimulation for partial automata is defined, called partial bisimulation. Recent studies
of partial bisimulations include [BvBL+11, Mar16].

Chapter 10

Non-deterministic automata

A non-deterministic automaton (ndA) with inputs from a set A and outputs in 2 = {0, 1}
is a pair (S, 〈o, tr〉), consisting of a set S of states and a structure map

〈o, tr〉 : S → 2× P(S)A o : S → 2 tr : S → P(S)A (ndA)

The output function o maps every state s ∈ S to an output o(s) ∈ 2, and the transition
function tr assigns to every s ∈ S a function

tr(s) : A→ P(S)

that maps any a ∈ A to a set of possible next states tr(s)(a) ⊆ S.
We recall from Chapter 8 that deterministic automata (dA’s) are of type

〈o, tr〉 : S → 2× SA o : S → 2 tr : S → SA (dA)

Non-deterministic automata generalise deterministic ones by allowing states to have,
on a given input, zero, one or more successor states, rather than precisely one. As a
consequence, ndA’s are often smaller than corresponding (language equivalent) dA’s.

In the present chapter, we shall study the behaviour of non-deterministic automata by
transforming them into deterministic automata, using the so-called powerset construction.
The language accepted by the resulting dA will then be taken as the definition of the
behaviour of the original ndA.

The powerset construction is an interesting example of how one type of system can
be transformed into another one. The powerset construction will lead, furthermore, to
interesting further enhancements of the coinduction proof principle, called coinduction
up-to-union and coinduction up-to-congruence w.r.t. union.

Remark 218. There is also an alternative treatment of ndA’s that does not translate them
into dA’s. Instead, ndA’s are viewed as coalgebras of the functor ndA : Set→ Set, which is
defined by ndA(S) = S → P(S)A and which will be discussed at the end of this chapter,
in Remark 233.

119

120

Example 219. Here is an example of an ndA, with A = {a, b}:

(S, 〈o, tr〉) = s a //

a,b

��
t

a,b
// u

Underlining accepting states – with output value 1 – as before, the definition of o and tr
can again be read from the diagram:

o(s) = 0 o(t) = 0 o(u) = 1

tr(s)(a) = {s, t} tr(t)(a) = {u} tr(u)(a) = ∅
tr(s)(b) = {s} tr(t)(b) = {u} tr(u)(b) = ∅

Note that there are two a-transitions from s and no transitions from u.

We say that a state s accepts a word w = a0a1 · · · an−1 ∈ A∗ if there exists a sequence
of transitions

s = s0
a0 // s1

a1 // s2
a2 // · · · an−1

// sn (si+1 ∈ tr(si)(ai))

starting in s and leading to an accepting state sn. In general, there can be more than one
such sequence for a given word w. We denote the set of all words accepted by a state s by

l(s) = {w ∈ A∗ | s accepts the word w } (10.1)

and we call l(s) the language accepted by s. For instance, in Example 219, we have

l(s) = {w ∈ A∗ | w = vaa or w = vab, for some v ∈ A∗ }

Exercise 220. Let A = {a, b} and consider the following ndA:

s1
a //

a,b

��
s2

a,b
// s3

a,b
// s4

Show that the language accepted by the state s1 is

l(s1) = {w ∈ A∗ | |w|> 2 and the third letter from the right is an a }

Use the methods from Section 8.6 to construct a minimal dA accepting the language l(s1).
As it turns out, the resulting dA will have 8 states.

Chapter 10. Non-deterministic automata 121

10.1 The powerset construction

Every non-deterministic automaton can be turned into a deterministic one with the same
behaviour. As we will see, the resulting deterministic automaton has in general more
states than the original non-deterministic one. Thus ndA’s have the advantage over dA’s
of offering more economic language representations.

Definition 221 (the powerset construction). For every non-deterministic automaton

〈o, tr〉 : S → 2× P(S)A o : S → 2 tr : S → P(S)A

we define a deterministic automaton

〈o, tr〉 : P(S)→ 2× P(S)A o : P(S)→ 2 tr : P(S)→ P(S)A

by

o(V) =

{
1 if ∃ s ∈ V s.t. o(s) = 1
0 otherwise

tr(V)(a) =
⋃
{tr(s)(a) | s ∈ V }

where the big union is defined as the union of all subsets tr(s)(a) ⊆ S, for all s ∈ V . We
sometimes call P(S) the determinisation of S.

It follows from the diagram below that the deterministic automaton (P(S), 〈o, tr〉) has
the same behaviour as the original non-deterministic automaton (S, 〈o, tr〉):

S
{·}

//

l

**

〈o, tr〉

��

P(S)
∃! J−K

//

〈o, tr〉
vv

P(A∗)

〈il, dl〉
��

2× P(S)A
1× J−KA

// 2× P(A∗)A

where we have the following ingredients:

- the function l : S → P(A∗), which was defined in (10.1), maps a state s in the
ndA (S, 〈o, tr〉) to the language l(s) it accepts.

- the unique homomorphism of deterministic automata J−K : P(S) → P(A∗) which is
given by the finality of the set of languages, Theorem 153, maps a state V in the dA
(P(S), 〈o, tr〉) to the language JV K it accepts.

- the function {·} : S → P(S) maps a state s in the ndA (S, 〈o, tr〉) to the singleton
set {s} ⊆ S, which is a state of the dA (P(S), 〈o, tr〉).

122 10.2. Language equivalence of non-deterministic automata

Theorem 222. In the diagram above, everything commutes. In particular,

J {s} K = l(s) (10.2)

That is, the language recognised by the state {s} in the new automaton is the same as the
language recognised by the state s in the original automaton.

Exercise 223. Prove identity (10.2).

Example 224. For the ndA of Example 219, the powerset construction yields a dA with
P({s, t, u}) as the new set of states, containing 23 elements. If we take the subautomaton
generated by the state {s}, we obtain

{s} a //

b
��

{s, t}

a

��
b

tt{s, u}

b

OO

a

44

{s, t, u}
a

WWb
oo

This dA is minimal and has 4 states, which is one more than the original ndA.

Exercise 225. Apply the powerset construction to the ndA of Exercise 220 and compare
the result to the dA for the language l(s1) that was constructed in the same exercise.

10.2 Language equivalence of non-deterministic au-

tomata

If we want to prove that two (states in two) ndA’s are language equivalent, that is, accept
the same language, then a naive approach would be to: (i) use the powerset construction
to obtain two corresponding dA’s; (ii) construct a bisimulation relation (of deterministic
automata, Definition 131) relating the two dA’s; and (iii) use the coinduction proof principle
for deterministic automata, Corollary 157, to conclude that they accept the same language.

Chapter 10. Non-deterministic automata 123

Example 226 ([BP15]). Let A = {a} and consider the following two ndA’s:

x

a

""
za

oo

a
)) y

a
ii u

a
**

a

""
w

a
ii va

oo

Applying the powerset construction yields the following two corresponding dA’s, where we
have taken the subautomata generated by, respectively, {x} and {u}:

{x} a //

1

{y} a //

2

{z} a //

3

{x, y} a //

4

{y, z} a //

5

{x, y, z}

a

RR

6

{u} a // {v, w} a // {u,w} a // {u, v, w}

a

RR

The numbered, dashed lines above define a bisimulation relation of deterministic automata
between the upper and the lower automaton. It follows by the coinduction proof principle
for deterministic automata, Corollary 157, that {x} and {u} accept the same language.
By identity (10.2) above, also x and u accept the same languages.

Exercise 227. Let A = {a} and consider the following two ndA’s:

x
a

))

a

""
y

a
ii za

oo u

a

rr

Apply the above procedure to prove that l(x) = l(u).

One can do better, meaning: construct a smaller relation and still conclude that x and
u are language equivalent, by exploiting the special structure of the corresponding deter-
minised automata. Their state sets are powersets and come equipped with the algebraic
operation of set union:

∪ : P(S)× P(S)→ P(S) (V,W) 7→ V ∪W (union)

This leads to the following notion.

Definition 228 (bisimulation up-to-union). Let

(S, 〈oS, trS〉) (T, 〈oT , trT 〉)

124 10.2. Language equivalence of non-deterministic automata

be two deterministic automata, and let

(P(S), 〈oS, trS〉) (P(T), 〈oT , trT 〉)

be their corresponding determinisations. A relation

R ⊆ P(S)× P(T)

is a bisimulation up-to-union if, for all (V,W) ∈ R,

(i) oS(V) = oT (W) and (ii) ∀ a ∈ A : (Va, Wa) ∈ R∪

where Va = trS(V)(a) and Wa = trT (W)(a); and where

R∪ ⊆ P(S)× P(T)

is the closure of R with respect to union: the smallest relation such that

1. R ⊆ R∪

2. if (C,D) ∈ R∪ and (E,F) ∈ R∪ then (C ∪ E, D ∪ F) ∈ R∪

Proposition 229 (coinduction up-to-union). If R ⊆ P(S) × P(T) is a bisimulation
up-to-union and (V,W) ∈ R, then l(V) = l(W).

Exercise 230. Give a proof of Proposition 229, along the same lines as the proof of
Proposition 106, for streams, and Proposition 172, for deterministic automata.

Example 231 ([BP15]). We saw in Example 226 that the relation R = {1, 2, 3, 4, 5, 6},
consisting of all six pairs of related subsets below:

{x} a //

1

{y} a //

2

{z} a //

3

{x, y} a //

4

{y, z} a //

5

{x, y, z}

a
��

6

{u} a // {v, w} a // {u,w} a // {u, v, w}
a

FF

is a bisimulation. The subset S = {1, 2, 3} ⊆ R is a bisimulation up-to-union, since

{z}a = {x, y}
= {x} ∪ {y}
S∪ {u} ∪ {v, w} (since {x}S{u} and {y}S{v, w})
= {u, v, w}
= {u,w}a

The construction of the smaller relation S is sufficient to conclude that {x} and {u} accept
the same language, by Proposition 229.

Chapter 10. Non-deterministic automata 125

Exercise 232 (bisimulation up-to-congruence w.r.t. union). Consider the following
variation on Definition 228. A relation

R ⊆ P(S)× P(T)

is a bisimulation up-to-congruence with respect to union if, for all (V,W) ∈ R,

(i) oS(V) = oT (W) and (ii) ∀ a ∈ A : (Va, Wa) ∈ Rc

where now

Rc ⊆ P(S)× P(T)

is the congruence closure of R with respect to union: the smallest relation such that

1. R ⊆ Rc

2. Rc is an equivalence relation

3. if (C,D) ∈ Rc and (E,F) ∈ Rc then (C ∪ E, D ∪ F) ∈ Rc

Prove a corresponding principle of coinduction up-to-congruence. Apply it to the two
automata from Exercise 227 to conclude that l(x) = l(u), by proving that

{ ({x}, {u}), ({y, z}, {u}) }

is a bisimulation up-to-congruence.

Remark 233 (coalgebraic bisimulation for non-deterministic automata). For
those who have already read Chapters 2 to 5: we have defined the behaviour of ndA’s
in terms of language acceptance or, equivalently, by transforming them into dA’s by means
of the powerset construction, Definition 221. In doing so, we have followed the approach
from the classical theory of automata.

One can alternatively develop a theory of ndA’s without translating them to dA’s, by
viewing them as ndA-coalgebras for the functor ndA : Set → Set. This functor is defined,
for sets S and functions f : S → T , by

ndA(S) = 2× P(S)A ndA(f) =
(
1× P(f)A

)
:
(
2× P(S)A

)
→
(
2× P(T)A

)
where 1 is the identity function on the set 2 and where, for g : A→ P(S) and a ∈ A,

P(f)A : P(S)A → P(T)A P(f)A(g)(a) = f(g(a))

which is the image of g(a) ⊆ S under f .

126 10.3. Discussion

If we view ndA’s as ndA-coalgebras then a rather different picture arises, of which we
will briefly sketch the main ingredients next. If we apply the general Definition 21 of F -
homomorphism and the general Definition 33 of F -bisimulation to the functor ndA, then
it is a little exercise to prove that a relation R ⊆ S × T is an ndA-bisimulation:

S

〈oS, trS〉
��

R

〈oR, trR〉∃
��

π1oo
π2 // T

〈oT , trT 〉
��

2× P(S)A 2× P(R)A
1× P(π1)A
oo

1× P(π2)A
// 2× P(T)A

if and only if, for all (s, t) ∈ R,

(i) oS(s) = oT (t)

(ii) ∀ s
a // s′ ∃ t′ t

aoo s.t. (s′, t′) ∈ R

(iii) ∀ t
a // t′ ∃ s′ s

aoo s.t. (s′, t′) ∈ R

The notion of ndA-bisimilarity is rather different from language equivalence, as the following
two ndA’s illustrate:

s1

a

��
s2

b

��

c

��
s3 s4

t1
a

��

a

��

t2

b
��

t3

c

��

t4 t5

The states s1 and t1 are language equivalent, since they accept the same language {ab, ac}.
However, they are not ndA-bisimilar: the state s2, which has a choice of doing either a
b-transition or a c-transition, cannot be related to any state on the right with which it
would be bisimilar. The notion of ndA-bisimulation is sensitive to the branching structure
of the automaton, whereas language equivalence is not. One can easily show that ndA-
bisimilarity implies language equivalence; by the example above, the converse does not
hold.

10.3 Discussion

Non-deterministic automata and their translation to deterministic automata via the pow-
erset construction are a classical subject in automata theory [HMU07]. The coalgebraic

Chapter 10. Non-deterministic automata 127

presentation of the powerset construction in Section 10.1 goes back to [RT93]. The dis-
cussion of language equivalence of non-deterministic automata, in Section 10.2, follows
[BP13, BP15]. There Bonchi and Pous use coinduction up-to-union and coinduction up-
to-congruence w.r.t. union for an optimisation of the classical algorithm by Hopcroft and
Karp [HK71] for proving language equivalence of non-deterministic automata.

The notion of ndA-bisimulation from Remark 233 goes back to Park [Par81] and Milner
[Mil80], and became a corner stone of the theory of concurrency [Mil89]; see Sangiorgi’s
chapter in [SR12] on the origin of bisimulation and coinduction. Interestingly, it was this
notion of bisimulation that was generalised by Aczel and Mendler [Acz88, AM89] to the
coalgebraic notion of F -bisimulation, Definition 33 in the present book.

128 10.3. Discussion

Chapter 11

Stream differential equations

We introduce stream differential equations as a format for the coinductive definition of
streams. Here is the main idea. In Chapter 7, we defined, for a stream σ ∈ Aω,

σ(0) ∈ A (initial value)

σ′ = (σ(1), σ(2), σ(3), . . .) ∈ Aω (stream derivative)

Now let A = {a, b} and consider the following two streams:

σ ∈ Aω σ(2n) = a σ(2n+ 1) = b (11.1)

τ ∈ Aω τ(2n) = b τ(2n+ 1) = a (11.2)

Thus

σ = (a, b, a, b, a, b, . . .)

τ = (b, a, b, a, b, a, . . .)

and

σ(0) = a σ′ = τ (11.3)

τ(0) = b τ ′ = σ (11.4)

In analogy to calculus in mathematical analysis, we call identities (11.3) and (11.4) (a sys-
tem of two) stream differential equations, or SDEs for short, since these equations describe
the streams σ and τ in terms of their initial values and derivatives.

Note that in the above, we have first defined what the streams σ and τ are, by specifying
their individual elements in equations (11.1) and (11.2). Next we have characterised their
behaviour, in stream differential equations (11.3) and (11.4), by describing their initial
values and derivatives or, in other words, their outputs and transitions.

In the present chapter, we will forget about elementwise definitions such as (11.1)
and (11.2). Instead, we will use stream differential equations as definitions or behavioural
specifications of streams. We will sometimes derive from the defining differential equations

129

130

elementwise characterisations of the specified streams, but typically, we will not bother to
do so: the stream differential equations say it all. More specifically, SDEs tell us what the
initial values and derivatives of the defined streams are, which is all one needs to know to
build suitable bisimulations in proofs by coinduction.

Using stream differential equations as definitions, one has to make sure that they are
well-formed. More precisely, given a system of stream differential equations, one has to
prove that it has a solution, that is, that there exist streams whose initial values and
derivatives satisfy the given stream differential equations. Moreover, one has to show that
these streams are the only ones with this property, in other words, one has to prove that
the solution is unique.

With the phrase solving a system of stream differential equations, we refer to the process
of finding its unique solution. The general methodology for solving a given system of stream
differential equations will be to define its unique solution by coinduction, using the finality
of Aω. In the example of σ and τ above, we would solve the system of stream differential
equations (11.3) and (11.4) by defining a stream system

(S, 〈o, tr〉) = s|a))
t|bii (S = {s, t})

Next we would define two streams

σ = JsK τ = JtK (11.5)

where

J−K : (S, 〈o, tr〉)→ (Aω, 〈ist, dst〉)

is the unique homomorphism given by the finality of Aω, Theorem 78. Because J−K is a
homomorphism of stream systems, we have

JsK(0) = o(s) JsK′ = Jtr(s)K (11.6)

JtK(0) = o(t) JtK′ = Jtr(t)K (11.7)

(recall that ist(ρ) = ρ(0) and dst(ρ) = ρ′). Using the definition of (S, 〈o, tr〉) and the
definition of σ and τ in (11.5), we see that (11.6) and (11.7) are equivalent to

σ(0) = a σ′ = τ

τ(0) = b τ ′ = σ

This proves that σ and τ satisfy the system of stream differential equations (11.3) and
(11.4). Because the homomorphism J−K is unique by finality, it follows that this solution
is unique.

Exercise 234. Prove that σ and τ defined in (11.5) are the only streams satisfying (11.3)
and (11.4).

Chapter 11. Stream differential equations 131

In the remainder of this chapter, we shall first look at a series of examples and non-
examples of well-formed stream differential equations and their solutions, in Section 11.1.
Then we shall describe a rather general way to solve stream differential equations, called
the syntactic solution method. The syntactic method will be illustrated with an example
first, in Section 11.2. This example is generic enough to understand how similar systems of
stream differential equations can be solved, including all those that will play a role in the
remainder of the book. Section 11.3 then gives a general account of the syntactic method,
in all formal detail, for a large class of SDEs in so-called GSOS format.

11.1 Examples of stream differential equations

In the present section, we take

A = N

and consider streams in Nω. We will present various examples of SDEs illustrating their
convenience and expressiveness as a formalism for defining streams and stream functions.
For all equations, we will mention their solution but not yet how it was found, leaving the
discussion of general methods for solving SDEs until Section 11.2. We have already en-
countered several of the SDEs below in Chapter 7, where they were presented as properties
of various streams and stream functions. Instead, SDEs are taken now as definitions.

Our first SDE

σ(0) = 1 σ′ = σ (11.8)

defines the derivative of σ in terms of σ itself and has the stream

ones = (1, 1, 1, . . .) (11.9)

as its solution. Next we define a function on streams:

+: Nω × Nω → Nω

by the following system of SDEs:

(σ + τ)(0) = σ(0) + τ(0) (σ + τ)′ = σ′ + τ ′ (11.10)

We have one SDE for each pair of streams σ and τ . The derivative (σ + τ)′ is defined
in terms of the function + itself, now applied to the derivatives of the arguments. The
solution of (11.10) is the function of elementwise sum:

+: Nω × Nω → Nω (σ + τ)(n) = σ(n) + τ(n) (11.11)

The following system of SDEs

(σ � τ)(0) = σ(0) · τ(0) (σ � τ)′ = σ′ � τ ′ (11.12)

132 11.1. Examples of stream differential equations

defines, similarly, the elementwise product of streams:

� : Nω × Nω → Nω (σ � τ)(n) = σ(n) · τ(n) (11.13)

also known as the Hadamard product. Next, the SDE

σ(0) = 1 σ′ = σ + σ (11.14)

defines the stream of all powers of 2:

(20, 21, 22, . . .) (11.15)

The function + is used again in the following system of two SDEs:

σ(0) = 0 σ′ = τ (11.16)

τ(0) = 1 τ ′ = σ + τ

which has the stream of Fibonacci numbers [OEI, A000045]

fib = (0, 1, 1, 2, 3, 5, 8, . . .) (11.17)

as its solution. More precisely, the streams σ = fib and τ = fib′ are a solution of (11.16).
We observe that (11.16), which consists of two SDEs, can equivalently be presented as one
so-called higher-order SDE:

σ(0) = 0 σ′(0) = 1 σ′′ = σ + σ′ (11.18)

Exercise 235 (recurrence for the Fibonacci numbers). In mathematics, streams
such as the Fibonacci numbers are often defined by induction, using recurrence relations.
For instance, one can define a stream

(f0, f1, f2, . . .) ∈ Nω f0 = 0 f1 = 1 fn+2 = fn + fn+1

Show that (f0, f1, f2, . . .) = fib.

In the next SDE,

σ(0) = 1 σ′ = σ + ones (11.19)

the derivative of σ is defined in terms of σ, the constant stream ones (11.9), and the function
+ (11.11). The solution of (11.19) is given by the stream of positive natural numbers:

nat = (1, 2, 3, . . .) (11.20)

Chapter 11. Stream differential equations 133

The following system of SDEs defines again a function on pairs of streams:

f(σ, τ)(0) = σ(0) · τ(0) f(σ, τ)′ = f(σ′, τ) + f(σ, τ ′) (11.21)

It follows from Exercise 94 that the solution of (11.21) is given by

f(σ, τ) = σ ⊗ τ

where the shuffle product satisfies

⊗ : Nω × Nω → Nω (σ ⊗ τ)(n) =
n∑
k=0

(
n

k

)
· σ(k) · τ(n− k) (11.22)

The following SDE

σ(0) = 1 σ′ = σ ⊗ σ (11.23)

has the stream of factorial numbers as its solution:

fac = (0!, 1!, 2!, . . .) (11.24)

Exercise 236. Show that the stream fac could equivalently be defined by

σ(0) = 1 σ′ = σ � nat (11.25)

(the Hadamard product � was defined in (11.13)).

Here is an example showing that not always, all is well. First we define a function on
streams by the following system of SDEs:

f(σ)(0) = σ(0) f(σ)′ = f(σ′′) (11.26)

The derivative f(σ)′ is defined in terms of the function f itself, now applied to the second
derivative of its argument. The unique solution of (11.26) is the function

even : Nω → Nω even(σ) = (σ(0), σ(2), σ(4), . . .) (11.27)

Next we consider the following SDE:

σ(0) = 0 σ′ = even(σ) (11.28)

This equation, which uses the function even and thereby implicitly refers to SDE (11.26),
has both σ = (0, 0, 0, . . .) and σ = (0, 0, 1, 1, 1, . . .) as solutions. Since we want our SDEs
to have unique solutions, we consider this SDE (11.28) or, more precisely, this system of
SDEs consisting of both (11.26) and (11.28), as unacceptable. In the remainder of this
chapter, we will formulate conditions on the syntactic shape of SDEs that will ensure that
they have a unique solution. As we will see, the present system of SDEs consisting of
(11.26) and (11.28), does not satisfy those syntactic conditions.

134 11.2. Introducing the syntactic solution method

Exercise 237. Describe all solutions of the SDE (11.28).

The problem lies really with the defining equation for the function even, SDE (11.26).
The righthand side of (11.26) uses σ′′, the second derivative of σ. Even though in isolation,
Equation (11.26) is well-formed – it has the function even as its unique solution – we just
saw that it may nevertheless give rise to systems of SDEs with more than one solution,
such as (11.28). The syntactic conditions that we are about to introduce, will forbid the
use of second derivatives and will thereby exclude SDEs such as (11.26).

11.2 Introducing the syntactic solution method

We discuss a general method for showing that a system of SDEs has a unique solution.
Because the method associates with each such system a set of terms, we call it syntactic.
As we shall see in Section 11.3, the method works for a large class of systems of SDEs that
satisfy a rather general condition on their (syntactic) shape. In the present section, we
first introduce the syntactic solution method by means of an example.

The stream ham of the Hamming numbers consists of all natural numbers of the form
2i3j5k, for any i, j, k > 0, in increasing order:

ham = (1, 2, 3, 4, 5, 6, 8, 9, 10, . . .)

= (203050, 213050, 203150, 223050, 203051, 213150, 233050, 203250, 213051, . . .)

Exercise 238. In Exercise 235, we saw a recurrence relation for the stream of Fibonacci
numbers. Can you find a recurrence relation for the Hamming numbers?

Formally, we define the stream ham by the following SDE:

ham(0) = 1 ham′ = (2× ham) ‖ (3× ham) ‖ (5× ham) (11.29)

and we will prove below that it has a unique solution. In the SDE above, the functions of
scalar multiplication

k × (−) : Nω → Nω (k = 2, 3, 5)

are defined by the SDEs

(k × σ)(0) = k · σ(0) (k × σ)′ = k × σ′ (11.30)

It follows that

k × σ = (k · σ(0), k · σ(1), k · σ(2), . . .)

Chapter 11. Stream differential equations 135

The function of ordered merge

‖ : Nω × Nω → Nω

is defined by the SDEs:

(σ ‖ τ)(0) =

σ(0) if σ(0)< τ(0)
σ(0) if σ(0) = τ(0)
τ(0) if σ(0)> τ(0)

(σ ‖ τ)′ =

σ′ ‖ τ if σ(0)< τ(0)
σ′ ‖ τ ′ if σ(0) = τ(0)
σ ‖ τ ′ if σ(0)> τ(0)

(11.31)

For instance,

(0, 2, 4, 6, 8, . . .) ‖ (0, 3, 6, 9, 12, . . .) = (0, 2, 3, 4, 6, 8, 9, . . .)

We will now prove the existence of a unique solution for the system of SDEs (11.29),
(11.30), and (11.31). Let us suppose for a moment that this system of SDEs indeed has
a solution. According to Lemma 77, any stream σ is given by the initial values of its
successive derivatives σ′(0), σ(2)(0), σ(3)(0), So we can investigate the behaviour of the
stream ham by computing its derivatives:

ham′ = (2× ham) ‖ (3× ham) ‖ (5× ham)

ham′′ = (2× ham′) ‖ (3× ham) ‖ (5× ham)

= (2× ((2× ham) ‖ (3× ham) ‖ (5× ham))) ‖ (3× ham) ‖ (5× ham)

and so on. We see that these derivatives are given by syntactic expressions denoting
repeated applications of the functions ‖ and the three scalar multiplication functions, to
the stream ham. Forgetting again about the existence of the stream ham, the syntactic
method now consists of the following four steps:

(1) We model the collection of all the above derivatives as a set Term of syntactic terms.

(2) Then we use the SDEs (11.29), (11.30), and (11.31) to turn the set Term into a stream
system

(Term, 〈o, tr〉) o : Term→ N tr : Term→ Term

by inductively defining the functions o and tr.

(3) Next we use the unique homomorphism

J−K : (Term, 〈o, tr〉)→ (Nω, 〈ist, dst〉)

given by finality, Theorem 78, to construct a candidate solution for our SDEs.

(4) Finally we prove that the proposed solution satisfies the SDEs and is unique.

136 11.2. Introducing the syntactic solution method

We will now explain each of these four steps in detail.
(1) In order to define the set Term, we first introduce syntactic symbols representing

the stream and the operators that we are after, by simply underlining their names. So we
introduce a constant symbol ham, three unary term constructors k×(−) for k = 2, 3, 5, and
one binary term constructor (−)‖(−). Since we want to define our functions on arbitrary
streams, we shall furthermore include in the set Term a constant symbol σ for each σ ∈ Nω.

Formally, we define the set Term of all terms t as the smallest set that contains the
constants ham and σ (for all σ ∈ Nω) and that is closed under the application of the term
constructors:

Term 3 t ::= ham | σ | 2×(t) | 3×(t) | 5×(t) | t1 ‖ t2 (σ ∈ Nω)

(2) Next we define

o : Term→ N tr : Term→ Term

by induction on the structure of our terms. For the constant ham, we put

o(ham) = 1 tr(ham) = 2×(ham) ‖ 3×(ham) ‖ 5×(ham)

following the defining SDE (11.29). For the constants σ, we put

o(σ) = σ(0) tr(σ) = σ′

following the definitions of the functions

ist : Nω → N dst : Nω → Nω

which are given (in Section 7.2, (7.5) and (7.6)) by

ist : Nω → N ist(σ) = σ(0)

dst : Nω → Nω dst(σ) = σ′

For the operators of scalar multiplication, consider t ∈ Term and assume that o(t) and tr(t)
have already been defined. Then we define

o(k×(t)) = k · o(t) o(k×(t)) = k×(tr(t)) (k = 2, 3, 5)

following the defining SDE (11.30). For the ordered merge, let t1, t2 ∈ Term and assume
that o(t1), tr(t1), o(t2) and tr(t2) have already been defined. We define

o(t1 ‖ t2) =

o(t1) if o(t1)< o(t2)
o(t1) if o(t1) = o(t2)
o(t2) if o(t1)> o(t2)

tr(t1 ‖ t2) =

tr(t1) ‖ t2 if o(t1)< o(t2)

tr(t1) ‖ tr(t2) if o(t1) = o(t2)

t1 ‖ tr(t2) if o(t1)> o(t2)

where we followed SDE (11.31).

Chapter 11. Stream differential equations 137

(3) We define a candidate solution of our system of SDEs with the help of

J−K : (Term, 〈o, tr〉)→ (Nω, 〈ist, dst〉)

which is the final homomorphism already mentioned above, by

ham = JhamK (11.32)

and, for all σ, τ ∈ Nω, by

2× σ = J2×(σ)K 3× σ = J3×(σ)K 5× σ = J5×(σ)K σ ‖ τ = Jσ ‖ τK (11.33)

(4) Finally we show that the syntactic method introduced above is correct.

Theorem 239 (correctness). The stream and stream functions defined in equations
(11.32) and (11.33) satisfy the original system of defining SDEs (11.29), (11.30), and
(11.31), and they are the only ones.

Proof: We show that the stream ham satisfies the SDE (11.29), leaving the other cases
to the reader. For the initial value, we have

ham(0) = JhamK(0) = o(ham) = 1

where the second equality follows from the fact that J−K is a homomorphism. Furthermore,

ham′ = JhamK′

= Jtr(ham)K (J−K is a homomorphism)

= J2×(ham) ‖ 3×(ham) ‖ 5×(ham)K (definition tr)

= J2×(ham)K ‖ J3×(ham)K ‖ J5×(ham)K (Proposition 244 below)

= 2× JhamK ‖ 3× JhamK ‖ 5× JhamK (Proposition 244 below)

= 2× ham ‖ 3× ham ‖ 5× ham (definition of ham, (11.32))

as desired. We leave the proof of the uniqueness of the solution as Exercise 240.

Exercise 240 (uniqueness of solution). Use coinduction to prove that any two solutions
of the SDEs (11.29), (11.30), and (11.31) – each consisting of a constant σ ∈ Nω; functions
of type fk : Nω → Nω (for k = 2, 3, 5); and a function of type m : Nω × Nω → Nω – are
equal.

The proof of Theorem 239 uses the fact that J−K is compositional, which we shall prove
as Proposition 244 below. We shall use two lemma’s. Recall from Definition 64 that

∼ ⊆ Term× Term

denotes the greatest bisimulation relation on Term, and that ∼ is equal to the union of all
bisimulations.

138 11.2. Introducing the syntactic solution method

Lemma 241. The function (−) : Nω → Term that maps σ to σ is a homomorphism of
stream systems. As a consequence,

t ∼ J t K

for all t ∈ Term.

Proof: By Proposition 69, the function (−) is a homomorphism if and only if

{ (σ, σ) | σ ∈ Nω }

is a bisimulation relation. Since the latter is immediate by the definition of (−), this proves
the first statement of the lemma. Since also J−K : Term→ Nω is a homomorphism and since
the composition of two homomorphisms is again a homomorphism, the second statement
follows, again by Proposition 69.

Exercise 242. Prove that Jσ K = σ, for all σ ∈ Nω.

Lemma 243 (bisimilarity is a congruence). For all s, s1, s2, t, t1, t2 ∈ Term, k = 2, 3, 5,

if s ∼ t then k×(s) ∼ k×(t) (11.34)

if s1 ∼ t1 and s2 ∼ t2 then s1 ‖ t1 ∼ s2 ‖ t2 (11.35)

We say that bisimilarity is a congruence with respect to the operators k× and ‖.

Proof: Let

R ⊆ Term× Term

be a bisimulation relation and let

R ⊆ Term× Term

be defined as the smallest set such that

R ⊆ R (i)

if (s, t) ∈ R then (k×(s), k×(t)) ∈ R (ii)

if (s1, t1), (s2, t2) ∈ R then (s1 ‖ t1 , s2 ‖ t2) ∈ R (iii)

For the proof of (11.34) and (11.35), it suffices to show that R is again a bisimulation. We
have to show, for all (s, t) ∈ R, that

(a) o(s) = o(t) (b) (tr(s), tr(t)) ∈ R

We will prove this by induction on the definition of R:

Chapter 11. Stream differential equations 139

(i) For (s, t) ∈ R, (a) and (b) follow from the assumption that R is a bisimulation.

(ii) Next let (s, t) ∈ R and assume that we have already proved (a) and (b) for (s, t). We
show that also (k×(s), k×(t)) satisfies (a) and (b). For (a), we have

o(k×(s)) = o(s) (definition o)

= o(t) (by assumption (a) for (s, t))

= o(k×(t)) (definition o)

For (b), we note that, by assumption (b) for (s, t),

(tr(s), tr(t)) ∈ R

By clause (ii) in the definition of R, we have

(k×(tr(s)), k×(tr(t))) ∈ R

It now follows that

tr(k×(s)) = k×(tr(s)) (definition tr)

R k×(tr(s))

= tr(k×(t)) (definition tr)

(where we have used the infix notation for the relation R). This proves (a) and (b)
for (k×(s) , k×(t)).

(iii) The case of (s1 ‖ t1, s2 ‖ t2) is similar to the previous one.

This concludes the proof that R is a bisimulation.

Proposition 244 (compositionality of J−K).

J k×(t) K = k × J t K Jt1 ‖ t2K = Jt1K ‖ Jt2K (t, t1, t2 ∈ Term, k = 2, 3, 5)

Proof: By Lemma 241, t ∼ J t K , which implies, by Lemma 243, that

k×(t) ∼ k×(J t K)

Since J−K is a homomorphism of stream systems, we have, for all s, t ∈ Term,

s ∼ t ⇐⇒ J s K = J t K

by Theorem 84. As a consequence,

J k×(t) K = J k×(J t K) K

= k × J t K ((11.33), definition of the function k×)

which proves the first equality of the proposition. The second is proved similarly.

This concludes our proof of the correctness of the syntactic method, Theorem 239.

140 11.3. GSOS: a general format for stream differential equations

Exercise 245 (algebras and coalgebras in the syntactic method). We define a
functor F : Set→ Set by

F (S) = 1 + S + S + S + S2

for every set S. Complete this definition by describing how F acts on functions. An
F -algebra (discussed in Chapter 3) is a pair (S, α) consisting of a set S and a function
α : F (S) → S. A homomorphism of F -algebras (S, α) and (T, β) is a function f : S → T
such that f ◦ α = β ◦ F (f).

Show that, equivalently, an F -algebra is a pair (S, [s, g, h, i, j]), consisting of a set
S and a 5-tuple consisting of an element s ∈ S, three functions g, h, i : S → S, and a
function j : S2 → S. Prove that the function J−K : Term → Nω is both a homomorphism
of F -algebras and a homomorphism of G-coalgebras:

1 + Term + Term + Term + Term2

[ham, 2×, 3×, 5×, ‖]

��

// 1 + Nω + Nω + Nω + (Nω)2

[ham , 2×, 3×, 5×, ‖]

��

Term

〈o, tr〉
��

J−K
// Nω

〈ist, dst〉
��

N× Term // N× Nω

where we define the functor G : Set→ Set by G(S) = N× S.

Exercise 246. We define the functions f, g : Nω × Nω → Nω by

f(σ, τ)(0) = σ(0) + τ(0) f(σ, τ)′ = f(σ′, τ ′)

g(σ, τ)(0) = σ(0) · τ(0) g(σ, τ)′ = f(g(σ′, τ), g(σ, τ ′))

Use the syntactic method to prove that the above system of SDEs has a unique solution.

11.3 GSOS: a general format for stream differential

equations

Next we will explain that the syntactic solution method of the previous section works,
far more generally, for all systems of stream differential equations in the so-called GSOS
format. This acronym is often read as guarded structural operational semantics and stems
from the theory of concurrency (see Section 11.5).

Chapter 11. Stream differential equations 141

Terms over a signature: Because we want to be precise about the syntax of the
GSOS format, we begin with a bit of background on term algebras. A signature Σ is a
collection of operation symbols f , together with a function ar : Σ→ N that assigns to every
f its arity ar(f). If ar(f) = 0 then we call f a constant.

For a given set X, we define the set TΣ(X) of all terms over the signature Σ with
generators or variables in X as the smallest set that contains X and that is closed under
the operations in Σ:

TΣ(X) 3 t ::= x | f(t1, . . . , tk) (x ∈ X, f ∈ Σ, ar(f) = k)

A Σ-algebra (S, α) consists of a set S and a collection of functions

α = { fα : Sk → S | f ∈ Σ, ar(f) = k }

containing for every operation symbol f an interpretation fα. A Σ-homomorphism

h : (S, α)→ (T, β)

is a function h : S → T that respects the algebra structure:

fβ(h(s1), . . . , h(sk)) = h(fα(s1, . . . , sk)) (f ∈ Σ, ar(f) = k, s1, . . . , sk ∈ S)

Exercise 247. Define for every signature Σ a functor FΣ : Set→ Set such that the notions
of Σ-algebra and Σ-homomorphism above coincide with those of FΣ-algebras, as defined in
Section 3.1.

The set of terms TΣ(X) with generators in X carries a Σ-algebra structure (TΣ(X), γ),
where for every f ∈ Σ the function fγ : TΣ(X)k → TΣ(X) is simply given by the syntactic
construction of terms:

fγ(t1, . . . , tk) = f(t1, . . . , tk)

The algebra (TΣ(X), γ) is called the free Σ-algebra over the set X because of the following
universal property: for all Σ-algebras (S, α) and for every function g : X → S embedding
the generators in X into the algebra S, there exists a unique Σ-homomorphism

g∗ : (TΣ(X), γ)→ (S, α)

extending g, that is, such that g∗(x) = g(x), for all x ∈ X. We can define g∗ by induction
as follows:

g∗(x) = g(x) (all x ∈ X)

g∗(f(t1, . . . , tk)) = fα(g∗(t1), . . . , g∗(tk)) (all f ∈ Σ, ar(f) = k)

142 11.3. GSOS: a general format for stream differential equations

Exercise 248. Use Exercise 247 to show that the notion of free Σ-algebra above is an
instance of the following categorical notion. Consider a functor F : Set→ Set, a set X, an
F -algebra (T, β), and an injective function i : X → T . We call (T, β) free on X if for every
F -algebra (S, α) and every function g : X → S there exists a unique F -homomorphism
g∗ : (T, β)→ (S, α) such that

F (T)

β

��

F (g∗)
// F (S)

α

��

T
∃! g∗

// S

X

i

OO

∀ g

AA

that is, g∗ ◦ i = g.

Exercise 249. Prove that (TΣ(∅), γ) is initial in the category of all Σ-algebras and Σ
homomorphisms.

Finally, a substitution is a Σ-homomorphism

s : TΣ(X)→ TΣ(Y)

Note that for

X = {x1, . . . , xk} {t1, . . . tk} ⊆ TΣ(Y)

every function

g : X → TΣ(Y) g(xi) = ti

induces a substitution

g∗ : TΣ(X)→ TΣ(Y) (11.36)

using the fact that (TΣ(X), γ) is free. We shall use the following notation:

g∗(t) = t [ti/xi]i6k (t ∈ TΣ(X))

Introducing the GSOS format: Next we introduce a general syntactic format for
SDEs. For the rest of this section, let Σ be an arbitrary but fixed signature. We shall
consider streams over an arbitrary set A.

Chapter 11. Stream differential equations 143

Definition 250 (GSOS format). A system of stream differential equations in GSOS
format for the signature Σ contains for every f ∈ Σ an SDE of the form:

f(σ1, . . . , σk)(0) = of (σ1(0), . . . , σk(0)) (11.37)

f(σ1, . . . , σk)
′ = df (σ1(0), . . . , σk(0))[σi/xi, σ

′
i/yi]i6k (11.38)

where k = ar(f) and where the initial value and the derivative are given by functions

of : Ak → A df : Ak → TΣ({x1, . . . , xk, y1, . . . , yk})

We note that

df (σ1(0), . . . , σk(0))[σi/xi, σ
′
i/yi]i6k ∈ TΣ(Aω)

since the substitution [σi/xi, σ
′
i/yi]i6k is a function of type

[σi/xi, σ
′
i/yi]i6k : TΣ({x1, . . . , xk, y1, . . . , yk})→ TΣ(Aω)

By Definition 250, the GSOS format allows functions f : (Aω)k → Aω to be specified by
SDEs in which, according to (11.37), the initial value may depend on the initial value of the
arguments σ1, . . . , σk ∈ Aω, and in which the derivative, according to (11.38), may depend
on the initial values of the arguments, the arguments themselves, and the derivatives of
the arguments.

Example 251. The system of SDEs (11.29), (11.30), and (11.31) defining the Hamming
numbers can be seen to be in GSOS format, by taking

Σ = {ham, 2×, 3×, 5×, ‖ }

with arities 0, 1, 1, 1, and 2, respectively; and by defining

oham = 1 dham = 2×(ham) ‖ 3×(ham) ‖ 5×(ham)

o k×(n) = k · n d k×(n) = k×(y1)

o ‖(n,m) =

n if n <m
n if n = m
m if n >m

d ‖(n,m) =

y1 ‖ x2 if n <m

y1 ‖ y2 if n = m

x1 ‖ y2 if n >m

for k = 2, 3, 5 and for all n,m > 0.

Defining the notion of solution: A solution of a system of SDEs in GSOS format,
as in Definition 250, is now defined to be a Σ-algebra structure

(Aω, α) α = { fα : (Aω)k → Aω | f ∈ Σ, ar(f) = k }

144 11.3. GSOS: a general format for stream differential equations

satisfying the stream differential equations of (11.37) and (11.38): for all f ∈ Σ,

fα(σ1, . . . , σk)(0) = of (σ1(0), . . . , σk(0))

fα(σ1, . . . , σk)
′ = id∗(df (σ1(0), . . . , σk(0))[σi/xi, σ

′
i/yi]i6k)

where

id∗ : (TΣ(Aω), γ)→ (Aω, α)

is the unique Σ-algebra homomorphism that is induced, by the fact that (TΣ(Aω) is free,
by the identity function id : Aω → Aω.

A syntactic stream system: Similar to the example of the Hamming numbers, we
shall next introduce a set of terms, turn it into a stream system, and then use finality to
construct a candidate solution for our system of SDEs. Let

Aω = {σ | σ ∈ Aω }

The set Aω contains for every stream σ a constant symbol σ. Every system of SDEs in
GSOS format now induces a stream system

(TΣ(Aω), 〈o, tr〉)

where the functions o : TΣ(Aω) → A and tr : TΣ(Aω) → TΣ(Aω) are inductively defined,
for all σ ∈ Aω, by

o(σ) = σ(0) tr(σ) = σ′

and, for all f ∈ Σ of arity ar(f) = k and all terms t1, . . . , tk ∈ TΣ(Aω), by

o(f(t1, . . . , tk)) = of (o(t1), . . . , o(tk))

tr(f(t1, . . . , tk)) = df (o(t1), . . . , o(tk)) [ti/xi, tr(ti)/yi]i6k

By finality of (Aω, 〈ist, dst〉), there exists a unique homomorphism of stream systems

J−K : (TΣ(Aω), 〈o, tr〉)→ (Aω, 〈ist, dst〉)

We use it to define a Σ-algebra structure (Aω, α) on the set of streams, which will be the
candidate solution for our system of SDEs. For every f ∈ Σ of arity ar(f) = k, and for
every σ1, . . . , σk ∈ Aω, we define

fα(σ1, . . . , σk) = J f(σ1, . . . , σ1) K (11.39)

Theorem 252 (correctness of the syntactic method). The Σ-algebra (Aω, α) defined
by Equation (11.39) is the unique solution of the system of SDEs in Definition 250.

Chapter 11. Stream differential equations 145

This theorem can be proved in essentially the same way as Theorem 239 for the Ham-
ming numbers, using again the fact that bisimilarity is a congruence, as in Lemma 243,
and the fact that the final semantics is compositional, as in Proposition 244. The proof is
omitted, details can be found in [HKR17].

Exercise 253. Show that all the SDEs in Section 11.1 – apart from (11.27), which defines
the function even – are in GSOS format and hence have unique solutions. Show that also
the system of SDEs for the Hamming numbers, consisting of the equations in (11.29),
(11.30), and (11.31), is in GSOS format.

Any signature Σ with a corresponding set of operators on Aω that are defined by a
system of SDEs in GSOS format, comes equipped with the notions of bisimulation up-to-
Σ and coinduction up-to-Σ. These notions generalise earlier definitions of up-to such as
bisimulation and coinduction up-to-sum, for streams, in Definition 105 and Proposition 106.
They generalise also the definitions of bisimulation and coinduction up-to-equivalence in
Definition 138 and Proposition 139, and bisimulation and coinduction up-to-congruence, in
Definition 171 and Proposition 172, for languages (when restricted to a one-letter alphabet).

Definition 254 (bisimulation up-to-Σ). Consider a signature Σ and a corresponding
collection of operations on Aω defined by a system of SDEs in GSOS format. A relation

R ⊆ Aω × Aω

is called a bisimulation up-to-Σ if

(i) σ(0) = τ(0) and (ii) (σ′, τ ′) ∈ RΣ ((σ, τ) ∈ R)

where

RΣ ⊆ Aω × Aω

is the smallest relation such that

1. R ⊆ RΣ

2. RΣ is an equivalence relation

3. RΣ is closed under the operations in Σ

(For instance, if + ∈ Σ and (α1, β1), (α2, β2) ∈ RΣ then (α1 + α2, β1 + β2) ∈ RΣ.)

Proposition 255 (coinduction up-to-Σ). If R ⊆ Aω×Aω is a bisimulation up-to-Σ and
(σ, τ) ∈ R, then σ = τ .

146 11.3. GSOS: a general format for stream differential equations

Proof: If R is a bisimulation up-to-Σ, then one shows by stuctural induction on its
definition that RΣ is a bisimulation relation. Since (σ, τ) ∈ R ⊆ RΣ, coinduction Theorem
96 implies σ = τ .

We shall see many examples of proofs by coinduction up-to-Σ in Chapter 12. The
following exercise gives a characterisation of precisely which stream functions are definable
by SDEs in GSOS format.

Exercise 256 (GSOS and causal stream functions). For streams σ, τ ∈ Aω and for
n > 1, we define

σ ≡n τ ⇐⇒ σ(0) = τ(0) , . . . , σ(n− 1) = τ(n− 1)

We call a stream function f : (Aω)k → Aω causal if

if σ1 ≡n τ1 , . . . , σk ≡n τk then f(σ1, . . . , σk)(n) = f(τ1, . . . , τk)(n)

for all σ1, . . . , σk, τ1, . . . , τk ∈ Aω, and for all n > 0 (see also Definition 343). Then:

f can be defined by a system of SDEs in GSOS format ⇐⇒ f is causal

Reconstruct a proof of this fact consulting [HKR17]. Which of the functions even, odd,
and zip (defined in Example 86) can be defined by a SDE in GSOS format?

Example 257. Recalling the definitions of elementwise addition (11.10):

(σ + τ)(0) = σ(0) + τ(0) (σ + τ)′ = σ′ + τ ′

and of scalar multiplication (11.30):

(k × σ)(0) = k · σ(0) (k × σ)′ = k × σ′

we consider the following SDEs:

ones(0) = 1 ones′ = ones

nat(0) = 1 nat′ = ones + nat

squares(0) = 1 squares′ = ones + (2× nat) + squares

cubes(0) = 1 cubes′ = ones + (3× nat) + (3× squares) + cubes

These equations are in GSOS format and define the following streams:

ones = (1, 1, 1, . . .) nat = (1, 2, 3, . . .)

squares = (12, 22, 32, . . .) cubes = (13, 23, 33, . . .)

Chapter 11. Stream differential equations 147

For a formal proof of squares = (12, 22, 32, . . .), we observe that

squares(1) = (squares′)(0) = (ones + (2× nat) + squares)(0) = 22

For squares(2), we compute:

squares(2) = (ones + (2× nat) + squares)′

= ones′ + (2× nat)′ + squares′

= ones + (2× nat′) + ones + (2× nat) + squares

= ones + (2× (ones + nat)) + ones + (2× nat) + squares

= ones + (2× ones) + (2× nat) + ones + (2× nat) + squares

= (4× ones) + (4× nat) + squares

As a consequence, squares(2) = squares(2)(0) = 4 + 4 + 1 = 32. One proves that

squares(n) = (n2 × ones) + (2n× nat) + squares

for any n > 2, by induction on n. It follows that squares(n) = squares(n)(0) = (n+ 1)2.

Exercise 258. Prove, similarly, that cubes = (13, 23, 33, . . .). Use the equality

(1n, 2n, 3n, . . .)′ = ((1 + 1)n, (1 + 2)n, (1 + 3)n, . . .)

to find an SDE for the stream (1n, 2n, 3n, . . .), for any n > 2.

Many more examples of SDEs in GSOS format can be found in Chapter 12, on stream
calculus.

11.4 Behavioural differential equations

Behavioural differential equations (BDEs) are for languages what SDEs are for streams.
Here is a very brief sketch. Recall from Section 8.3 the set of languages over a set A:

P(A∗) = {λ | λ ⊆ A∗ }

and from Definition 151, the notions of initial value and a-derivative of a language:

λ(ε) =

{
1 if ε ∈ λ
0 if ε 6∈ λ λa = {w ∈ A∗ | aw ∈ λ } (λ ∈ P(A∗), a ∈ A)

where ε is the empty word. Note that instead of just one derivative, we now have a
derivative for every a ∈ A. Here is an elementary example of a BDE (with A = {a, b}):

λ(ε) = 1 λa = b× λ λb = 0

This BDE defines what the language λ is by specifying its behaviour, which consists of its
initial value λ(ε) and its input derivatives λa and λb. The unique solution of the BDE is
λ = (ab)∗, which is the only language satisfying the above identities.

148 11.5. Discussion

Exercise 259. Consider the following system of two BDEs:

λ(ε) = 1 λa = µ λb = 0

µ(ε) = 0 µa = 0 µb = λ

What is its solution?

Similarly, we can define functions on languages. For instance,

f(λ)(ε) = 1 f(λ)a = λa × f(λ)

is a system of BDEs, containing the above two identities for every λ ∈ P(A∗) and a ∈ A.
It defines the function

f : P(A∗)→ P(A∗) f(λ) = λ∗

Exercise 260. What is the solution of the following system of BDEs:

f(κ, λ)(ε) = min{κ(ε), λ(ε)} f(κ, λ)a = f(κa, λ) + f(κ(ε), λa)

(where we interpret the value of κ(ε), which is 0 or 1, as the corresponding language)?

In Section 11.3, we proved that any system of stream differential equations in GSOS
format has a unique solution. This solution was constructed by coinduction, using the fact
that the set of streams is a final stream system and applying what was called the syntactic
method. All of this can be readily adapted for languages: a GSOS format can be defined for
systems of BDEs, and a corresponding syntactic solution method can be used to construct
unique solutions by coinduction, this time exploiting the fact that the set P(A∗) of all
languages is a final automaton. More generally still, all of this applies as well to weighted
languages, also known as formal power series, which are a common generalisation of both
streams and languages. Weighted languages were introduced in Exercise 354, where it was
observed that they form a final Moore automaton. Also for weighted languages, finality
can again be taken as a basis for the solution of behavioural differential equations. None
of this is worked out in detail here, but references will be mentioned below.

11.5 Discussion

The present chapter is largely based on the overview paper [HKR17]. Stream differential
equations and behavioural differential equations were introduced in [Rut99a, Rut01] and
[Rut00a, Rut03a], building on [Brz64], [Con71] and [PE98].

Chapter 11. Stream differential equations 149

The GSOS format was first introduced in the framework of structural operational se-
mantics [Plo81, BIM95, AFV01], which studies rule formats that guarantee compositional
semantics. It was then generalised to abstract GSOS, in [TP97, Bar03, Bar04], using the
categorical framework of bialgebras and distributive laws. The survey paper [Kli11] gives
an excellent introduction to abstract GSOS. [HKR17, Section 9], which itself is mainly
based on [Bar04, Kli11, LPW04], presents a brief account of the categorical underpinnings
of the GSOS format and the syntactic solution method for streams. For more on GSOS
and distributive laws, see [BHKR15].

All SDEs that we discussed in the present chapter are based on the standard final
coalgebra structure on the set of streams, given by initial value and stream derivative.
[HKR17, Section 7] discusses several alternative final coalgebra structures on the set of
streams, each of which gives rise to non-standard types of differential equations; see also
Exercises 307 and 314 in Chapter 12.

150 11.5. Discussion

Chapter 12

A calculus of streams

We develop a calculus of streams σ ∈ Rω in close analogy to mathematical analysis, with
as main ingredients the notions of initial value σ(0) and stream derivative σ′, which were
introduced in Section 7.2. Definitions of streams and stream functions will be typically
given by means of stream differential equations, introduced in Chapter 11. And as always,
proofs will typically be given by coinduction or coinduction up-to, Proposition 255.

We will formulate stream calculus versions of classical notions and results from math-
ematics such as, for instance, differentiation and integration, the fundamental theorem of
calculus, Taylor series, and the exponential function. The resulting stream calculus turns
out to be conceptually simple yet surprisingly expressive.

12.1 Basic stream operations

We begin by observing that the set R of real numbers is a commutative ring:

(R, +, −, ×, 0, 1)

with the operations of sum, minus and multiplication, and with the constants 0 and 1. We
shall next introduce corresponding operations and constants for streams of real numbers:

(Rω, +, −, ×, [0], [1])

with which the set Rω is a commutative ring as well, as we will prove in Proposition
265 below. Note that we are using the same function symbols for the operations on real
numbers and the corresponding operations on streams of real numbers.

Definition 261 (sum, minus, convolution product). We define the operations of sum,
minus and convolution product:

+: Rω × Rω → Rω − : Rω → Rω × : Rω × Rω → Rω

151

152 12.1. Basic stream operations

together with a function [−] : R→ Rω that embeds the set R into the set Rω, by means of
the following system of stream differential equations:

[r](0) = r [r]′ = [0] (r ∈ R)

(σ + τ)(0) = σ(0) + τ(0) (σ + τ)′ = σ′ + τ ′ (12.1)

(−σ)(0) = −σ(0) (−σ)′ = −(σ′) (12.2)

(σ × τ)(0) = σ(0)× τ(0) (σ × τ)′ = (σ′ × τ) + ([σ(0)]× τ ′) (12.3)

Since the above system of SDEs is in GSOS format, the unique existence of these operators
follows from Theorem 252.

Note that (12.3) defines (σ × τ)′ in terms of (one of) the original arguments, their
derivatives, and (one of) their initial values, thus using the full expressiveness that the
GSOS format allows us. As usual, we define

σ0 = [1] σn+1 = σ × σn

It is straightforward to see that

[0] = (0, 0, 0, . . .) [1] = (1, 0, 0, 0, . . .) [r] = (r, 0, 0, 0, . . .) (r ∈ R)

The functions minus and sum on streams are elementwise extensions of the corresponding
functions on real numbers: for all n > 0,

(−σ)(n) = −σ(n) (12.4)

(σ + τ) = σ(n) + τ(n) (12.5)

Traditionally, the convolution product of two streams is defined elementwise, by

(σ × τ)(n) =
n∑
k=0

σ(k) · τ(n− k) (12.6)

It is a little exercise to show that both (12.6) and the SDE (12.3) define the same function.
However, we prefer the definition by the SDE, since it will allow us to prove several of the
properties of the convolution product by coinduction.

Exercise 262 (convolution product versus function product). One motivation for
the definition of the convolution product of streams can be found in the world of real-
valued functions, which is an important source of inspiration for stream calculus in general.
Consider a function f : R→ R and a stream σ ∈ Rω (of coefficients) such that

f(x) =
∞∑
i=0

σ(i)× xi

Chapter 12. A calculus of streams 153

assuming that this infinite sum exists, for instance, for real numbers x close to 0. Defining

f(x) =
∞∑
i=0

σ(i+ 1)× xi

and observing that f(0) = σ(0), we have

f(x) = f(0) + (x× f(x))

Consider, similarly, a second function g : R→ R with a stream τ of coefficients. Now show
that the elementwise product of functions

(f × g)(x) = f(x)× g(x) (x ∈ R)

satisfies

(f × g)(0) = f(0)× g(0) (f × g)(x) = (f(x)× g(x)) + (f(0)× g(x))

and compare this equality to the SDE (12.3) defining the convolution product of streams.
Based on the analogy between functions and streams, one might have expected that

(σ × τ)′ = (σ′ × τ) + (σ × τ ′) (12.7)

Observe that this equality is generally not valid. Apparently, stream differentiation does
not quite correspond to function differentiation in analysis. Rather, it corresponds to the
transformation of a function f into f , an operation that is not usually present in analysis.
We shall see later, in Section 12.4, that the operation of shuffle product does satisfy equality
(12.7) above.

Exercise 263 (scalar multiplication as convolution product). The following SDE
defines scalar stream multiplication, for every r ∈ R:

(r × σ)(0) = r · σ(0) (r × σ)′ = r × σ′ (12.8)

(It generalises our earlier definition (11.30), which was for natural numbers.) Clearly, it
satisfies

r × σ = (r · σ(0), r · σ(1), r · σ(2), . . .)

Prove the following equality, for all r ∈ R:

r × σ = [r]× σ (12.9)

Here the symbol × on the left denotes scalar multiplication as defined in (12.8); on the
right, × denotes the convolution product of two streams as defined in (12.3).

154 12.1. Basic stream operations

Notation 264 (writing r for [r]). Equation (12.9) offers a justification for the following
abuse of notation: in the future, we shall often write r × σ for [r]× σ. More generally, we
shall often simply write r instead of [r] in any context of streams and stream operations.
For instance,

r + σ = [r] + σ rσ = r × σ = [r]× σ

where in the latter case, we additionally have omitted the multiplication symbol.

Proposition 265 (Rω with convolution product is a commutative ring). The set
Rω of streams of real numbers with the operations

(Rω, +, −, ×, [0], [1])

is a commutative ring.

Proof: All of the ring properties can be proved by coinduction up-to, see Exercises
266 and 274 below. As an example, we prove

(σ + τ)× ρ = (σ × ρ) + (τ × ρ) (12.10)

for all σ, τ, ρ ∈ Rω. We define

R = {((σ + τ)× ρ, (σ × ρ) + (τ × ρ)) | σ, τ, ρ ∈ Rω}

and show that R is a bisimulation up-to. For the initial values, we have:

((σ + τ)× ρ)(0) = (σ + τ)(0)× ρ(0)

= (σ(0) + τ(0))× ρ(0)

= (σ(0)× ρ(0)) + (τ(0))× ρ(0))

= (σ × ρ)(0) + (τ × ρ)(0)

= ((σ × ρ) + (τ × ρ))(0)

and for the stream derivatives:

((σ + τ)× ρ)′ = ((σ + τ)′ × ρ) + ((σ + τ)(0)× ρ′)
= ((σ′ + τ ′)× ρ) + ((σ(0) + τ(0))× ρ′)
Rc ((σ′ × ρ) + (τ ′ × ρ)) + ((σ(0)× ρ′) + (τ(0)× ρ′))
= ((σ′ × ρ) + (σ(0)× ρ′)) + ((τ ′ × ρ) + (τ(0)× ρ′))
= (σ × ρ)′

Here Rc is the closure of R with respect to the operators + and ×; in the last but one
equality, we have used the fact that + is commutative and associative. Thus, R is a
bisimulation up-to and (12.10) follows by coinduction up-to, Proposition 255.

Chapter 12. A calculus of streams 155

Exercise 266. Prove the following identities: for all σ, τ, ρ ∈ Rω, r, t ∈ R:

1× σ = σ 0× σ = 0

σ + τ = τ + σ (σ + τ) + ρ = σ + (τ + ρ)

(r + t)× σ = (r × σ) + (t× σ) σ × (τ + ρ) = (σ × τ) + (σ × ρ)

where we follow Notation 264, writing r for [r] and t for [t].

The following constant stream plays a central role in the calculus of streams.

Definition 267 (the constant stream X). Let the stream X be given by

X = (0, 1, 0, 0, 0, . . .)

or, equivalently, by the following SDE:

X(0) = 0 X′ = [1]

Note the difference between X = (0, 1, 0, 0, 0, . . .) and [1] = (1, 0, 0, 0, . . .).

We have the following elementary properties: for all σ ∈ Rω and n > 0,

X× σ = (0, σ(0), σ(1), σ(2), . . .) (12.11)

X2 = (0, 0, 1, 0, 0, 0, . . .)

Xn = (0, . . . , 0︸ ︷︷ ︸
n times

, 1, 0, 0, 0, . . .) (12.12)

As a consequence,

(X× σ)′ = σ (12.13)(
Xn+1

)′
= Xn (12.14)

Example 268. Here are some examples of streams:

1− X = (1,−1, 0, 0, 0, . . .)

1 + 7X2 −
√

2X5 = (1, 0, 7, 0, 0,−
√

2, 0, 0, 0, . . .)

(1− 3X)× (2 + 5X2) = 2− 6X + 5X2 − 15X3

Multiplying a stream σ by the stream X can be seen as an elementary form of stream
integration, as is expressed by the following theorem.

156 12.1. Basic stream operations

Theorem 269 (fundamental theorem of stream calculus).

σ = σ(0) + (X× σ′) (σ ∈ Rω)

Proof: The equality trivially follows from the observation that, on the right, σ(0)
denotes the stream [σ(0)] = (σ(0), 0, 0, . . .) and, furthermore,

X× σ′ = X× (σ(1), σ(2), σ(3), . . .)

= (0, σ(1), σ(2), σ(3), . . .)

Equivalently, the equality can be proved by coinduction.

Theorem 269 tells us how to compute a stream σ from its initial value σ(0) and its
derivative σ′, and is thus analogous to the fundamental theorem of calculus, which for
functions f : R→ R and x ∈ R reads – under conditions – as follows:

f(x) = f(0) +

∫ x

0

f ′(t) dt

For another characterisation of streams inspired by classical analysis, we recall from
Lemma 77 that for any σ ∈ Rω and n > 0, we have

σ(n)(0) = σ(n) (12.15)

where the higher-order derivatives of σ are defined by

σ(0) = σ σ(n+1) = (σ(n))′

Thus
σ = (σ(0), σ(1), σ(2), . . .) = (σ(0)(0), σ(1)(0), σ(2)(0), . . .)

We call the latter the stream of Taylor coefficients of σ (with respect to stream derivation)
and observe that, trivially, streams are identical to the stream of their Taylor coefficients.

There is also the corresponding Taylor series representation for streams, for which we
need to introduce the operation of infinite sum first.

Definition 270 (infinite sum). Let I be a (finite or) infinite set and let {σi}i∈I be a
family of streams that is summable: for all n > 0, the set

{i ∈ I | σi(n) 6= 0}

is finite. We define the infinite sum Σi∈I σi by the following system of SDEs:

(Σi∈I σi)(0) = Σi∈I σi(0) (Σi∈I σi)
′ = Σi∈I σ

′
i

Note that the sum of initial values σi(0) is finite because we assume the family {σi}i∈I to
be summable.

Chapter 12. A calculus of streams 157

Theorem 271 (Taylor series). For every σ ∈ Rω,

σ =
∞∑
i=0

σ(i)(0)× Xi =
∞∑
i=0

σ(i)× Xi

We shall sometimes write this infinite sum also as

σ = σ(0) + σ(1)X + σ(2)X2 + · · · (12.16)

Proof: The second equality follows from equality (12.15), the first from (12.12). Equiv-
alently, the theorem follows by coinduction.

Exercise 272. Prove that for any sequence of streams τ0, τ1, τ2, . . . ∈ Rω, the family
{τi ×X i}i>0 is summable. In particular, the family {σ(i)(0)×X i}i>0 above is.

Remark 273 (generating functions). In mathematics, Taylor series are a means to
study the behaviour of functions f : R → R. Sometimes, Taylor series are also used as
representations of infinite sequences, that is, streams. In that case, f is called a generating
function for the stream it represents. For instance, the generating function

f(x) =
1

1− 2x
= 1 + 2x+ 22x2 + 23x3 + · · ·

represents the stream (1, 2, 22, 23, . . .). Note that one has to be careful: the function f above
is not everywhere defined and the infinite sum diverges for certain values of x. A way out
is to treat x not as a real variable but as an indeterminate, and to treat the infinite sum
as a formal series. Here is how the Wikipedia entry on the notion of generating function
has it:

In mathematics, the term generating function is used to describe an infi-
nite sequence of numbers (an) by treating them as the coefficients of a series
expansion. The sum of this infinite series is the generating function. Unlike
an ordinary series, this formal series is allowed to diverge, meaning that the
generating function is not always a true function and the variable is actually
an indeterminate.

(A general reference on generating functions is [Wil94].) In contrast, identity 12.16 of
Theorem 271 tells us that every stream is identical to its own Taylor series. For instance,

(1, 2, 22, 23, . . .) = 1 + 2X + 22X2 + 23X3 + · · · =
1

1− 2X

where the second equality will be made sense of in Section 12.2 below, once the operation of
convolution inverse will have been introduced. Note that all we have in these two equalities
are streams (such as 1 = [1] and X) and stream functions (such as convolution product,
infinite sum, and convolution inverse). Notably, notions such as formal, representation or
divergence simply do not come into the picture.

158 12.2. Convolution inverse

We shall see some examples of Taylor series in Example 279 below.

Exercise 274 (commutativity of the convolution product). Using Equation (12.6),
it is trivial to prove that the convolution product is commutative:

σ × τ = τ × σ (12.17)

for all σ, τ ∈ Rω. A proof by coinduction, not using (12.6) but based on the defining
SDE (12.3), is not at all easy. The reason is that (12.3) is not “symmetric” regarding
the roles of σ and τ (whereas (12.6) is). As it happens, (12.3) is a special case of a
more general definition of product, which generalises also non commutative cases, such as
language concatenation. The commutativity of the convolution product of streams is, in
other words, a bit of a coincidence. Here is another, now symmetric SDE for the convolution
product:

(σ × τ)(0) = σ(0) · τ(0) (σ × τ)′ = (σ′ × τ) + (σ × τ ′)− (X× σ′ × τ ′) (12.18)

It uses the constant stream X introduced in Definition 267. Show that both (12.18) and
(12.3) have the same solution. Then prove (12.17) by coinduction.

12.2 Convolution inverse

The set R of real numbers carries not only a ring structure but it is also a field: for every
r ∈ R such that r 6= 0 there exists r−1 ∈ R, also written as 1/r or 1

r
, such that

r × r−1 = 1 r−1 × r = 1

As before, such an operation on real numbers can be extended to an operation on streams
of real numbers. For every stream σ ∈ Rω such that σ(0) 6= 0, we shall define a stream
σ−1, sometimes also written as 1/σ or 1

σ
, such that

σ × σ−1 = 1 σ−1 × σ = 1 (12.19)

On the right, 1 denotes the stream [1] = (1, 0, 0, 0, . . .), as usual following Notation 264.
The stream σ−1 is called the (convolution) inverse of σ. We can use the equation

σ × σ−1 = 1

which states a property of the inverse of σ, as a specification from which the definition of
σ−1 can be derived, as follows. If we take initial values on both sides, then we obtain

(σ × σ−1)(0) = 1(0)

Chapter 12. A calculus of streams 159

which implies
σ(0)× σ−1(0) = 1

by the defining SDEs for × and [1] in Definition 261. It follows that

σ−1(0) = σ(0)−1

This defines the initial value of σ−1, and explains at the same time the condition σ(0) 6= 0.
Computing derivatives in the equation σ × σ−1 = 1, we find, on the left,

(σ × σ−1)′ = (σ′ × σ−1) + (σ(0)× (σ−1)′)

again by the defining SDE for ×; on the right, we have 1′ = 0. This implies

(σ′ × σ−1) + (σ(0)× (σ−1)′) = 0

σ(0)× (σ−1)′ = −σ′ × σ−1

(σ−1)′ = −σ(0)−1 × σ′ × σ−1

This defines what the derivative of σ−1 should be. All in all, we have obtained an SDE
with which we can now formally define the operation of convolution inverse.

Definition 275 (convolution inverse). For every σ ∈ Rω such that σ(0) 6= 0 we define
the (convolution) inverse σ−1 by the following system of SDEs:

σ−1(0) = σ(0)−1 (σ−1)′ = −σ(0)−1 × σ′ × σ−1 (12.20)

Since this system is in GSOS format, it has a unique solution.

As usual, we shall write

σ−n = (σ−1)n
τ

σ
= τ × σ−1 (n > 0, σ ∈ Rω, σ(0) 6= 0)

There are the following elementary properties (whose proof is left to the reader).

Proposition 276. For all σ, τ ∈ Rω with σ(0) 6= 0 and τ(0) 6= 0,

σ × σ−1 = 1 σ−1 × σ = 1

(σ−1)−1 = σ (σ × τ)−1 = τ−1 × σ−1

Exercise 277 (Rω is an integral domain). We mentioned above that

(R, +, −, ×, (−)−1, 0, 1)

is a field. Although we lifted the operation of inverse to Rω, this does not make

(Rω, +, −, ×, (−)−1, [0], [1])

a field. (Why not?) Prove that Rω is, instead, an integral domain without zero divisors.

160 12.2. Convolution inverse

Exercise 278 (a recurrence relation for convolution inverse). We saw in equations
(12.5) and (12.6) an explicit formula for the nth element of the sum and product of two
streams. There does not seem to exist a similar closed formula for σ−1(n) for streams
σ ∈ Rω with σ(0) 6= 0. However, there is the following recurrence relation:

σ−1(0) = σ(0)−1 σ−1(n) = σ(0)−1 ×
n−1∑
k=0

σ(n− k)× σ−1(k) (n > 1)

Derive this equality from σ × σ−1 = 1 and identity (12.6).

Here are some examples of convolution inverse and of Taylor series.

Example 279. One can compute the inverse of a stream by repeatedly taking its deriva-
tive. For an elementary example, we consider

1− X = (0,−1, 0, 0, 0, . . .)

We compute the derivative of its inverse using the defining stream differential Equation
(12.20) for inverse: (

1

1− X

)′
= −1−1 × (1− X)′ × 1

1− X

= −1×−1× 1

1− X

=
1

1− X

Together with Theorem 271, this implies

1

1− X
= 1 + X + X2 + X3 + · · · = (1, 1, 1, . . .)

Similarly, one computes

1

1− 2X
= 1 + 2X + 22X2 + 23X3 + · · · = (1, 2, 22, 23, . . .)

1

1− X2
= 1 + X2 + X4 + X6 + · · · = (1, 0, 1, 0, 1, 0, . . .)

1

(1− X)2
= 1 + 2X + 3X2 + 4X3 + · · · = (1, 2, 3, 4, . . .)

Chapter 12. A calculus of streams 161

Exercise 280. Prove by coinduction that for all σ ∈ Rω,

1

1− X
× σ = Σ(σ) = (σ(0), σ(0) + σ(1), σ(0) + σ(1) + σ(2), . . .)

where Σ is the operation of partial sums, defined in identity (7.14) and characterised by
identity (7.18).

With the following, surprisingly helpful rule, one can easily compute derivatives of
fractions σ/τ , without having to remember the rules for the derivative of the convolution
product and the inverse.

Proposition 281. For all σ ∈ Rω: σ′ = (σ − σ(0))′.

Proof: This follows from

(σ − σ(0))′ = (X× σ′)′ (by Theorem 269)

= σ′ (by Equation (12.13))

or, equivalently, from (σ − σ(0))′ = σ′ − σ(0)′ = σ′ − 0 = σ′.

Here is an example of the use of Proposition 281 in the calculation of the derivative of
a fraction: (

2 + X3

1− X− X2

)′
=

(
2 + X3

1− X− X2
− 2

)′
(Proposition 281)

=

(
2 + X3

1− X− X2
− 2− 2X− 2X2

1− X− X2

)′
=

(
2X + 2X2 + X3

1− X− X2

)′
=

(
X× 2 + 2X + X2

1− X− X2

)′
=

2 + 2X + X2

1− X− X2
(by Equation (12.13))

Exercise 282. Compute the (higher-order) derivatives σ(n) and τ (n), for all n > 0, of

σ =
1

(1− X)2
τ =

1 + X

(1− X)3

and prove that σ = (1, 2, 3, . . .) and τ = (12, 22, 32, . . .).

162 12.3. Stream composition

Exercise 283. Prove the following identity:(
1

(1− rX)n

)′
=

1

(1− rX)n
+

1

(1− rX)n−1
+ · · ·+ 1

1− rX

for all r ∈ R and n > 1.

With the help of convolution product and inverse, we define the following two classes
of streams.

Definition 284 (polynomial, rational streams). We call a stream σ ∈ Rω polynomial
if it is of the form

σ = a0 + a1X + a2X2 + · · ·+ anXn (n > 0, ai ∈ R)

We call σ rational if it is a fraction of two polynomials:

σ =
a0 + a1X + a2X2 + · · ·+ anXn

b0 + b1X + b2X2 + · · ·+ bmXm
(n,m > 0, ai, bj ∈ R, b0 6= 0)

Here are examples of a polynomial and a rational stream:

2− 6X + 5X2 − 15X3 = (2,−6, 5,−15, 0, 0, 0, . . .)

1

(1− X)2
= 1 + 2X + 3X2 + 4X3 + · · · = (1, 2, 3, 4, . . .)

We shall study rational streams in much detail later, in Section 12.8, where we shall see
that rational streams are the solutions of so-called finite linear systems of SDEs; and in
Chapter 14, where Theorem 402 will give various additional characterisations.

12.3 Stream composition

We have seen how the constant stream X = (0, 1, 0, 0, 0, . . .) can be used as a basic building
block to construct new streams and to formulate general properties such as the fundamental
theorem of stream calculus and Taylor series representations. As it turns out, X can under
certain conditions also be viewed as a place holder. The following definition will help to
make this precise.

Chapter 12. A calculus of streams 163

Definition 285 (stream composition). We define the composition of streams

◦ : Rω × Rω → Rω

by the following stream differential equation:

(σ ◦ τ)(0) = σ(0) (σ ◦ τ)′ = τ ′ × (σ′ ◦ τ)

The above SDE is in GSOS format, and so ◦ is well-defined, by Theorem 252.

We shall use stream composition in Section 12.5, to relate the convolution product and
the shuffle product (which will be introduced in Section 12.4). A few elementary properties
and examples of stream composition are given below.

Proposition 286. For all r ∈ R and all ρ, σ, τ ∈ Rω,

[r] ◦ τ = [r] (ρ+ σ) ◦ τ = (ρ ◦ τ) + (σ ◦ τ)

σ−1 ◦ τ = (σ ◦ τ)−1 (ρ× σ) ◦ τ = (ρ ◦ τ) × (σ ◦ τ)

and similarly for the infinite sum. Moreover, for all τ with τ(0) = 0, we have

X ◦ τ = τ.

Proof: All identities follow by coinduction up-to. We give a proof of

(ρ+ σ) ◦ τ = (ρ ◦ τ) + (σ ◦ τ)

by showing that the relation

R = { ((ρ+ σ) ◦ τ, (ρ ◦ τ) + (σ ◦ τ)) | ρ, σ, τ ∈ Rω }

is a bisimulation-up-to. For the initial values,

((ρ+ σ) ◦ τ)(0) = ((ρ ◦ τ) + (σ ◦ τ))(0)

follows from the definitions of + and ◦. For the derivative, we have

((ρ+ σ) ◦ τ)′ = τ ′ × ((ρ+ σ)′ ◦ τ) (definition ◦)
= τ ′ × ((ρ′ + σ′) ◦ τ) (definition +)

Rc τ ′ × ((ρ′ ◦ τ) + (σ′ ◦ τ))

= τ ′ × (ρ′ ◦ τ) + τ ′ × (σ′ ◦ τ)

= ((ρ ◦ τ) + (σ ◦ τ))′ (definitions of + and ◦)

where Rc is the context closure of R. This proves that R is a bisimulation up-to and the
equality follows by coinduction up-to, Proposition 255. The other identities are proved
similarly.

164 12.4. Shuffle product

Proposition 286 shows that composing with τ distributes over sum, product and inverse.
Stream composition acts as identity on the constant stream [r], but it replaces X with τ
when τ(0) = 0. As a consequence, if τ(0) = 0 then the composition σ ◦ τ is obtained by
replacing every X in σ with τ .

Example 287. The following equality is immediate by Proposition 286:

X

1− X− X2
◦ X

1 + X
=

X
1+X

1− X
1+X
− (X

1+X
)2

=
X(1 + X)

1 + X− X2

Exercise 288 (composition preserves rationality). Prove, more generally, that com-
position preserves rationality.

Exercise 289. Let σ, τ ∈ Rω with τ(0) = 0. Prove the following identities:

σ(X) = σ

σ(−X) = σ(0) − σ(1)X + σ(2)X2 − σ(3)X3 + · · ·
σ(X) + σ(−X)

2
= σ(0) + σ(2)X2 + σ(4)X4 + · · ·

σ(X2) = σ(0) + σ(1)X2 + σ(2)X4 + σ(3)X6 + · · ·

where we have used the notation

σ(τ) = σ ◦ τ

suggesting that substitution behaves similar to function application.

12.4 Shuffle product

We introduce and study the so-called shuffle product (the name derives from a similar
operator on formal languages), which we already encountered, for streams of natural num-
bers, in Exercise 94. Replacing convolution product by shuffle product will provide an
alternative ring structure on Rω. Furthermore, the combined use of both products greatly
enhances the expressiveness of our stream calculus.

Definition 290 (shuffle product). We define the operation of shuffle product

⊗ : Rω × Rω → Rω

Chapter 12. A calculus of streams 165

by means of the following SDE:

(σ ⊗ τ)(0) = σ(0)× τ(0) (σ ⊗ τ)′ = (σ′ ⊗ τ) + (σ ⊗ τ ′) (12.21)

We shall use the following notation: for all n > 0,

σ0 = 1 σn+1 = σ ⊗ σn (12.22)

where, as always following Notation 264, 1 stands for the stream [1].

Since the SDE above is in GSOS format, it follows from Theorem 252 that the shuffle
product is well-defined. Replacing convolution product by shuffle product in Proposition
265 gives the following.

Proposition 291 (Rω with shuffle product is a commutative ring). The set Rω of
streams of real numbers with the operations

(Rω, +, −, ⊗, [0], [1])

is a commutative ring.

Proof: The proofs of the ring identies are again by coinduction up-to, Proposition 255,
similar to Proposition 265, which stated that Rω with convolution product is a commutative
ring. The proof of commutativity is simpler for the shuffle product than for the convolution
product, because the defining SDE for σ⊗ τ is symmetric with respect to the role of σ and
τ . As a consequence,

R = {(σ ⊗ τ, τ ⊗ σ) | σ, τ ∈ Rω}

is readily seen to be a bisimulation up-to.

Remark 292. There is the following closed form for the shuffle product (which we already
saw in Exercise 94 for streams of natural numbers), which is a variation on equality (12.6)
for the convolution product: for σ, τ ∈ Rω and n > 0,

(σ ⊗ τ)(n) =
n∑
k=0

(
n

k

)
· σ(k) · τ(n− k) (12.23)

This formula will play no role in what follows, because proofs by coinduction, based on the
defining SDE (12.21) for the shuffle product, will not involve binomial coefficients and, as
a consequence, will be simpler.

Here are some elementary properties of the shuffle product.

166 12.4. Shuffle product

Proposition 293. For all σ ∈ Rω, r, s ∈ R, n > 0,

r ⊗ σ = r × σ (12.24)(
σn+1

)′
= (n+ 1)⊗ σ′ ⊗ σn (12.25)

Xn = n!× Xn (12.26)

X⊗ σ = σ(0)X + 2σ(1)X2 + 3σ(2)X3 + · · · (12.27)

(X⊗ σ′)′ = σ(1) + 2σ(2)X + 3σ(3)X2 + · · · (12.28)

1

1− rX
⊗ 1

1− sX
=

1

1− (r + s)X
(12.29)

Proof: Proofs are elementary, using induction or coinduction up-to, Proposition 255.
For instance, since(

1

1− rX
⊗ 1

1− sX

)′
=

((
1

1− rX

)′
⊗ 1

1− sX

)
+

(
1

1− rX
⊗
(

1

1− sX

)′)
=

(
r

1− rX
⊗ 1

1− sX

)
+

(
1

1− rX
⊗ s

1− sX

)
= (r + s)×

(
1

1− rX
⊗ 1

1− sX

)
and (

1

1− (r + s)X

)′
= (r + s)× 1

1− (r + s)X

it follows that

R =

{(
1

1− rX
⊗ 1

1− sX
,

1

1− (r + s)X

)
| r, s ∈ R

}
is a bisimulation up-to, from which (12.29) then follows by coinduction up-to.

Exercise 294 (Taylor series with shuffle product). Prove the following identity:

σ =
∞∑
i=0

σ(i)(0)

i!
× Xi =

∞∑
i=0

σ(i)

i!
× Xi

for every σ ∈ Rω.

Like the convolution product, also shuffle product has a partial inverse.

Chapter 12. A calculus of streams 167

Definition 295 (shuffle inverse). Let the shuffle inverse σ−1 of a stream σ ∈ Rω with
σ(0) 6= 0 be defined by the following SDE:

σ−1(0) = σ(0)−1 (σ−1)′ = −σ′ ⊗ σ−1 ⊗ σ−1 (12.30)

We shall use the following notation:

σ−n =
(
σ−1
)n

(12.31)

for all n > 0.

Exercise 296. Prove the following identities:

σ ⊗ σ−1 = 1
(
σ−1
)−1

= σ

(σ ⊗ τ)−1 = σ−1 ⊗ τ−1 (1− X)−1 = 1 + 1!X + 2!X2 + · · · (12.32)

by coinduction up-to.

Exercise 297 (stream exponentiation). In analysis, the exponential function

e− : R→ R

satisfies, for any function f : R→ R,(
ef(x)

)′
= f ′(x)× ef(x)

where × is the elementwise product of functions. We define stream exponentiation

e− : Rω → Rω

by the following system of SDEs:

(eσ) (0) = eσ(0) (eσ)′ = σ′ ⊗ eσ (12.33)

Prove the following familiar identities:(
eX
)′

= eX eσ ⊗ eτ = eσ+τ

e−σ = (eσ)−1 eσ = 1 +
σ1

1!
+
σ2

2!
+ · · ·

for all σ, τ ∈ Rω; and the following, more surprising one, for all r ∈ R:

erX =
1

1− rX

Things get more complicated rather quickly. For instance, it is by no means clear what a
closed expression for the stream eX

2
could be. We shall see in Exercise 378 that this stream

can be represented by an infinite weighted stream automaton.

168 12.5. Laplace transform

12.5 Laplace transform

The convolution product and the shuffle product can be related by means of the so-called
Laplace transform of streams, which we shall define using a new type of stream derivation.

Definition 298 (analytic stream derivative). We define the analytic stream derivative
of a stream σ ∈ Rω by

d

dX
(σ) = (X⊗ σ′)′

which we shall also write as

dσ

dX
=

d

dX
(σ)

The following equalities illustrate that analytic stream derivative behaves for convolu-
tion product and inverse in the same way as function derivation in analysis.

Proposition 299. For all σ, τ ∈ Rω,

d(σ × τ)

dX
=

(
dσ

dX
× τ
)

+

(
σ × dτ

dX

)
d(σ−1)

dX
= −dσ

dX
× σ−1 × σ−1 (12.34)

dσ

dX
= σ(1) + 2σ(2)X + 3σ(3)X2 + · · ·

assuming σ(0) 6= 0 for the second equality.

Proof: The first two equalities are readily proved by coinduction up-to. The third
equality is identity (12.28), and explains the name of this new type of derivative.

Next we use the operation of analytic stream derivative to define the so-called Laplace
transform, with which we shall be able to relate the convolution and shuffle products.

Definition 300 (Laplace transform). Let Λ: Rω → Rω be defined by the following
stream differential equation:

Λ(σ)(0) = σ(0) Λ(σ)′ = Λ

(
dσ

dX

)

Chapter 12. A calculus of streams 169

One easily shows that

Λ(σ) = 0!σ(0) + 1!σ(1)X + 2!σ(2)X2 + · · ·

As a consequence, we can define the inverse of the Laplace transform by

Λ−1(σ) =
σ(0)

0!
+
σ(1)

1!
X +

σ(2)

2!
X2 + · · ·

Exercise 301 (Laplace as coalgebra isomorphism). Prove that

Λ−1(σ)(0) = σ(0)
d (Λ−1(σ))

dX
= Λ−1(σ′)

for every σ ∈ Rω. Show that Λ is an isomorphism of stream systems:

Λ:

(
Rω,

〈
(−)(0),

d

dX

〉)
∼= (Rω, 〈 (−)(0), (−)′ 〉)

with on the left, the analytic and on the right, the ordinary stream derivative.

The Laplace transform changes the convolution product and inverse into the shuffle
product and inverse.

Proposition 302. For all r ∈ R and σ, τ ∈ Rω,

Λ(r) = r Λ(X) = X

Λ(σ + τ) = Λ(σ) + Λ(τ) Λ(σ × τ) = Λ(σ) ⊗ Λ(τ)

Λ

(
dσ

dX

)
= Λ(σ)′ Λ(σ−1) = Λ(σ)−1

Proof: The first two equalities are trivial, the one but last is the definition of Λ, and
the other three can be proved by a straightforward coinduction up-to.

Exercise 303. Prove similar properties for Λ−1.

All in all, we have obtained the following.

Theorem 304 (Laplace as ring isomorphism). The Laplace transform is an isomor-
phism of rings:

Λ: (Rω, +, −, ×, [0], [1]) ∼= (Rω, +, −, ⊗, [0], [1])

170 12.5. Laplace transform

Thus the Laplace transform and its inverse let us switch between the two isomorphic
ring structures on Rω, transforming convolution product into shuffle product and back.
Often, however, it makes perfect sense to work with both ring structures at the same time,
as is illustrated by the following identities, in which both the convolution and the shuffle
product occur. Since the shuffle product occurs on the left in these equations, and not on
the right, they allow us to eliminate the shuffle product.

Theorem 305 (shuffle product elimination). For all σ ∈ Rω, r ∈ R,

1

1 + rX
⊗ 1

1− rX
= 1 (12.35)

X⊗ σ =

(
X2 × dσ

dX

)
+ (X× σ) (12.36)

1

1− rX
⊗ σ =

1

1− rX
×
(
σ ◦ X

1− rX

)
(12.37)

=
σ(0)

1− rX
+

σ(1)X

(1− rX)2
+

σ(2)X2

(1− rX)3
+ · · · (12.38)

Proof: The first equality is an instance of identity (12.29) in Proposition 293. For
(12.36), we compute as follows:

X⊗ σ = X× (X⊗ σ)′ (Theorem 269, (X× σ)(0) = 0)

= X× ((X⊗ σ′) + σ) (definition ⊗)

= X× (X⊗ σ′) + (X× σ) (× distributes over +)

= X× (X× (X⊗ σ′)′) + (X× σ) (Theorem 269, (X× σ′)(0) = 0)

= X2 × (X⊗ σ′)′ + (X× σ)

=

(
X2 × dσ

dX

)
+ (X× σ)

Equality (12.37) can be readily proved by coinduction up-to, and (12.38) follows from
Theorem 271 and the properties of stream composition, Proposition 286.

Here is an illustration of identity (12.36) above:

X⊗ 1

1 + X2
= X2 × d

dX

(
1

1 + X2

)
+

(
X× 1

1 + X2

)
(identity (12.36))

= X2 × −2X

(1 + X2)2
+

X

1 + X2
(identity (12.34))

=
X− X3

(1 + X2)2

Chapter 12. A calculus of streams 171

Exercise 306. Use Theorem 305 to prove the following equalities:

X2 ⊗ 1

1 + X2
=

X2 − 3X4

(1 + X2)3
X2 ⊗ X

1 + X2
=
−X3 − 3X5

(1 + X2)3

1

1− rX
⊗ Xn =

Xn

(1− rX)n+1

1

1− rX
⊗ (1 + rX)n =

1

(1− rX)n+1

for all n > 0 and r ∈ R.

Exercise 307 (non-standard SDEs with analytic derivative). We can formulate
non-standard stream differential equations by using the analytic stream derivative instead
of the standard tail derivative. For instance, we can define a stream σ ∈ Rω by

σ(0) = 1
dσ

dX
= σ

Compute σ.

12.6 Solving analytic differential equations

The method of undetermined coefficients [BR78] is a classical technique in mathematical
analysis for the solution of differential equations that define analytic functions. The idea
is quickly explained by means of an example. In order to solve the differential equation

f(0) = 0 f ′(0) = 1 f + f ′′ = 0 (12.39)

one assumes the solution to be of the form

f(x) = s0 +
s1

1!
x +

s2

2!
x2 + · · ·

Computing f ′ and f ′′ gives

f ′(x) = s1 +
s2

1!
x +

s3

2!
x2 + · · · f ′′(x) = s2 +

s3

1!
x +

s4

2!
x2 + · · ·

Substituting these expressions in (12.39) above, one obtains the following difference equa-
tion for the stream (s0, s1, s2, . . .) of coefficients of f :

s0 = 0 s1 = 1 sn+2 + sn = 0 (n > 0)

Thus the problem of solving a differential equation for f is reduced to the problem of
solving a difference equation for the Taylor coefficients of f .

172 12.6. Solving analytic differential equations

Although conceptually clear, the method of undetermined coefficients has two major
drawbacks. First, more interesting differential equations quickly lead to complicated dif-
ference equations. Second, there is no general technique for translating the solution of the
difference equation (if found at all) back into a workable expressions for f .

Here we present a variation on the above method, as an application of the calculus of
streams developed in the present chapter. We define

A = { f : R→ R | f is analytic in (a neighbourhood of) 0 }

and observe that such functions are infinitely differentiable in 0. Our main tool will be the
function

T : A → Rω T(f) = (f(0), f ′(0), f ′′(0), . . .)

that sends an analytic function to its Taylor series. We call T(f) the Taylor transform
of f . Formally, we define T by the stream differential equation

T(f)(0) = f(0) T(f)′ = T(f ′) (12.40)

where in the second equality, we have stream derivation, on the left, and function derivation,
on the right.

Exercise 308. Show that T is a monomorphism of stream systems.

Our method, then, consists of three steps:

(1) T transforms a differential equation for f into an SDE for the Taylor series of f ;

(2) this SDE is solved in stream calculus;

(3) the resulting solution is translated back into an expression for f .

As we shall see, this approach works well for a number of interesting examples; at the same
time, we do not have a characterisation of precisely which class of differential equations
can be solved in this manner. We define, as usual,

(f + g)(x) = f(x) + g(x) (f · g)(x) = f(x) × g(x)

f−1(x) = f(x)−1 ef (x) = ef(x)

for all x ∈ R. The following proposition shows that T is well-behaved.

Chapter 12. A calculus of streams 173

Proposition 309. For all r ∈ R, f, g ∈ A,

T(r) = [r] T(x) = X

T(f + g) = T(f) + T(g) T(f · g) = T(f) ⊗ T(g)

T
(
f−1
)

= (T(f))−1 T
(
ef
)

= eT(f)

where the r in T(r) denotes the constant function r; the x in T(x) denotes the identity
function; (−)−1 denotes the operation of shuffle inverse, Definition 295; and e(−) denotes
stream exponentiation, introduced in Exercise 297.

Proof: Fairly straightforward by coinduction up-to.

Here are a few identities on the Taylor transforms of some well-known functions that
will be helpful when solving differential equations.

Proposition 310. For all n > 0, r ∈ R,

T(xn) = n!Xn T(erx) =
1

1− rX
(12.41)

T(sin(rx)) =
rX

1 + r2X2
T(cos(rx)) =

1

1 + r2X2
(12.42)

Furthermore, for all f ∈ A,

T (f · x) =

(
X2 × dT(f)

dX

)
+ (X× T(f)) (12.43)

T (f · erx) =

(
1

1− rX

)
×
(

T(f) ◦ X

1− rX

)
(12.44)

Proof: For (12.43), we have

T (f · x) = T(f)⊗ T(x) (Proposition 309)

= T(f)⊗ X (Proposition 309)

=

(
X2 × dT(f)

dX

)
+ (X× T(f)) (identity (12.36))

And for (12.44),

T (f · erx) = T(f)⊗ T (erx) (Proposition 309)

= T(f)⊗
(

1

1− rX

)
(identity (12.41))

=

(
1

1− rX

)
×
(

T(f) ◦ X

1− rX

)
(identity (12.37))

The four equations in (12.41) and (12.42) are straightforward by coinduction up-to.

We are now sufficiently prepared to tackle a variety of differential equations.

174 12.6. Solving analytic differential equations

Example 311. Applying T to the differential equation at the beginning of this section,

f(0) = 0 f ′(0) = 1 f + f ′′ = 0 (12.39)

we obtain the following SDE:

σ(0) = 0 σ′(0) = 1 σ + σ′′ = 0 (where σ = T(f))

Solving this SDE in stream calculus, we find

T(f) = σ =
X

1 + X2
= X − X3 + X5 − X7 + · · ·

Consulting Proposition 310, we obtain

f(x) = sin(x) = x − x3

3!
+
x5

5!
− x7

7!
+ · · ·

For a second example, consider the following (so-called non-homogeneous) equation:

f(0) = 1 f ′ − f = ex

Applying T gives

σ(0) = 1 σ′ − σ =
1

1− X
(where σ = T(f))

Solving this SDE in stream calculus gives

σ =
1

(1− X)2
= 1 + 2X + 3X2 + 4X3 + · · ·

We can rewrite σ as

σ =
1

(1− X)2
= (1 + X) ⊗ 1

1− X
(Exercise 306)

Consulting Proposition 310, we then obtain

f(x) = (1 + x) · ex

For a third example, consider

f(0) = 1 f ′(0) = 1 f ′′ + r2f = 1

Applying T gives

σ(0) = 1 σ′(0) = 1 σ′′ + r2σ = 1 (where σ = T(f))

Chapter 12. A calculus of streams 175

Next we rewrite the solution of this SDE as follows:

σ =
1 + X + X2

1 + r2X2

=
1

1 + r2X2
+

X

1 + r2X2
+

X2

1 + r2X2

=
1

1 + r2X2
+

1

r

(
rX

1 + r2X2

)
+

1

r2

(
1 − 1

1 + r2X2

)
Consulting as before Proposition 310, we obtain

f(x) = cos(rx) +
1

r
sin(rx) +

1

r2
(1 − cos(rx))

Exercise 312. Solve the following differential equation:

f(0) = 1 f ′(0) = 0 f ′′ − f ′ = 2 + 6x

12.7 Newton transform

We look at yet another stream transformation, called the Newton transform, with which
various new stream representations can be expressed. For the definition of the Newton
transform, we will need a new notion of stream derivative, different from both the tail and
the analytic derivatives.

Definition 313 (difference operator). We define ∆: Rω → Rω by

∆(σ) = σ′ − σ = (σ(1)− σ(0), σ(2)− σ(1), σ(3)− σ(2), . . .)

for all σ ∈ Rω.

Exercise 314 (non-standard SDEs with the difference operator). In Exercise 307,
we formulated non-standard SDEs using the analytic stream derivative instead of the tail
derivative. Similarly, we can formulate non-standard SDEs with the difference operator as
derivative. For instance, we can define a stream σ ∈ Rω by

σ(0) = 1 ∆(σ) = σ

Show that this non-standard SDE has the stream σ = (20, 21, 22, . . .) as its unique solution.
A closed expression for this solution can be computed using the following identity, which
can be viewed as the fundamental theorem of the difference calculus: for all τ ∈ Rω,

τ =
1

1− X
× (τ0 + (X×∆(τ)))

Prove this identity and use it to compute a closed expression for the stream σ above.

176 12.7. Newton transform

Definition 315 (Newton transform). Let N : Rω → Rω be defined by the following
(standard) stream differential equation:

N(σ)(0) = σ(0) N(σ)′ = N (∆(σ))

We call N(σ) the stream of Newton coefficients of σ. It follows from the definition that

N(σ) = (∆0(σ)(0), ∆1(σ)(0), ∆2(σ)(0), . . .) (12.45)

where ∆0(σ) = σ and ∆n+1(σ) = ∆(∆n(σ)).

For concrete calculations of the Newton coefficients N(σ) of a stream σ ∈ Rω, one can
use the following theorem, which gives an easy characterisation of N in terms of the shuffle
product, and which, at the same time, shows that N is bijective.

Theorem 316 (Newton transform and shuffle product). The function N is bijective
and satisfies

N(σ) =
1

1 + X
⊗ σ N−1(σ) =

1

1− X
⊗ σ (σ ∈ Rω)

Proof: The first equality follows by coinduction from the fact that

R =

{(
N(σ),

1

1 + X
⊗ σ

)
| σ ∈ Rω

}
is a bisimulation, which we show next. For σ ∈ Rω, we have N(σ)(0) = ((1/1 + X)⊗ σ)(0).
For the derivatives, we have(

1

1 + X
⊗ σ

)′
=

(
− 1

1 + X
⊗ σ

)
+

(
1

1 + X
⊗ σ′

)
=

1

1 + X
⊗ (σ′ − σ)

=
1

1 + X
⊗∆σ

This proves that R is a bisimulation, since

N(σ)′ = N(∆(σ)) R

(
1

1 + X
⊗∆(σ)

)
=

(
1

1 + X
⊗ σ

)′
The second equality of the theorem follows from identity (12.35) in Theorem 305.

Chapter 12. A calculus of streams 177

Exercise 317. Use Theorem 316 and identity (12.23) in Remark 292 to prove the following
closed formula for the Newton series of a stream σ ∈ Rω: for all n > 0,

N(σ)(n) =
n∑
k=0

(
n

k

)
· (−1)n−k · σ(k)

Prove a similar formula for N−1(σ)(n).

Exercise 318 (Newton transform as coalgebra isomorphism). Prove that

N−1(σ)(0) = σ(0) ∆
(
N−1(σ)

)
= N−1(σ′)

for every σ ∈ Rω. Show that N is an isomorphism of stream systems:

N : (Rω, 〈 (−)(0),∆ 〉) ∼= (Rω, 〈 (−)(0), (−)′ 〉)

with on the left, the difference operator and on the right, the standard tail derivative.

Theorem 316 can be combined with the identities for shuffle product elimination from
Theorem 305 to compute the Newton series of concrete streams.

Example 319. For the Fibonacci numbers X/1−X−X2 = (0, 1, 1, 2, 3, 5, 8, . . .), we have

N

(
X

1− X− X2

)
=

1

1 + X
⊗ X

1− X− X2
(Theorem 316)

=
1

1 + X
×
(

X

1− X− X2
◦ X

1 + X

)
(identity (12.37))

=
1

1 + X
×

(
X

1+X

1− X
1+X
− (X

1+X
)2

)
(Proposition 286)

=
X

1 + X− X2

For all r ∈ R, the stream of powers of r is transformed as follows:

N(1, r, r2, . . .) = N

(
1

1− rX

)
=

1

1 + X
⊗ 1

1− rX
(Theorem 316)

=
1

1 + X
×
(

1

1− rX
◦ X

1 + X

)
(identity (12.37))

=
1

1− (r − 1)X
(Proposition 286)

= (1, (r − 1), (r − 1)2, . . .)

178 12.7. Newton transform

Exercise 320. Compute N(0, 1, 0, 1, 0, 1, . . .) and N(0, 1, 2, 3, . . .).

Exercise 321 (Newton transform of stream of factorial numbers). We saw in
Exercise 296 that

(0!, 1!, 2!, . . .) = (1− X)−1

where (−)−1 is the operation of shuffle inverse introduced in Exercise 295. Use Theorem
316, identity (12.37), and (an extension of) Proposition 286 to prove that

N(0!, 1!, 2!, . . .) =
1

1 + X
×
(

1

1 + X

)−1

Note that the latter expression combines convolution inverse, convolution product, and
shuffle inverse. As it turns out, N(0!, 1!, 2!, . . .) is the stream of so-called derangements
[OEI, A000166].

Exercise 322 (Newton transform preserves rationality). Prove that σ is rational iff
N(σ) is rational, for all σ ∈ Rω.

Next we show that the Newton transform is an isomorphism between yet two other ring
structures on the set Rω, featuring the following two product operators on streams.

Definition 323 (Hadamard and infiltration product). We define the operations of
Hadamard and infiltration product

� : Rω × Rω → Rω ↑ : Rω × Rω → Rω

by means of the following SDEs:

(σ � τ)(0) = σ(0)× τ(0) (σ � τ)′ = σ′ � τ ′ (12.46)

(σ ↑ τ)(0) = σ(0)× τ(0) (σ ↑ τ)′ = (σ′ ↑ τ) + (σ ↑ τ ′) + (σ′ ↑ τ ′) (12.47)

The Hadamard product and the infiltration product give rise to two additional ring
structures on the set of streams:

(Rω, +, −, �, [0], ones) (Rω, +, −, ↑, [0], [1])

where ones = 1
1−X = (1, 1, 1, . . .). A proof of the ring identities, for both of these ring

structures, can as always be readily given by coinduction up-to.

Chapter 12. A calculus of streams 179

Exercise 324. Prove the following equalities:

1

1− X
× 1

1− X
=

1

(1− X)2
= (1, 2, 3, . . .)

1

1− X
⊗ 1

1− X
=

1

1− 2X
= (20, 21, 22, . . .)

1

1− X
� 1

1− X
=

1

1− X
= (1, 1, 1, . . .)

1

1− X
↑ 1

1− X
=

1

1− 3X
= (30, 31, 32, . . .)

The Newton transform, and its inverse, change Hadamard products into infiltration
products, and back.

Theorem 325 (Newton as ring isomorphism). The Newton transform is an isomor-
phism of rings:

N : (Rω, +, −, �, [0], ones) ∼= (Rω, +, −, ↑, [0], [1])

Proof: We have N([0]) = [0] and N(ones) = [1]. The identities for the operators, such
as N(−σ) = −N(σ), are all by coinduction up-to. In particular, for

N(σ � τ) = N(σ) ↑ N(τ)

one proves the identities

N(σ � τ)′ = N(σ′ � τ ′) − N(σ � τ)

(N(σ) ↑ N(τ))′ = N(σ′) ↑ N(τ ′) − N(σ) ↑ N(τ)

from which it follows that

{ 〈N(σ � τ), N(σ) ↑ N(τ) 〉 | σ, τ ∈ Rω }

is a bisimulation up-to.

The Newton transform gives rise to the following expansion theorem for streams (see
[Sch68] for a finitary version of thereof).

Theorem 326 (Euler expansion for streams). For all σ ∈ Rω,

σ =
∞∑
i=0

N(σ)(i)× Xi

(1− X)i+1

=
∆0(σ)(0)

1− X
+

∆1(σ)(0)× X

(1− X)2
+

∆2(σ)(0)× X2

(1− X)3
+ · · ·

180 12.7. Newton transform

Proof:

σ =
1

1− X
⊗ 1

1 + X
⊗ σ ((12.35) in Theorem 305)

=
1

1− X
⊗ N(σ) (Theorem 316)

=
N(σ)(0)

1− X
+

N(σ)(1)× X

(1− X)2
+

N(σ)(2)× X2

(1− X)3
+ · · · ((12.38) in Theorem 305)

=
∆0(σ)(0)

1− X
+

∆1(σ)(0)× X

(1− X)2
+

∆2(σ)(0)× X2

(1− X)3
+ · · · (identity (12.45))

Example 327. We illustrate the use of Theorem 326 in an easy derivation of a rational
expression for the stream of cubes:

(13, 23, 33, . . .) =
1 + 4X + X2

(1− X)4

As before, let ones = (1, 1, 1, . . .) and nat = (1, 2, 3, . . .). We shall write the nth Hadamard
power of a stream σ ∈ Rω as

σ〈0〉 = ones σ〈n+1〉 = σ〈n〉 � σ

With this notation, (13, 23, 33, . . .) = nat〈3〉. We compute the respective values of ∆n(nat〈3〉)
as follows. By definition, ∆0(nat〈3〉) = nat〈3〉. Next,

∆1(nat〈3〉) =
(
nat〈3〉

)′ − nat〈3〉

= (nat′)
〈3〉 − nat〈3〉 (SDE (12.46))

= (nat + ones)〈3〉 − nat〈3〉 (since nat′ = nat + ones)

=
(
nat〈3〉 + 3nat〈2〉 � ones + 3nat� ones〈2〉 + ones〈3〉

)
− nat〈3〉

= 3nat〈2〉 + 3nat + ones

Similarly, one finds

∆2(nat〈3〉) = 6nat + 6ones ∆3(nat〈3〉) = 6ones ∆i(nat〈3〉) = 0

for all i > 4. By Theorem 326, we obtain the following rational expression:

(13, 23, 33, . . .) = nat〈3〉

=
1

1− X
+

7X

(1− X)2
+

12X2

(1− X)3
+

6X3

(1− X)4

=
1 + 4X + X2

(1− X)4

Chapter 12. A calculus of streams 181

Exercise 328. Prove, more generally, that ∆i
(
nat〈n〉

)
= 0, for all n > 1 and i > n, and

show that

nat〈n〉 =

∑n−1
m=0 A(n,m)× Xm

(1− X)n+1

Here A(n,m) are the so-called Eulerian numbers, which are defined, for every n > 1 and
0 6 m 6 n− 1, by the following recurrence relation:

A(n,m) = (n−m)A(n− 1,m− 1) + (m+ 1)A(n− 1,m)

12.8 Rational streams and linear systems of SDEs

We will discuss various properties of the well-behaved class of rational streams of real
numbers, introduced in Definition 284. In particular, we show that rational streams are
the solutions of finite linear systems of SDEs. Later, in Chapter 14, Theorem 402, we will
see a number of additional characterisations of rational streams (in terms of so-called linear
stream systems and weighted stream automata). We begin with the relevant definitions.

Definition 329 (linear systems of SDEs). A linear system of SDEs, of dimension
n > 1, consists of n stream differential equations of the form

σ1(0) = r1 σ′1 = r11σ1 + · · ·+ r1nσn
...

...

σn(0) = rn σ′n = rn1σ1 + · · ·+ rnnσn

with ri, rij ∈ R.

Example 330. Before proving the correspondence between rational streams and linear
systems of SDEs in general, let us look at an example. Consider the following linear
system of dimension 2:

σ1(0) = 0 σ′1 = σ2

σ2(0) = 1 σ′2 = σ1 + σ2

Since any linear system of SDEs is in GSOS format, we know the system above has a
unique solution. In order to compute this solution explicitly, we apply the fundamental
theorem of stream calculus, both to σ1 and σ2:

σ1 = σ1(0) + (X× σ′1) σ2 = σ2(0) + (X× σ′2) (Theorem 269)

182 12.8. Rational streams and linear systems of SDEs

and compute as follows:

σ2 = σ2(0) + (X× σ′2)

= 1 + (X× (σ1 + σ2)) (σ2(0) = 1 and σ′2 = σ1 + σ2)

= 1 + (X× ((X× σ2) + σ2)) (σ1 = X× σ2)

= 1 + (X× σ2) + (X2 × σ2)

This implies

1 = σ2 − (X× σ2)− (X2 × σ2)

= (1− X− X2)× σ2

As a consequence, we find

σ1 =
X

1− X− X2
σ2 =

1

1− X− X2

We see that the solution of our linear system of SDEs consists of rational streams. Con-
versely, any rational stream can be defined by a finite linear system of SDEs. Consider,
for instance,

τ1 =
1

(1− X)2
(12.48)

Defining τ2 = τ ′1, we have

τ2 = τ ′1 τ ′2 =

(
2− X

(1− X)2

)′
=

(
1

(1− X)2

)′
=

3− 2X

(1− X)2

=
2− X

(1− X)2
= −τ1 + 2τ2

It follows that τ1 and τ2 satisfy the following linear system of SDEs of dimension 2:

τ1(0) = 1 τ ′1 = τ2

τ2(0) = 2 τ ′2 = −τ1 + 2τ2

Exercise 331. Show that there exist other linear systems of SDEs of which the stream τ1

in (12.48) is a solution; for instance, by considering the identities

τ ′1 =
2− X

(1− X)2
=

1

1− X
+

1

(1− X)2

and by defining τ2 = 1/(1− X).

Chapter 12. A calculus of streams 183

The examples above can be readily generalised to arbitrary rational streams.

Theorem 332 (rational streams and linear systems of SDEs). For every σ ∈ Rω,
the following are equivalent:

(1) σ is rational.

(2) σ can be defined by a finite linear system of SDEs.

Proof: From (1) to (2): Since for all τ ∈ Rω with τ(0) 6= 0, and n > 1,(
Xn

τ

)(n)

=
1

τ
(by identity (12.13))

it suffices to understand the situation for rational streams of the form

σ =
1

τ
τ = 1 + b1X + b2X2 + · · ·+ bmXm

where we have assumed b0 = 1, for computational convenience. Computing σ′, we find

σ′ =

(
1

τ

)′
= −τ(0)−1 × τ ′ × 1

τ

= −1 ×
(
b1 + b2X + · · ·+ bmXm−1

)
× 1

τ

=
− b1 − b2X− · · · − bmXm−1

τ
(by identity (12.13))

= − b1
1

τ
− b2

X

τ
− · · · − bm

Xm−1

τ

If we define

σ1 = σ = 1/τ σ2 = X/τ . . . σm = Xm−1/τ

then it follows that σ is (part of) the solution of the following linear system of SDEs:

σ1(0) = 1 σ′1 = − b1σ1 − b2σ2 − · · · − bmσm

σ2(0) = 0 σ′2 = σ1

...
...

σm(0) = 0 σ′m = σm−1

From (2) to (1): As our proof will use some linear algebra, we will first identify the
relevant algebraic structure in which we can do matrix manipulations. Let

Mn(Rω) = { n-by-n matrices with values in Rω }

184 12.8. Rational streams and linear systems of SDEs

As usual, we write

Mi,j (∈ Rω)

for the entry of the matrix M ∈ Mn(Rω) at row i and column j. We observe that Mn(Rω)
is a ring under matrix addition and matrix multiplication, which are defined as usual and
written here, for N,M ∈ Mn(Rω), as

N +M N · M

The operation of scalar multiplication is defined by

(σ ·M)i,j = σ ×Mi,j (σ ∈ Rω, M ∈ Mn(Rω))

where × on the right denotes the convolution product of streams. Scalar multiplication is
compatible with matrix multiplication (both denoted by ·) in the following sense:

σ · (M ·N) = (σ ·M) ·N = M · (σ ·N)

Now consider a linear system of SDEs of dimension n > 1:

σ1(0) = r1 σ′1 = r11σ1 + · · ·+ r1nσn (12.49)

...
...

σn(0) = rn σ′n = rn1σ1 + · · ·+ rnnσn

with ri, rij ∈ R. Any such system can be written in matrix form asσ1
...
σn

 (0) = N

σ1
...
σn

′

= M ·

σ1
...
σn

where initial value and derivative are taken element-wise, and with

N =

r1
...
rn

 M =

r11 · · · r1n
...

...
rn1 · · · rnn

(As usual following Notation 264, real numbers rij denote here the corresponding streams
[rij].) Applying the fundamental theorem of stream calculus to σ1, . . . , σn, we findσ1

...
σn

 =

σ1
...
σn

 (0) + X ·

σ1
...
σn

′

(Theorem 269)

= N + X ·M ·

σ1
...
σn

Chapter 12. A calculus of streams 185

(Note that X = (0, 1, 0, 0, 0, . . .) is a scalar stream.) In Mn(Rω), this is equivalent to

(I − (X ·M)) ·

σ1
...
σn

 = N

where I is the identity matrix. The solution to our linear system (12.49) is then obtained
as: σ1

...
σn

 = (I − (X ·M))−1 · N (12.50)

The matrix inverse (I − (X ·M))−1 exists, since one can easily show that the determinant
of I − (X ·M) is always equal to 1 (see Exercise 333 below). Now (I − (X ·M))−1 can be
computed as usual, by performing elementary row operations on the identity matrix, which
consist of multiplying or dividing by a rational stream, and of adding rows. It follows that
since the matrix I − (X ·M) has rational streams as entries, so does (I − (X ·M))−1. As a
consequence, the solution of the linear system (12.49) consists of rational streams.

Exercise 333. Let R be a commutative ring. Prove that Mn(R) is an associative R-
algebra, referring to [Lan02] for details. In general, an element of a matrix ring Mn(R) is
invertible if its determinant has a multiplicative inverse in R. Hence I − (X ·M) has an
inverse in Mn(Rω) if its determinant is a stream whose initial value is non-zero. Prove that

det(I − (X ·M)) (0) = 1

for any M ∈ Mn(Rω).

Example 334. Let us again compute the solution of the linear system of SDEs

σ1(0) = 0 σ′1 = σ2

σ2(0) = 1 σ′2 = σ1 + σ2

from Example 330, now using the matrix solution method from the proof of Theorem 332.
Writing this system in matrix form, we obtain:(

σ1

σ2

)
(0) =

(
0
1

) (
σ1

σ2

)′
=

(
0 1
1 1

)
·
(
σ1

σ2

)

186 12.8. Rational streams and linear systems of SDEs

Its solution is given by identity (12.50):(
σ1

σ2

)
=

(
1 −X
−X 1− X

)−1

·
(

0
1

)
=

(
1− X/1− X− X2 X/1− X− X2

X/1− X− X2 1/1− X− X2

)
·

(
0

1

)

=

(
X/1− X− X2

1/1− X− X2

)

which is, as expected, what we found earlier, in Example 330.

Exercise 335. Show that σ1 = (0, 1, 1, 2, 3, 5, 8, 13, . . .), in Example 334.

Example 336. We compute a finite linear system of SDEs of which the stream

σ =
1 + X

(1− X)3
= (12, 22, 32, . . .)

is a solution. Using Proposition 281, we compute

σ′ =

(
1 + X

(1− X)3
− 1

)′
=

(
4X− 3X2 + X3

(1− X)3

)′
=

4− 3X + X2

(1− X)3

Similarly, we find

σ(2) =
9− 11X + 4X2

(1− X)3
σ(3) =

16− 23X + 9X2

(1− X)3

There is the following dependence:

σ(3) = σ − 3σ′ + 3σ(2)

This leads to the following linear system of SDEs:

σ1(0) = 1 σ′1 = σ2

σ2(0) = 4 σ′2 = σ3

σ3(0) = 9 σ′3 = σ4

σ4(0) = 16 σ′4 = σ1 − 3σ2 + 3σ3

of which σ = σ1 is (part of) the solution.

Chapter 12. A calculus of streams 187

Exercise 337. Compute the solution of the following linear system of SDEs

σ1(0) = 1 σ′1 = σ1 − σ2

σ2(0) = 3 σ′2 = 2σ1 + σ2 − σ3

σ3(0) = 2 σ′3 = σ1 + 3σ2 + 2σ3

Exercise 338. Find a linear system of SDEs of which

σ =
1 + 4X + X2

(1− X)4
= (13, 23, 33, . . .)

is a solution.

Remark 339 (context-free streams). We saw in Theorem 332 that a stream is rational
if and only if it is defined by a linear system of SDEs. For instance,

σ1(0) = 0 σ′1 = σ2

σ2(0) = 1 σ′2 = σ1 + σ2

defines the rational stream of the Fibonacci numbers:

σ1 =
X

1− X− X2
= (0, 1, 1, 2, 3, 5, 8, . . .)

A larger class of streams can be defined by allowing the defining SDEs to contain in the
definition of the derivatives not only variables (such as σ1 and σ2 above) and sums (such
as σ1 + σ2), but also convolution products, as in the following two examples:

σ(0) = 1 σ′ = σ × σ (12.51)

τ(0) = 1 τ ′ = τ + (τ × τ) (12.52)

One can prove that these SDEs define the streams of the Catalan numbers [OEI, A000108]
and the (large) Schröder numbers [OEI, A006318]:

σ = (1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, . . .)

τ = (1, 2, 6, 22, 90, 394, 1806, 8558, 41586, 206098, . . .)

Streams that are defined by SDEs of this type are called context-free or algebraic. The class
of context-free streams is strictly larger than the class of rational streams: every rational
stream is trivially context-free, and in Chapter 14, Exercise 401, we will see that the above
streams of Catalan and Schroeder numbers are not rational.

In this book, we do not discuss the class of context-free streams in further detail. More
on the coalgebraic approach to context-free streams and context-free languages can be
found in [WBR11], [WBR13], [Win14], [WBR15], [BHKR15] and [HKR17].

188 12.9. Discussion

Exercise 340 (square root of a stream). Rational streams can be represented as frac-
tions of two polynomial streams (which was the way we actually defined them, in Definition
284). For context-free streams, there seems to be no such kind of general representation.
For the specific example of the Catalan numbers, defined by SDE (12.51) above, there does
exist a pleasant closed form in stream calculus. One can define the square root

√
σ of a

stream σ ∈ Rω by the following SDE:

√
σ(0) =

√
σ(0)

(√
σ
)′

=
σ′√

σ(0) +
√
σ

(12.53)

assuming that σ(0)> 0. Prove that
√
σ ×
√
σ = σ

Compute
√

1− 4X. Prove that the stream

2

1 +
√

1− 4X

is a solution of SDE (12.51) and hence is equal to the stream of the Catalan numbers.

12.9 Discussion

The present chapter is based on [Rut01, Rut05a, Rut08], which in turn were in part inspired
by Conway’s differential calculus of events [Con71, Chapter 5] and Pavlović and Escardó’s
[PE98]. Section 12.7, on the Newton transform, builds moreover on [BHPR17]. The
Laplace transform in Definition 300 is also know as the Laplace-Carson transform ([BLL98,
p.350] and [Com74, p.48]). See [Sch68] for a finitary version of the Euler expansion for
streams, Theorem 326. For more on coalgebra and differential equations, see [Bor17].

Theorem 332 is a reformulation in terms of SDEs of a classical result in automata
theory, called the theorem of Kleene, Schützenberger and Eilenberg [Eil76].

There exist further characterisations of rational streams in terms of so-called stream
circuits, which are also known as signal flow graphs; see [Rut05b, NR13] for details.

The present calculus of streams can be widely generalised in two respects. First, if one
replaces R by any field, or even any ring, or even any semi-ring B, then many of the results
presented above still apply to the set Bω of streams over B. Secondly, one can furthermore
look at Moore automata with inputs from a set A and outputs in B:

〈o, tr〉 : S → B × SA

We saw in Section 13.3 that Moore automata generalise both deterministic automata and
stream systems. In Exercise 354, we showed that the set BA∗

is a final Moore automaton.
If the set B of outputs is a semi-ring (or ring or field) then the elements of BA∗

are called
formal power series or weighted languages. And again, much of the present stream calculus
can be generalised to weighted languages. See [Rut05a], [Rut03a], and [BHPR17] for more
details.

Chapter 13

Mealy automata

A Mealy automaton (MA) with inputs from a set A and outputs in a set B is a pair (S, α),
consisting of a set S of states, and a structure map

α : S → (B × S)A

The function α maps any state s ∈ S to a function

α(s) : A→ (B × S) α(s)(a) = (b, t) (a ∈ A)

where the pair (b, t) consists of an output b ∈ B and a next state t ∈ S. Mealy automata
differ from deterministic automata in two ways: outputs belong to an (arbitrary) set B
rather than the set 2 ; and outputs may in general depend on inputs.

We shall see that the behaviour of Mealy automata consists of causal stream functions
rather than languages. The set Γ of all causal stream functions will be shown to be a
final Mealy automaton, whose structure map will be defined in terms of stream function
derivatives. We shall use these stream function derivatives to construct, for a given causal
stream function, a minimal Mealy automaton realising it.

Remark 341. For those who have already read Chapters 2 to 5: Mealy automata are
coalgebras for the functor

MA : Set→ Set MA(S) = (B × S)A (S ∈ Set)

which is defined for functions f : S → T , φ : A→ (B × S), and a ∈ A, by

MA(f) : (B × S)A → (B × T)A (MA(f)(φ)) (a) = (b, f(s))

where (b, s) = φ(a).

For a Mealy automaton (S, α), we will write

s
a|b

// t ⇐⇒ α(s)(a) = (b, t)

189

190 13.1. Causal stream functions

We define the (input-output) behaviour of a state s ∈ S as the stream function

behα(s) : Aω → Bω

that maps a stream of inputs (a0, a1, a2, . . .) ∈ Aω to the stream (b0, b1, b2, . . .) ∈ Bω of
outputs that is given by the (uniquely defined) sequence of transitions

s = s0
a0|b0

// s1
a1|b1

// s2
a2|b2

// · · · α(si)(ai) = (bi, si+1)

We say that s ∈ S realises a stream function f : Aω → Bω if behα(s) = f .

Example 342 (binary Mealy automaton). If A = B = 2 = {0, 1} then we call a Mealy
automaton binary. Here is an example:

s 1|1 55

0|0

-- t

1|0
))

0|1

-- u
1|1

ii

0|0

rr

The state s above realises the bitstream function

f : 2ω → 2ω f(σ)(n) =

(
n∑
k=0

σ(i)

)
mod 2 (13.1)

which counts the number of ones in the first n+ 1 inputs σ(0), . . . , σ(n), modulo 2.

13.1 Causal stream functions

The behaviour of Mealy automata consists of causal stream functions.

Definition 343 (causal stream functions). We define

σ ≡n τ ⇐⇒ σ(0) = τ(0) , . . . , σ(n) = τ(n) (σ, τ ∈ Aω, n > 0)

and call a stream function f : Aω → Bω causal if

σ ≡n τ =⇒ f(σ)(n) = f(τ)(n)

Intuitively, a stream function is causal if the nth value of its result depends on only the
first n values of its argument.

Chapter 13. Mealy automata 191

Exercise 344. Identify among the various examples we saw in Chapter 7 examples of both
causal and non-causal stream functions.

The set of all causal stream functions is denoted by

Γ = {f | f : Aω → Bω and f is causal } (13.2)

It is straightforward to show that the behaviour function

behα(s) : Aω → Bω

of any state s in a Mealy automaton (S, α) is causal. As a consequence, the behaviour
function behα has type

behα : S → Γ

Conversely, any causal stream function is realised by a state in a Mealy automaton. This
will follow from the fact that the set Γ is a final Mealy automaton, which we show next.
We will use the following notation:

a :σ = (a, σ(0), σ(1), σ(2), . . .) (a ∈ A, σ ∈ Aω)

Definition 345 (stream function derivative). We turn the set Γ of all causal functions
into a Mealy automaton

(Γ, γ) γ : Γ→ (B × Γ)A γ(f)(a) = (f [a], fa) (f ∈ Γ, a ∈ A)

where f [a] is the initial output of f on input a, defined by

f [a] ∈ B f [a] = f(a :σ)(0)

and fa is the stream function derivative of f on input a, defined by

fa : Aω → Bω fa(σ) = f(a :σ)′

Note that because f is causal, the value of f [a] is independent of σ; furthermore, the
function fa is again causal and hence belongs to Γ.

Theorem 346 (finality – causal stream functions). The Mealy automaton (Γ, γ) is
final: for every Mealy automaton (S, α), the function behα : S → Γ

S

∀α
��

behα // Γ

γ
��

(B × S)A
(1× behα)A

// (B × Γ)A

is the unique function making the diagram above commute.

192 13.2. Constructing minimal Mealy automata

Exercise 347. Prove Theorem 346. Begin your proof by defining the notion of homo-
morphism of Mealy automata, either by an educated guess or by applying the categorical
definition of F -homomorphism from Definition 21, to the functor MA defined in Remark
341.

13.2 Constructing minimal Mealy automata

The notions of generated subautomaton, Definition 146, and of minimal automaton, Def-
inition 178, generalise straightforwardly from the setting of deterministic automata, in
Chapter 8, to Mealy automata. The same applies to Theorem 183, about the construction
of a minimal deterministic automaton for a given language, which for causal functions and
Mealy automata reads as follows.

Theorem 348 (minimal Mealy automaton for causal function). For every causal
stream function f ∈ Γ, the Mealy machine generated by f :

〈f〉 = {fw | w ∈ A∗}

where

fε = f fwa = (fw)a (w ∈ A∗)

is a minimal Mealy machine realising f .

Proof: It is straightforward to show that behγ : Γ → Γ is the identity function. As a
consequence, the (state f in the) generated Mealy automaton 〈f〉 ⊆ Γ realises the function
f . The Mealy automaton 〈f〉 is minimal since the inclusion of Mealy automata always is
an injective homomorphism.

Example 349. We illustrate the notions and results above with the binary counter from
Example 342. With f as defined in (13.1), we have beh(s) = f . Defining

g = beh(t) h = beh(u)

one easily shows that

beh(s) = f = h = beh(u) beh(t) = g = 1− f

Moreover, we have the following initial outputs and stream function derivatives:

f [0] = 0 f [1] = 1 f0 = f f1 = g

g[0] = 1 g[1] = 0 g0 = g g1 = f

Chapter 13. Mealy automata 193

We see that beh maps the Mealy automaton 〈s〉, on the left,

s 1|1 55

0|0

-- t

1|0
))

0|1

-- u
1|1

ii

0|0

rr � beh // f

1|1
))

0|0

,, g
1|0

ii

0|1

qq

to its minimisation 〈f〉 ⊆ Γ, on the right.

Example 350. Let g : A→ B be a function and let

f : Aω → Bω f(σ) = (g(σ(0)), g(σ(1)), g(σ(2)), . . .) (σ ∈ Aω)

The function f , which applies g elementwise, satisfies

f(σ)(0) = g(σ(0)) f(σ)′ = f(σ′)

For the construction of 〈f〉, we calculate

f [a] = f(a : σ)(0) = g(a) (a ∈ A, σ ∈ Aω)

and

fa(σ) = f(a : σ)′ = f((a : σ)′) = f(σ) (a ∈ A, σ ∈ Aω)

As a consequence, we obtain the following one-state Mealy automaton

〈f〉 = f

a|g(a)

rr

with a transition from f to f for every a ∈ A.

Exercise 351 (an infinite Mealy automaton). Stream functions are generally realised
by Mealy automata that have infinitely many states. For instance, let A = B = N and
consider the function

f : Nω → Nω f(σ)(n) =
n∑
k=0

σ(k) (σ ∈ Nω, n > 0)

Prove the following identities: for all n,m > 0 and σ ∈ Nω,

f [n] = n fn(σ) = f(σ) + n

fn[m] = n+m (fn)m (σ) = fn+m(σ)

194 13.3. Moore automata

where + denotes elementwise addition of streams and n = (n, n, n, . . .), and conclude that

〈f〉 = f

0|0
�� 1|1

//

2|2

88
f1

0|1
�� 1|2

//

2|3

$$
f2

0|2

SS

1|3
// · · ·

is a minimal Mealy automaton realising f .

Exercise 352. Recall the function zip : (Aω × Aω)→ Aω from Section 7.3, satisfying

zip(σ, τ) = (σ(0), τ(0), σ(1), τ(1), . . .)

for all σ, τ ∈ Aω. Construct a minimal Mealy automaton realising zip.

13.3 Moore automata

Here is a minor variation on the notion of Mealy automaton. A Moore automaton with
inputs from a set A and outputs in a set B is a pair

(S, 〈o, tr〉) 〈o, tr〉 : S → B × SA o : S → B tr : S → SA

The difference with Mealy automata is that in a Moore automaton, outputs depend only
on the present state and not on the present input.

Remark 353. For those who have already read Chapters 2 to 5: Moore automata are
coalgebras for the functor

MoA : Set→ Set MoA(S) = B × SA (S ∈ Set)

MoA(f) : B × SA → B × TA MoA(f) = 1B × fA (f : S → T)

where 1B is the identity function on B and the function fA : SA → TA is as before.

Moore automata generalise deterministic automata with inputs from A and outputs in
2, which we find as a special case by simply taking B = 2. Moore automata also generalise
stream systems: if we take A = 1, the one-element set, then

B × SA = B × S1 = B × S

Thus Moore automata with inputs from 1 and outputs in B are stream systems with out-
puts in B. All of the theory of automata and stream systems straightforwardly generalises
to Moore automata.

Chapter 13. Mealy automata 195

Exercise 354 (formal power series aka weighted languages). We saw in Section 8.3
that the set P(A∗) ∼= 2A

∗
of all languages over a set A is a final automaton. Prove that

the set
BA∗

= { f | f : A∗ → B }
can be turned into a final Moore automaton. If B is a semi-ring or a field, then such
functions f : A∗ → B are called formal power series, also known as weighted languages.

Exercise 355 (an alternative final Mealy automaton). Prove that the set Γ of causal
stream functions, defined in (13.2), is isomorphic to the set

BA+

= { f | f : A+ → B }

where A+ is the set of non-empty words. Show that, as a consequence, this set can be
turned into a final Mealy automaton.

Exercise 356 (relating Mealy and Moore automata). Show that every Mealy au-
tomaton can be transformed into a Moore automaton and vice versa. For those with
a background in category theory: show that these transformations form an adjunction
between the categories of Mealy and Moore automata.

13.4 A calculus of bitstreams

A bitstream is a stream over the set 2 = {0, 1} of Booleans, that is, an element

σ ∈ 2ω

We shall use bitstreams as representations of (certain) rational numbers (by taking in-
finitary base-2 expansions, as we shall see below). Having bitstreams represent rational
numbers, one can then use bitstream functions

f : 2ω → 2ω

to represent (certain) functions on rational numbers. In the present section, we shall
introduce various operators on 2ω, similar to the stream calculus of Chapter 12, with which
such functions can be expressed. In Section 13.5, we shall then show how to generate from
(an expression for) a bitstream function f a Mealy machine that realises f .

We begin by showing how the set of rational numbers with odd denominator

Qodd = { p/q | p, q ∈ Z, q is odd }

can be included into 2ω by taking infinitary base-2 expansions.

196 13.4. A calculus of bitstreams

Definition 357 (binary representations of rational numbers). The function

bin : Qodd → 2ω

is defined by the following system of stream differential equations:

bin(q)(0) = odd(q) bin(q)′ = bin

(
q − odd(q)

2

)
(q ∈ Qodd)

where odd(n/2m+ 1) = n mod 2, for n,m ∈ Z.

For a positive integer n ∈ N, the stream bin(n) is just the binary representation of n
(least significant bit on the left) padded with a tail of zeros; for instance,

bin(2) = (0, 1, 0, 0, 0, . . .) = 01(0)ω

bin(5) = (1, 0, 1, 0, 0, . . .) = 101(0)ω

Binary representations of negative integers end with an infinite sequence of ones and ra-
tional numbers (with odd denominator) have binary representations that are eventually
periodic; for instance,

bin(−1) = (1, 1, 1, 1, . . .) = 1ω

bin(−5) = (1, 1, 0, 1, 1, 1, . . .) = 110(1)ω

bin(1/5) = (1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, . . .) = 1(0110)ω

(To represent rationals with even denominator, one needs pairs consisting of a finite se-
quence in 2∗ together with a bitstream or, equivalently, formal power series of the form∑∞

i=k ai2
i where k < 0; they are not treated here.)

We recall that the set of rational numbers (with odd denominator) is an integral domain
(see Section 16.7 for the definition). Next we shall turn the set 2ω into an integral domain
as well, by introducing operations of addition, multiplication, minus and inverse. But first
we present two examples illustrating how addition and multiplication are typically defined
in the literature: for addition,

1 1 1 . . . (carry)
1 0 1 0 0 0 · · · = 5

+ 0 1 1 1 1 1 · · · = −2
1 1 0 0 0 0 · · · = 3

and for multiplication,

1 1 0 0 0 · · · × 0 1 1 1 1 · · · = 3× (−2)
0 0 0 0 0 0 · · ·

1 1 0 0 0 · · ·
1 1 0 0 0 · · ·

1 1 0 0 0 · · ·
1 1 0 0 0 · · ·

+
...

0 1 0 1 1 1 · · · = −6

Chapter 13. Mealy automata 197

In contrast, we shall define these operators, as usual, by stream differential equations.
First, we recall the definitions of the Boolean operators and and exclusive or :

∧ : 2× 2→ 2 ⊕ : 2× 2→ 2

a ∧ b = min{a, b} a⊕ b = 1 ⇐⇒ (a = 0, b = 1) or (a = 1, b = 0)

Definition 358 (operators on bitstreams). We define the operations of sum, minus,
product and inverse :

+: 2ω × 2ω → 2ω − : 2ω → 2ω × : 2ω × 2ω → 2ω 1/(−) : 2ω → 2ω

together with a function [−] : 2 → 2ω that embeds 2 into the set 2ω, by means of the
following system of stream differential equations: for a ∈ 2, α, β ∈ 2ω,

[a](0) = a [a]′ = [0]

(α + β)(0) = α(0)⊕ β(0) (α + β)′ = (α′ + β′) + [α(0) ∧ β(0)]

(−α)(0) = α(0) (−α)′ = −(α′ + [α(0)])

(α× β)(0) = α(0) ∧ β(0) (α× β)′ = (α′ × β) + ([α(0)]× β′)
(1/α)(0) = 1 (1/α)′ = − (α′ × (1/α)) (α(0) = 1)

Since the above system of SDEs is in GSOS format, the unique existence of these operators
follows from Theorem 252.

We briefly explain the intuition behind the equations above. As before, we have

[a] = (a, 0, 0, 0, . . .)

which we shall, as before adhering to Notation 264, often simply write as

a = [a]

The equation for sum shows that a carry term must be added in case the two initial values
are both 1. The equation for minus can be derived from the requirement that

α + (−α) = [0]

The equation for the product states that α×β can be calculated using the base-2 version of
shift-add-multiplication known from the multiplication in decimal notation. The equation
for 1/α can be derived from the requirement that

α × (1/α) = [1]

which will also explain the condition that α(0) = 1.
Thus we have turned 2ω into an integral domain

(2ω, +, −, ×, /, [0], [1])

Moreover, these operations have been devised in such a way that bin : Qodd → 2ω is a
homomorphism of integral domains.

198 13.4. A calculus of bitstreams

Proposition 359 (a homomorphism of integral domains). The function

bin : Qodd → 2ω

satisfies, for all p, q ∈ Qodd ,

bin(p+ q) = bin(p) + bin(q) bin(−q) = −bin(q)

bin(p× q) = bin(p)× bin(q) bin(1/q) = 1/bin(q)

Exercise 360. Prove Proposition 359 by coinduction up-to.

We recall the constant stream X ∈ Rω from Definition 267, which plays a central role
in the calculus of streams in Chapter 12. Using the same symbol, we (re)define

X ∈ 2ω X = (0, 1, 0, 0, 0, . . .)

and observe that
X = bin(2)

As before, multiplying a stream σ by the stream X can be seen as an elementary form
of stream integration, giving us a fundamental theorem of bitstream calculus, similar to
Theorem 269: for α ∈ 2ω,

α = α(0) + (X× α′) (13.3)

Also the following identity will be useful in what follows:

α + α = X× α (13.4)

Exercise 361. Prove identity 13.4 by coinduction up-to.

Example 362. We shall use the calculus above to compute (again) the values of bin(5),
bin(−5), and bin(1/5). For integers, things are straightforward:

bin(5) = bin(1 + 22) = bin(1) + bin(2)2 = 1 + X2

Similarly, we have

bin(−5) = −bin(5) = −1 − X2 = 1 + X − X3 = 110(1)ω

where we have used

−Xk = Xk − Xk+1 bin(−1) = (1, 1, 1, . . .) = (1)ω

Chapter 13. Mealy automata 199

For

bin(1/5) = 1/bin(5) = 1/(1 +X2)

we shall compute the respective derivatives of the latter rational expression. Using the
defining stream differential equations from Definition 358, as well as the following equalities:

(1 + X2)′ = 1′ + (X2)′ + [1(0) ∧ X2(0)]

= 0 + X + 0

= X

(−1 − X)′ = (−1)′ + (−X)′ + [−1(0) ∧ −X(0)]

= (−1) + (−1) + 0

= −X

one obtains

(1/1 + X2)′ = −X/1 + X2

(−X/1 + X2)′ = −1/1 + X2

(−1/1 + X2)′ = (−1− X)/1 + X2

((−1− X)/1 + X2)′ = −X2/1 + X2

(−X2/1 + X2)′ = −X/1 + X2

These are all the different stream derivatives of 1/1 + X2. Using Lemma 77,

α(n) = α(n)(0) (α ∈ 2ω)

one then finds

bin(1/5) = 1(0110)ω

Exercise 363. Prove, more generally, that rational bitstreams have only finitely many
different derivatives and that, as a consequence, the binary representations of rational
numbers are eventually periodic.

13.5 Mealy machines for bitstream functions

Next we shall construct for various bitstream functions f : 2ω → 2ω a minimal Mealy
machine realising it. According to Theorem 348, the states of a minimal Mealy machine
for f are given by

〈f〉 = {fw | w ∈ 2∗}

200 13.5. Mealy machines for bitstream functions

that is, the set of all repeated stream function derivatives of f . We shall use the following
identities:

0 : α = X× α 1 : α = 1 + (X× α) (α ∈ 2ω)

With this notation, the stream function derivatives for a function f : 2ω → 2ω are

f0(α) = f(0 : α)′ f1(α) = f(1 : α)′

= f(X× α)′ = f(1 + (X× α))′

For a first example, we consider the function

f : 2ω → 2ω f(α) = (1 + X)× α

The function f multiplies a stream α, which could represent a rational number q ∈ Qodd

with α = bin(q), with (1 + X) = bin(3), the binary representation of the number 3. We
compute all of the repeated stream function derivatives of f :

f0(α) = f(X× α)′

= ((1 + X)× (X× α))′

= ((1 + X)′ × (X× α)) + (X× α)′ (using that (1 + X)(0) = 1)

= (X× α) + α

= f(α)

f1(α) = f(1 + (X× α))′

= ((1 + X)× (1 + (X× α)))′

= ((1 + X)′ × (1 + (X× α))) + (1 + (X× α))′ (using that (1 + X)(0) = 1)

= 1 + (X× α) + α

= f(α) + 1

Continuing with the stream function derivatives of f1, we obtain, by similar computations,

f10(α) = f(α) f11(α) = f(α) + X f110(α) = f1(α) f111(α) = f11(α)

It follows that
〈f〉 = {f, f1, f11}

Computing initial outputs,

f [0] = 0 f1[0] = 1 f11[0] = 0

f [1] = 1 f1[1] = 0 f11[1] = 1

we obtain the following minimal Mealy machine realising f :

f

1|1
&&

0|0
��

f1

0|1

ee

1|0
''

f11

0|0

ff

1|1
��

Chapter 13. Mealy automata 201

For a second example, let

g : 2ω → 2ω g(α) =
−X + ((1 + X)× α)

1 + X3
=

bin(−2) + (bin(3)× α)

bin(9)

For notational convenience, we will leave out the symbol bin and simply write

g(α) =
−2 + (3× α)

9
= (−2/9) + (3× α)/9

Computing the first two stream function derivatives, one finds

g0(α) = (−1/9) + (3× α)/9 g1(α) = (−4/9) + (3× α)/9

As it turns out, every stream function derivative of g is of the form

gw(α) = (d(w)/9) + (3× α)/9 (d(w) ∈ {1, 2,−1,−2,−4,−5,−7,−8})

Computing initial outputs and denoting gw simply by the value of d(w), we obtain

1

1|0

		

0|1
// −4

0|0

		

1|1

��

−8

1|1

		

0|0
oo

−5

1|0
((

0|1qq

−1

0|1

hh

1|0

yy

2

0|0

II

1|1
// g

1|1

II

0|1

<<

−7

0|1

II

1|0
oo

as a minimal Mealy machine representing g.
The examples above generalise as follows.

Proposition 364 (rational bitstream functions). A bitstream function f : 2ω → 2ω

is rational if it is of the form

f(α) =
d+ (m× α)

n

with d,m, n ∈ Z, n odd. Its stream function derivatives are of the form

fw(α) =
d(w) + (m× α)

n
(w ∈ 2∗, α ∈ 2ω)

where d(w) ∈ Z satisfies

min{ d, −n+ 1, −n+m+ 1 } 6 d(w) 6 max{ d, m− 1, 0 }

202 13.5. Mealy machines for bitstream functions

It follows from Proposition 364 that rational bitstream functions are realised by finite
Mealy machines.

Exercise 365. Prove Proposition 364 (possibly consulting [HR10]).

Exercise 366. Show that the following Mealy machine

1

0|1

��

1|1

��

2
1|0

//

0|0
44

5

0|1

ii

1|1

yy

h

0|0

YY

1|0
// 4

0|0

88

1|0

&&
6

0|0
//

1|0
**

3

1|1

OO

0|1

__

7

0|1

OO

1|1

YY

is a minimal realisation for the function

h : 2ω → 2ω h(α) = X3 × α = 8× α

Exercise 367 (fundamental theorem for binary stream functions). According to
Definition 345, there is the following final coalgebra structure on the set Γ of all causal
bitstream functions:

(Γ, γ) γ : Γ→ (2× Γ)2 γ(f)(a) = (f [a], fa) (f ∈ Γ, a ∈ 2)

Prove the following identity, for all causal functions f : 2ω → 2ω:

f(α) = (1⊕ α(0))× (f [0] + (X × f0(α′))) + α(0)× (f [1] + (X × f1(α′)))

This identity is similar to the Fundamental Theorem 269 of stream calculus and follows
from the fact that γ is an isomorphism.

Chapter 13. Mealy automata 203

Exercise 368. Let f : 2ω → 2ω be a function such that

f [0] = 0 f [1] = 1 f0(α) = (1 + X)× α f1(α) = 1 + α + (X× α)

for all α ∈ 2ω. Use the identity from Exercise 367 to prove that

f(α) = (1 + X)× α

Exercise 369. Compute a minimal Mealy machine realising

k : 2ω → 2ω k(α) = −α

Show that there is no finite realisation of the function

l : 2ω → 2ω l(α) = α× α

13.6 Discussion

We refer to [Ran58] and [Eil74] for a classical treatment of Mealy automata and their
minimisation. Our coalgebraic presentation of Mealy automata is based on [Rut06] and
[HR10], where the notion of stream function derivative, Definition 345 above, and its use
in the description of minimal Mealy automata, in Theorem 348, were introduced.

In their role of representations of rational numbers, bitstreams are sometimes referred
to as 2-adic integers, see [Gou93]. More on infinitary base-2 expansions can be found in
[HH79]. In [HCR06, HR10], an algorithm is presented for the symbolic computation of min-
imal Mealy machines for rational functions, as well as a characterisation of its complexity
and an implementation in Haskell.

204 13.6. Discussion

Chapter 14

Weighted stream automata

Weighted stream automata generalise the stream systems from Chapter 7, by allowing
states to have multiple transitions, rather than precisely one. Weighted stream automata
are, as it were, non-deterministic versions of stream systems. As a consequence, streams
can often be represented by a weighted stream automaton that is dramatically smaller
than a corresponding stream system. Each transition will have a weight, which in the
present chapter will be a real number but which, more generally, could be a value in an
arbitrary field (or even a ring or semi-ring). Computationally, these weights may have
various interpretations, such as cost, duration, multiplicity etc.

The behaviour of weighted stream automata will be defined by transforming them into
stream systems, by generalising the powerset construction (Definition 221 from Section
10.1), which was used to transform non-deterministic automata into deterministic ones.
The resulting stream systems will be linear, which means that their state space consists
of a vector space over R. This opens the way for enhancements of the coinduction proof
method by using so-called bisimulations up-to-linearity. Furthermore, we shall characterise
the behaviour of finite dimensional linear stream systems in terms of rational streams
(which were introduced in Section 12.2, Definition 284).

14.1 Representing streams by weighted automata

Formally, a weighted stream automaton with outputs and weights in R is a pair

(S, 〈o, tr〉) 〈o, tr〉 : S → R× RS
ω o : S → R tr : S → RS

ω

Here RS
ω is the set of functions from S to R of finite support, defined by

RS
ω = {φ : S → R | supp(φ) is finite} supp(φ) = { s ∈ S | φ(s) 6= 0 } (14.1)

The output function o maps every state s ∈ S to an output o(s) ∈ R. The transition
function tr assigns to every state s ∈ S a function tr(s) : S → R that maps a state t ∈ S
to tr(s)(t) ∈ R. We call tr(s)(t) the weight of the transition from s to t. If tr(s)(t) = 0

205

206 14.1. Representing streams by weighted automata

then there is no transition from s to t. Since tr(s) has finite support, there are only finitely
many transitions leaving from s.

In Section 14.6 below, we shall briefly mention weighted automata with inputs, which
can be viewed as a common generalisation of both stream systems and deterministic and
non-deterministic automata. There we shall also discuss the coalgebraic type of weighted
stream automata and of weighted automata with inputs.

For s, t ∈ S in a weighted stream automaton (S, 〈o, tr〉), and for k ∈ R, we will write

s|k ⇐⇒ o(s) = k s k // t ⇐⇒ tr(s)(t) = k

In pictures, we will often omit transitions with weight 0.
As we mentioned above, the behaviour of weighted automata will be defined by trans-

forming them into stream systems. However, here is already a first, elementary and oper-
ationally intuitive definition of the behaviour of weighted stream automata.

Definition 370 (stream behaviour of weighted stream automaton). Let (S, 〈o, tr〉)
be a weighted stream automaton. We define the function str : S → Rω, for all s ∈ S and
all n > 0, by

str(s)(n) =
∑
{ k0 × · · · × kn−1 × k | s = s0

k0 // · · · kn−1
// sn|k }

We call str(s) the stream represented by s.

The nth value of the stream str(s) is obtained by considering all transition sequences
of length n starting in the state s; for each such sequence, one multiplies the weights of all
the transitions in the sequence with the output value of the last state of the sequence; then
one adds up the numbers thus obtained for all transition sequences. Note that only finitely
many of these numbers will be different from 0 since tr(s) : S → R has finite support. As
a consequence, the sum in Definition 370 is well-defined.

Example 371. Consider the following weighted stream automaton:

s|1
1

))

0

)) t|2
−1

ii

2

tt u|1
1

))

1

((v|1
0

ii

1

uu (S = {s, t, u, v})

By counting finite transition sequences with infinite patience, we find

str(s) = (1, 2, 3, . . .) str(u) = (1, 2, 3, . . .)

str(t) = (2, 3, 4 . . .) str(v) = (1, 1, 1, . . .)

Chapter 14. Weighted stream automata 207

according to Definition 370. Here are two examples of infinite weighted automata:

s0|1
1

**

1

%% s1|0
2

**

1

jj

3

		

s2|0
3

))

2

jj

5

		

· · ·
3

jj

t0|1
1

**

1

&& t1|0
1

**

1

jj

2

		

t2|0
1

))

1

jj

2

		

· · ·
1

jj

where we have left out all transitions with weight 0. Applying Definition 370, we find

str(s0) = (0!, 1!, 2!, . . .) str(t0) = (1, 1, 2, 5, 14, 42, 132, . . .)

which are the streams of the factorial and the Catalan numbers [OEI, A000108].

Exercise 372. Consider the following weighted stream automaton:

u1|0
1

**

0

##
u2|1

1

jj

1

{{

Which streams are represented by u1 and by u2?

14.2 Splitting stream derivatives

Splitting the derivative of a stream σ ∈ Rω into two (or more) summands gives a method
for constructing a weighted stream automaton representing σ: if

σ(0) = s σ′ = (t× τ) + (r × ρ) (σ, τ, ρ ∈ Rω, s, t, r ∈ R)

then

σ | s
t

��

r

��
τ ρ

defines part of a weighted stream automaton for σ. Continuing the construction of the
automaton in the same way for τ and ρ, one obtains in the end an automaton of the
following kind.

208 14.2. Splitting stream derivatives

Definition 373 (semantic automata). A weighted stream automaton

(S, 〈o, tr〉) 〈o, tr〉 : S → R× RS
ω o : S → R tr : S → RS

ω

is called semantic if S ⊆ Rω and, for all σ ∈ S,

σ(0) = o(σ) σ′ =
∑
τ∈S

tr(σ)(τ)× τ

One possible justification of the term semantic lies in the fact that in a semantic au-
tomaton, states coincide with their behaviour.

Proposition 374. If (S, 〈o, tr〉) is semantic then, for all σ ∈ S,

str(σ) = σ

Exercise 375. Prove Proposition 374.

Example 376 (examples of semantic weighted stream automata). Every stream
σ ∈ Rω trivially gives rise to the following semantic weighted stream automaton:

σ | σ(0) 1 // σ′ | σ(1) 1 // σ′′ | σ(2) 1 // · · ·

Streams can be represented by infinitely many different semantic automata. For instance,
recalling our notation for constant streams:

r = (r, r, r, . . .) (r ∈ R)

all of the following automata represent the stream of ones:

1 | 1 1 // 1 | 1 1 // 1 | 1 1 // · · · 1 | 1

1

1 | 1
1/r

**

r | r
r

kk 1 | 1
1

��

2

��

1/2 | 1/2
2

++

1/4 | 1/4
1/2

ll

Chapter 14. Weighted stream automata 209

where r 6= 0. For the stream of positive natural numbers:

nat = (1, 2, 3, . . .)

we have the following semantic weighted stream automaton:

nat | 1

1

		
1 // 1 | 1

1

The latter example is taken from Section 7.6, where we also saw the following automaton
(omitting the output values, which are all 1):

1(0
0)

%%
nat

(1
0)

oo

(1
1)

EE nat〈2〉
(2
1)

oo

(2
0)

yy

(2
2)
��

· · ·
(3
2)

oo nat〈n〉

(n
n)
��(n

n−1)
oo

(n
2)

mm

(n
1)

ii

(n
0)

ee

It is a representation of the n-fold Hadamard product

nat〈n〉 = (1n, 2n, 3n, . . .)

For a last example, we consider the stream of the Fibonacci numbers, and its derivative:

σ1 =
X

1− X− X2
= (0, 1, 1, 2, 3, 5, 8, . . .)

σ2 =
1

1− X− X2
= (1, 1, 2, 3, 5, 8, . . .)

As we saw in Example 334, they are the solution of the following linear system of SDEs:

σ1(0) = 0 σ′1 = σ2

σ2(0) = 1 σ′2 = σ1 + σ2

With these equations, we can now construct a semantic weighted stream automaton rep-
resenting σ1 and σ2:

σ1 | 0
1

++

σ2 | 1
1

kk

1

		

210 14.3. Weighted automata and linear stream systems

Exercise 377. The last example can be easily generalised. Use the proof of Theorem 332
in Section 12.8 to construct a finite semantic weighted stream automaton for any given
rational stream (Definition 284).

Exercise 378. Recall the function of stream exponentiation, from Exercise 297. By com-
puting and suitably splitting the derivatives of the stream eX

2
, show that it can be repre-

sented by the state s0 in the following infinite weighted stream automaton:

s0|1
1

**
s1|0

1
**

1!

jj s2|0
1

))

2!

jj · · ·
3!

jj

14.3 Weighted automata and linear stream systems

The definition of the function str : S → Rω, in Definition 370, may be operationally intu-
itive but is, obviously, computationally inconvenient. We can do better by transforming
weighted stream automata into stream systems, which were introduced in Chapter 7. As
the state space of the resulting stream system will be a vector space, we will call them
linear stream systems. The vector space structure of such linear stream systems will allow
the formulation, in the present section, of coinduction up-to-linearity, which is an enhance-
ment of the usual coinductive proof method. Then, in Section 14.4, we will use the vector
space structure to characterise the behaviour of finite dimensional linear stream systems
by rational streams.

Definition 379 (linear stream system). We call a stream system

(V, 〈o, tr〉) 〈o, tr〉 : V → R× V o : V → R tr : V → V

linear if V is a vector space over R and both o and tr are linear maps.

We recall from Theorem 78 that the set of streams forms a final stream system: for
every stream system (V, 〈o, tr〉) with outputs in R, there exists a unique homomorphism

V

∀ 〈o, tr〉
��

∃! J−K
// Rω

〈ist, dst〉
��

R× V
1R × J−K

// R× Rω

(14.2)

Since R is a field, all of the above lives in the world of vector spaces and linear maps:

Chapter 14. Weighted stream automata 211

Proposition 380 (final linear stream system). The stream system (Rω, 〈ist, dst〉) is
linear. If (V, 〈o, tr〉) is linear then J−K : V → Rω is a linear map.

Proof: The set Rω is a vector space, where the operations of sum and scalar multipli-
cation on Rω are defined elementwise:

(k · σ + l · τ) (n) = k × (σ(n)) + l × (τ(n)) (σ, τ ∈ Rω, k, l ∈ R, n > 0)

Linearity of J−K follows from that of o and tr.

We will now transform weighted stream automata into linear stream systems in a way
that closely resembles the transformation of non-deterministic automata into deterministic
automata, in Section 10.1, for which we used the powerset construction (Definition 221).

We first give a characterisation of the set RS
ω, defined in (14.1) above.

Proposition 381 (RS
ω is a free vector space). For any set S, the set

RS
ω = {φ : S → R | supp(φ) is finite }

is a vector space over R. Moreover, RS
ω is free on the set S: for every vector space V and

for every function f : S → V , there exists a unique linear map f] : RS
ω → V extending f

from S to RS
ω:

S
{̂·}

//

∀ f
��

RS
ω

∃! f]rrV

f](ŝ) = f(s)

Here, the function {̂·} : S → RS
ω is defined, for s, t ∈ S, by

{̂·}(s) = ŝ ŝ : S → R ŝ(t) =

{
1 if t = s
0 if t 6= s

(14.3)

Proof: The operations of sum and scalar multiplication on RS
ω are defined elementwise:

(k · φ + l · ψ) (s) = k × (φ(s)) + l × (ψ(s)) (φ, ψ ∈ RS
ω, k, l ∈ R, s ∈ S)

We observe that the set

Ŝ = {ŝ | s ∈ S}

forms a basis for the vector space RS
ω. As a consequence, we can write

φ = φ(s1) · ŝ1 + · · · + φ(sn) · ŝn
for any φ ∈ RS

ω, with supp(φ) = {s1, . . . , sn}. This leaves

f](φ) = φ(s1) · f(s1) + · · ·+ φ(sn) · f(sn)

as the only possible choice for the definition of f].

212 14.3. Weighted automata and linear stream systems

Definition 382 (generalised powerset construction for weighted automata). We
can transform a weighted stream automaton

(S, 〈o, tr〉) 〈o, tr〉 : S → R× RS
ω o : S → R tr : S → RS

ω

into a linear stream system

(RS
ω, 〈o], tr]〉) 〈o], tr]〉 : RS

ω → R× RS
ω o] : RS

ω → R tr] : RS
ω → RS

ω

by observing that R× RS
ω is a vector space (being the product of two), and by taking

V = R× RS
ω f = 〈o, tr〉

in Proposition 381 above:

S
{̂·}

//

∀ f
��

RS
ω

∃! f]rrV

S
{̂·}

//

〈o,tr〉
��

RS
ω

〈o], tr]〉
uu

R× RS
ω

(14.4)

to obtain the functions o] and tr].

To be precise, Proposition 381 gives us, in diagram (14.4) above, a linear map

〈o, tr〉] : RS
ω → R× RS

ω

which we have written as 〈o], tr]〉. Spelling out the definitions of o] and tr], we find, for all
φ ∈ RS

ω with supp(φ) = {s1, . . . , sn} ⊆ S,

o](φ) = φ(s1)× o(s1) + · · · + φ(sn)× o(sn)

tr](φ) = φ(s1) · tr(s1) + · · · + φ(sn) · tr(sn)

Note that above, φ(si)× o(si) denotes multiplication of the real numbers φ(si) and o(si),
and φ(si) ·tr(si) denotes scalar multiplication of the real number φ(si) and the vector tr(si).
Also note that o](ŝ) = o(s) and tr](ŝ) = tr(s), for all s ∈ S.

Having thus entered the world of linear stream systems, we can combine diagrams (14.2)
and (14.4) above, as follows:

S
{̂·}

//

str

**

〈o, tr〉

��

RS
ω ∃! J−K

//

〈o], tr]〉

tt

Rω

〈ist, dst〉

��

R× RS
ω

1× J−K
// R× Rω

(14.5)

where we have the following ingredients:

Chapter 14. Weighted stream automata 213

- the function str : S → Rω, from Definition 370, maps a state s ∈ S in the weighted
stream automaton (S, 〈o, tr〉) to the stream str(s) it represents.

- the unique homomorphism of stream systems J−K : RS
ω → Rω is given by the finality

of the stream system (Rω, 〈ist, dst〉), Theorem 78, and maps a state φ ∈ RS
ω in the

linear stream system (RS
ω, 〈o], tr]〉) to the stream JφK it represents.

- the function {̂·} : S → RS
ω, which is defined in Equation (14.3) above, is an embedding

of the weighted stream automaton S into the stream system RS
ω.

By Propositions 380 and 381, all of the right hand square in diagram (14.5) lives in the
world of vector spaces and linear maps. Furthermore, everyting in the diagram commutes.

Theorem 383. In diagram (14.5) above, we have str(s) = J ŝ K, for all s ∈ S.

Proof: We prove str(s)(n) = J ŝ K(n), for all s ∈ S and n > 0, by induction on n:

str(s)(0) = o(s) (definition str)

= o](ŝ) (definition o])

= J ŝ K(0) (J−K is a homomorphism)

Next we assume, for all r ∈ S, that

str(r)(n) = J r̂ K(n) (induction hypothesis)

We will prove, for all s ∈ S,

str(s)(n+ 1) = J ŝ K(n+ 1)

Let s ∈ S and let supp(tr(s)) = {s1, . . . , sl} ⊆ S. We can write tr(s) ∈ RS
ω as

tr(s) = k1 · ŝ1 + · · · + kl · ŝl (14.6)

Let tr(s)(si) = ki, for i = 1, . . . , l. Then

str(s)(n+ 1) = k1 × str(s1)(n) + · · · + kl × str(sl)(n) (definition str)

= k1 × J ŝ1 K(n) + · · · + kl × J ŝl K(n) (by the ind. hyp.)

= J k1 · ŝ1 + · · · + kl · ŝl K(n) (J−K is linear)

= J tr(s) K(n) (identity (14.6) above)

= J tr](ŝ) K(n) (definition tr])

= J ŝ K′(n) (J−K is a homomorphism)

= J ŝ K(n+ 1)

which concludes the proof.

Thus (the state s ∈ S in) the original weighted stream automaton (S, 〈o, tr〉) has the
same behaviour as (the state ŝ ∈ RS

ω in) the linear stream system (RS
ω, 〈o], tr]〉) into which

it is transformed.

214 14.3. Weighted automata and linear stream systems

Example 384. The linear stream system (RS
ω, 〈o], tr]〉) generated by the automaton

s|1
1

))

0

)) t|2
−1

ii

2

tt u|1
1

))

1

((v|1
0

ii

1

uu (S = {s, t, u, v})

from Example 371, is a 4-dimensional vector space with basis {ŝ, t̂, û, v̂}. The values of

o] : RS
ω → R tr] : RS

ω → RS
ω

are therefore determined by

o](ŝ) = 1 tr](ŝ) = t̂

o](t̂) = 2 tr](t̂) = 2t̂− ŝ
o](û) = 1 tr](û) = û+ v̂

o](v̂) = 1 tr](v̂) = v̂

Looking at the transition sequences starting in ŝ and û, we find

ŝ|1 // t̂|2 // (2t̂− ŝ)|3 // (3t̂− 2ŝ)|4 // (4t̂− 3ŝ)|5 // · · ·

û|1 // (û+ v̂)|2 // (û+ 2v̂)|3 // (û+ 3v̂)|4 // (û+ 4v̂)|5 // · · ·

from which it follows that

J ŝ K = (1, 2, 3, . . .) J û K = (1, 2, 3, . . .)

Similarly, one finds

J t̂ K = (2, 3, 4 . . .) J v̂ K = (1, 1, 1, . . .)

For a formal proof of the equality of J ŝ K and J û K, we have indicated with the vertical
dashed lines above a stream bisimulation relation on RS

ω:

{ 〈ŝ, û〉 } ∪ { 〈t̂, û+ v̂〉 } ∪ { 〈kt̂− (k − 1)ŝ, û+ kv̂〉 | k > 2 }

By coinduction Theorem 96, J ŝ K = J û K, and by Theorem 383, str(s) = str(u).

Exercise 385. Consider again the weighted stream automaton

s0|1
1

**

1

%% s1|0
2

**

1

jj

3

		

s2|0
3

))

2

jj

5

		

· · ·
3

jj (S = {s0, s1, s2, . . .})

Chapter 14. Weighted stream automata 215

from Example 371. Show that in the corresponding stream automaton RS
ω (which is a

vector space of infinite dimension), the sequence of transitions starting in ŝ0 is of the form

ŝ0 = φ0|0! // φ1|1! // φ2|2! // · · ·

where, for all n > 0,

φn = n!

((
n

0

)
ŝ0 +

(
n

1

)
ŝ1 + · · ·+

(
n

n

)
ŝn

)

We saw in Example 384 that it took an infinite bisimulation relation to prove that
J ŝ K = J û K, from which str(s) = str(u) followed. We can do better with the help of the
following up-to technique.

Definition 386 (bisimulation up-to-linearity). Let (V, 〈o, tr〉) be a linear stream sys-
tem over R. A relation

R ⊆ V × V

is a bisimulation up-to-linearity if

(i) o(v) = o(w) and (ii) (tr(v), tr(w)) ∈ R

for all (v, w) ∈ R. Here

R ⊆ V × V

is the linear closure of R: the smallest relation such that

1. R ⊆ R

2. if (v, w), (x, y) ∈ R then ((k · v) + (l · x), (k · w) + (l · y)) ∈ R

for all v, w, x, y ∈ V , and k, l ∈ R.

Proposition 387 (coinduction up-to-linearity). If R ⊆ V ×W is a bisimulation up-
to-linearity and (v, w) ∈ R, then J v K = Jw K.

Proof: If R is a bisimulation up-to-linearity then one easily shows that R is an ordinary
stream bisimulation, by induction on its definition. Since (v, w) ∈ R ⊆ R, it follows from
Theorem 84 that J v K = Jw K.

216 14.4. Rational streams and linear stream systems

Example 388. Returning again to the automaton in Example 384, we observe that

tr](ŝ) = t̂ tr](t̂) = 2t̂− ŝ
tr](û) = û+ v̂ tr](û+ v̂) = û+ 2v̂ = 2(û+ v̂)− û

This shows that { (ŝ, û), (t̂, û + v̂) } is a bisimulation up-to-linearity. It follows from
Proposition 387 that this finite witness suffices to conclude that J ŝ K = J û K and hence, as
before, that str(s) = str(u).

Exercise 389. Consider the following weighted stream automaton:

s0|0 1 // s1|1
1/2

//

1/2

		

s2|1

1

		

t0|0
1/2

//

1/2

77
t1|1

1/2
//

1/2

		

t2|1

1

		

Use coinduction up-to-linearity to prove that str(s0) = str(t0).

Using bisimulations and bisimulations up-to-linearity, in Examples 384 and 388, to
prove the equivalence of states of linear stream automata, offers a useful exercise in coin-
duction and its enhancements.

14.4 Rational streams and linear stream systems

The behaviour of finite-dimensional linear stream systems can be characterised in terms
of rational streams (Definition 284), using the fact that rational streams are solutions of
finite linear systems of SDEs (Theorem 332 in Section 12.8). As a corollary, we will obtain
yet another method for proving the equivalence of linear stream systems, as an alternative
to the method of enhanced coinduction (up-to-linearity) from Section 14.3

We call a linear stream system

(V, 〈o, tr〉) 〈o, tr〉 : V → R× V o : V → R tr : V → V

finite dimensional if the vector space V is of finite dimension. Without loss of generality,
we may assume that

V = Rn (n > 1)

The linear maps

o : Rn → R tr : Rn → Rn

Chapter 14. Weighted stream automata 217

can be written in matrix form as

o(v) = v ·N tr(v) = v ·M (14.7)

where we read a vector v ∈ Rn as a real-valued matrix of dimension 1 × n, and where N
and M are real-valued matrices of dimension n× 1 and n× n:

v =
(
v1 · · · vn

)
N =

r1
...
rn

 M =

r11 · · · r1n
...

...
rn1 · · · rnn

 (vi, ri, rij ∈ R)

The global behaviour of our linear stream system is given by the final homomorphism into
the set of streams, according to Theorem 78:

Rn
∃! J−K

//

〈N, M〉
��

Rω

〈ist, dst〉
��

R× Rn
1× J−K

// R× Rω

Here (14.7) has allowed us to write N and M for o and tr:

〈N, M〉 = 〈o, tr〉

We will now show how J−K can be expressed in terms of the matrices N and M .

Proposition 390 (the behaviour of finite dimensional linear stream systems).
For a finite dimensional linear stream system (Rn, 〈N, M〉):

J−K : Rn // Rω JvK = v · (I − (X ·M))−1 · N (v ∈ Rn)

Proof: Let us denote the vectors of the standard basis for Rn by

e1 =
(
1 0 0 · · · 0

)
e2 =

(
0 1 0 · · · 0

)
· · · en =

(
0 0 · · · 0 1

)
The value of J−K is determined by its value on e1, . . . , en. We define

σi = JeiK (i = 1, . . . , n)

The initial value of σi is given by

σi(0) = JeiK(0)

= ei ·N (J−K is a homomorphism)

= ri

218 14.4. Rational streams and linear stream systems

For the derivative of σi, we have

σ′i = JeiK′

= Jei ·MK (J−K is a homomorphism)

= J
(
ri1 · · · rin

)
K

= J ri1e1 + · · · + rinen K
= ri1Je1K + · · · + rinJenK (J−K is linear, Proposition 380)

= ri1σ1 + · · · + rinσn

It follows that the streams σ1, . . . , σn satisfyσ1
...
σn

 (0) = N

σ1
...
σn

′

= M ·

σ1
...
σn

 (14.8)

which is the matrix representation of a linear system of SDEs, as in (12.49) of Section 12.8.
The solution of (14.8) is given, according to identity (12.50) in the proof of Theorem 332,
by σ1

...
σn

 = (I − (X ·M))−1 · N (14.9)

Writing v ∈ Rn as

v =
(
v1 · · · vn

)
= v1e1 + · · · + vnen

we have

JvK = Jv1e1 + · · · + vnenK
= v1Je1K + · · · + vnJenK (J−K is linear, Proposition 380)

= v1σ1 + · · · + vnσn (definition of σi)

= v ·

σ1
...
σn

= v · (I − (X ·M))−1 · N (by (14.9))

which concludes the proof.

There is the following immediate consequence of Proposition 390.

Chapter 14. Weighted stream automata 219

Theorem 391 (rational streams and finite dimensional linear stream systems).
For every σ ∈ Rω, the following are equivalent:

(1) σ is rational.

(2) σ can be defined by a finite dimensional linear stream system.

Proof: By the proof of Proposition 390, finite dimensional linear stream systems are
in one-to-one correspondence to finite linear systems of SDEs: both are determined by two
real-valued matrices N and M of dimension n× 1 and n× n, for some n > 1. The present
theorem now follows from Theorem 332, which states that a stream is rational iff it can be
defined by a finite linear system of SDEs.

Example 392. The linear stream system (RS
ω , 〈o], tr]〉) from Example 384, which is gen-

erated by the weighted stream automaton

s|1
1

))

0

)) t|2
−1

ii

2

tt u|1
1

))

1

((v|1
0

ii

1

uu (S = {s, t, u, v})

is a 4-dimensional vector space RS
ω
∼= R4 for which we choose the following basis:

ŝ = e1 = (1, 0, 0, 0) û = e3 = (0, 0, 1, 0)

t̂ = e2 = (0, 1, 0, 0) v̂ = e4 = (0, 0, 0, 1)

The matrices N and M corresponding to o] : R4 → R and tr] : R4 → R4 are

o] = N =

1
2
1
1

 tr] = M =

0 1 0 0
−1 2 0 0
0 0 1 1
0 0 0 1

Computing the inverse of I − (X ·M) gives

(I − (X ·M))−1 =

1− 2X/(1− X)2 X/(1− X)2 0 0
−X/(1− X)2 1/(1− X)2 0 0

0 0 1/1− X X/(1− X)2

0 0 0 1/1− X

As a consequence,

J(v1, v2, v3, v4)K = v · (I − (X ·M))−1 · N

= v1 ·
1

(1− X)2
+ v2 ·

2− X

(1− X)2
+ v3 ·

1

(1− X)2
+ v4 ·

1

1− X

Thus J ŝ K = J e1 K = J e3 K = J û K and, as before, by Theorem 383, str(s) = str(u).

220 14.5. Minimisation of linear stream systems

Exercise 393. Compute the behaviour of the linear stream system (RS
ω , 〈o], tr]〉) that is

generated by the following weighted stream automaton

s|1 1 // t|2
−1

55

2

tt u|1 1 //

1

((v|1
1

uu (S = {s, t, u, v})

where as usual, all transitions with weight 0 have been omitted.

There is also the following corollary of Theorem 391.

Theorem 394 (rational streams and finite weighted stream automata). For every
σ ∈ Rω, the following are equivalent:

(1) σ is rational.

(2) σ can be represented by a finite weighted stream automaton.

Proof: By the generalised powerset construction from Definition 382, every finite
weighted automaton is transformed into a finite dimensional stream system, which has
rational behaviour, by Theorem 391. Conversely, any finite dimensional linear stream sys-
tem (Rn, 〈N, M〉) can be obtained by applying the generalised powerset construction to a
finite weighted stream automaton, the outputs and transitions of which are defined by the
matrices N and M .

14.5 Minimisation of linear stream systems

We look again at the final homomorphism J−K : V → Rω from a stream system V to the
final stream system Rω, and recall from Theorem 84 that

v ∼ w ⇐⇒ JvK = JwK

for all v, w ∈ V . We also recall, from Exercise 85, that this implies that im(J−K), which is
the image of V under the homomorphism J−K, is a subsystem of Rω that is minimal with
respect to bisimulation equivalence.

The above applies to arbirary, not necessarily linear, stream systems. If we are dealing
with a linear stream system (V, 〈o, tr〉), then we have, for all v, w ∈ V ,

v ∼ w ⇐⇒ JvK = JwK (Theorem 84)

⇐⇒ JvK− JwK = 0

⇐⇒ Jv − wK = 0 (J−K is linear, Proposition 380)

⇐⇒ v − w ∈ ker(J−K)

If our linear stream system (V, 〈o, tr〉) is, moreover, finite dimensional, then both ker(J−K)
and im(J−K) can be computed explicitly. Here is an example.

Chapter 14. Weighted stream automata 221

Example 395. We saw that the behaviour map J−K : R4 → Rω of the linear stream system
(R4 , 〈o], tr]〉) in Example 392 satisfies, for all v = (v1, v2, v3, v4) ∈ R4,

JvK = v1 ·
1

(1− X)2
+ v2 ·

2− X

(1− X)2
+ v3 ·

1

(1− X)2
+ v4 ·

1

1− X

Thus im(J−K) ⊆ Rω is a 2-dimensional subspace, with basis, for instance,

{ 1

(1− X)2
,

2− X

(1− X)2
}

Computing ker(J−K), we find

JvK = 0

⇐⇒ v1 ·
1

(1− X)2
+ v2 ·

2− X

(1− X)2
+ v3 ·

1

(1− X)2
+ v4 ·

1

1− X
= 0

⇐⇒ (v1 + 2v2 + v3 + v4) − (v2 + v4)X

(1− X)2
= 0

⇐⇒ v1 + 2v2 + v3 + v4 = 0 and v2 + v4 = 0

⇐⇒ v1 + v2 + v3 = 0 and v2 + v4 = 0

It follows that ker(J−K) ⊆ R4 is a 2-dimensional subspace, for which, for instance,

{ (1,−1, 0, 1), (1, 0,−1, 0) }

is a basis.

Exercise 396. Explain why the dimensions of the kernel and the image of J−K in Example
395 add up to 4, the dimension of R4, by recalling, from linear algebra, that

L : V → W dim(V) = dim(ker(L)) + dim(im(L))

for any linear map between finite dimensional vector spaces V and W .

Exercise 397. Consider the following weighted stream automaton:

s|1 1 // t|2

1

%%

u|3
1

oo

−1

ii

1

vv (S = {s, t, u})

(omitting all transitions with weight 0). Construct RS
ω
∼= R3 and compute ker(J−K) and

im(J−K) of the corresponding behaviour map J−K : R3 → Rω.

222 14.5. Minimisation of linear stream systems

Here is yet another characterisation of rational streams, which is equivalent to Theorem
391. Let σ ∈ Rω and let the subspace generated by σ:

〈σ〉 ⊆ Rω

be defined as the smallest subspace of the vector space Rω that contains σ. It has the
following property.

Theorem 398 (generated subspace of rational streams). For every σ ∈ Rω, the
following are equivalent:

(1) σ is rational.

(2) the subspace 〈σ〉 ⊆ Rω generated by σ is finite dimensional.

Proof: It follows from Theorem 391 that any rational stream is represented as σ = JvK
by a state v of a finite dimensional linear stream system V . Since 〈σ〉 ⊆ im(J−K) and
the latter is finite dimensional, it follows that 〈σ〉 is finite dimensional, too. Conversely, if
〈σ〉 ⊆ Rω is finite dimensional then σ is represented by the finite dimensional linear stream
system 〈σ〉 under the inclusion homomorphism from 〈σ〉 to Rω. It follows, by Theorem
391, that σ is rational.

Theorem 398 can be used to prove that a given stream σ ∈ Rω is not rational: it suffices
to show that the set of derivatives

{σ(0), σ(1), σ(2), . . . } ⊆ Rω (14.10)

contains infinitely many linearly independent vectors. Here is an example.

Example 399. Consider the stream σ ∈ Rω defined by

σ = (1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, . . .)

= 1 + X + X3 + X6 + X10 + · · ·

=
∞∑
k=0

Xk(k+1)/2

The set (14.10) above contains the following infinitely many linearly independent streams:

(1, . . .)

(0, 1, . . .)

(0, 0, 1, . . .)

(0, 0, 0, 1, . . .)

· · ·

Thus σ is not rational.

Chapter 14. Weighted stream automata 223

Exercise 400. Decide whether the streams

σ =
∞∑
k=0

X2k τ =
∞∑
k=0

Xk2

are rational or not. (Can you explain the connection with Exercise 194?)

Exercise 401. In Section 339, we defined the streams of the Catalan numbers [OEI,
A000108] and the (large) Schröder numbers [OEI, A006318] by the SDEs

σ(0) = 1 σ′ = σ × σ
τ(0) = 1 τ ′ = τ + (τ × τ)

Show that both σ and τ are non-rational.

For future reference, we collect all the characterisations of rational streams that we
have obtained in Theorems 332, 391, 394, and 398, in one theorem:

Theorem 402 (characterising rational streams). For every σ ∈ Rω, the following are
equivalent:

(1) σ is rational.

(2) σ can be defined by a finite linear system of SDEs.

(3) σ can be defined by a finite dimensional linear stream system.

(4) σ can be represented by a finite weighted stream automaton.

(5) the subspace 〈σ〉 ⊆ Rω generated by σ is finite dimensional.

Exercise 403. Applying the generalised powerset construction to each of the following
two weighted stream automata

s0|1
1

**

1

%% s1|0
2

**

1

jj

3

		

s2|0
3

))

2

jj

5

		

· · ·
3

jj

t0|1
1

**

1

&& t1|0
1

**

1

jj

2

		

t2|0
1

))

2

jj

3

		

· · ·
3

jj

yields a linear stream system of infinite dimension. Show that their minimisation is still
infinite dimensional and conclude that the behaviour of both automata is non-rational.
(The state s0 represents the stream of the factorial numbers, whereas the state t0 represents
the Bell numbers [OEI, A000110]. For more examples of similar infinite weighted stream
automata, see [Rut03b].)

224 14.6. Weighted automata with inputs

14.6 Weighted automata with inputs

There is a more general notion of weighted automaton that we shall briefly mention here.
Details can be found in the references below.

A weighted automaton with inputs from a set A and weights in R is a pair

(S, 〈o, tr〉) 〈o, tr〉 : S → R× (RS
ω)A o : S → R tr : S → (RS

ω)A

where the set (RS
ω)A is the set of all functions from A to RS

ω (the latter was defined
in (14.1)). The transition function tr assigns to any input a ∈ A and state s ∈ S a
function tr(a)(s) : S → R, of finite support. This function tr(a)(s) maps any state t ∈ S to
tr(a)(s)(t) ∈ R, which we call the weight of the transition from s to t on input a.

Weighted automata with inputs generalise weighted stream automata, which are ob-
tained as a special case by taking A = 1, the one element set.

The generalised powerset construction of Definition 382, which transformed weighted
stream automata to linear stream systems, can be easily adapted to take the inputs from
A into account, with the obvious definitions of {̂·} and 〈o], tr]〉:

S
{̂·}

//

〈o, tr〉
��

(RS
ω)A

〈o], tr]〉rrR× (RS
ω)A

(14.11)

This construction transforms (S, 〈o, tr〉) into ((RS
ω)A, 〈o], tr]〉), which is a Moore automa-

ton, as defined in Section 13.3, with inputs from A and outputs in R. Because (RS
ω)A is

again a free vector space on S, it is sometimes also called a linear weighted automaton.
As before, the behaviour of S can now be defined by finality, composing the embedding

{̂·} with the unique homomorphism from (RS
ω)A to the final Moore automaton:

S
{̂·}

// (RS
ω)A

J−K
// RA∗

which, as we saw in Exercise 354, is given by the set RA∗
of all weighted languages.

We conclude this section with a discussion of the coalgebraic type of weighted stream
automata and weighted automata with inputs.

Remark 404. For those who have already read Chapters 2 to 5: weighted stream automata
with weights in R are wsA-coalgebras for the functor

wsA : Set→ Set wsA(S) = R× RS
ω (S ∈ Set)

wsA(f) : R× RS
ω → R× RT

ω wsA(f) = 1R × Rf
ω (f : S → T)

Here 1R : R→ R is the identity function on R and

Rf
ω : RS

ω → RT
ω

Chapter 14. Weighted stream automata 225

is defined, for φ ∈ RS
ω, t ∈ T , by

Rf
ω(φ) : T → R Rf

ω(φ)(t) =
∑

s∈f−1(t)

φ(s) (14.12)

Weighted automata with inputs from A and weights in R are wA-coalgebras for the functor

wA : Set→ Set wA(S) = R× (RS
ω)A (S ∈ Set)

wA(f) : R× (RS
ω)A → R× (RT

ω)A wA(f) = 1R × (Rf
ω)A (f : S → T)

where the definition of (Rf
ω)A is the obvious extension of the definition of Rf

ω in (14.12).
In the present chapter, we have defined the behaviour of weighted stream automata

by transforming them into (linear) stream systems and above, we have described a similar
procedure for weighted automata with inputs. In both cases, the coalgebraic types – wsA
and wA defined above – do not play a role. The situation is in that respect similar to our
discussion in Remark 233 of the coalgebraic semantics of non-deterministic automata.

At the same time, it is possible to develop a coalgebraic semantics for weighted (stream)
automata, leading to notions of wsA- and wA-bisimulation that do take the branching
structure of the transitions into account, similar again to what we saw for non-deterministic
automata. Details can be found in [BBB+12].

14.7 Discussion

Weighted automata (with inputs) were introduced by Schützenberger [Sch61]. A broad
overview of the classical theory of weighted automata can be found in the handbook
[DKV09]. The present chapter on weighted stream automata is based on parts of [Rut08],
[BBB+12]and [HKR17]; see also [BKK17]. We assumed that weights are real numbers, but
one can be more general by taking weights in any field, or even a ring or semi-ring. Parts
of the present story still apply, see again [BBB+12] and [HKR17] for further details. The
powerset construction from Definition 382 generalises the powerset construction for non-
deterministic automata from Definition 221. At the same time, Definition 382 is a special
instance of a more general coalgebraic construction, see [SBBR13]. For a formulation of
Theorem 398 in classical automata theory, see [BR88]. For weighted automata with inputs,
coinduction up-to-linearity was studied by Winter in [Win14, Win15], where bisimulation
up-to-linearity is called bisimulation up to linear combinations. For a brief discussion on
general coalgebraic up-to techniques, see Section 15.5.

226 14.7. Discussion

Chapter 15

Universal coalgebra

Universal coalgebra studies properties that hold for many different types of coalgebras at
the same time. Although a systematic account of universal coalgebra is beyond the scope
of this book, we will discuss a number of elementary examples of such universal properties.
At the end of this chapter, in Section 15.6, we will mention references to various general
accounts of universal coalgebra.

Reasoning in universal coalgebra uses the language of category theory, which was in-
troduced in Chapter 2. More generally, the present chapter builds on Chapters 2 to 5.

15.1 Lambek’s Lemma

Here is a first and elegant example of a property that holds for any type of coalgebra.
Looking at the various instances of final coalgebras that we have encountered so far, we
see that their structure map is always an isomorphism.

Exercise 405. Prove that the structure map of the final coalgebra of streams

〈ist, dst〉 : Aω → (A× Aω)

introduced in Section 7.2, is an isomorphism. Prove that both

〈il, dl〉 : P(A∗)→
(
2× P(A∗)A

)
which is the final automaton, from Section 8.3, and

〈ipl, dpl〉 : pL→
(
2× (ones + pLA)

)
which is the final partial automaton, from Theorem 213), are isomorphisms.

As it turns out, the structure map of any final coalgebra is an isomorphism.

227

228 15.1. Lambek’s Lemma

Theorem 406 (Lambek’s Lemma [Lam68]). Let (B, β) be a final F -coalgebra. Then
the structure map β : B → F (B) is an isomorphism.

Proof: If (B, β) is an F -coalgebra then so is (F (B), F (β)). We observe that the
structure map β : B → F (B) is a homomorphism of coalgebras:

B

β

��

β
// F (B)

F (β)
��

F (B)
F (β)

// F (F (B))

Since (B, β) is final, there exists a unique homomorphism:

F (B)

F (β)
��

∃!α // B

β

��

F (F (B))
F (α)

// F (B)

Composing two homomorphisms gives again a homomorphism, so α ◦ β : B → B is a
homomorphism. Since the identity 1B : B → B is always a homomorphism and since by
finality of (B, β), there is only one, it follows that α ◦ β = 1B. For the converse,

β ◦ α = F (α) ◦ F (β) (α is a homomorphism)

= F (α ◦ β) (functors preserve composition)

= F (1B)

= 1F (B) (functors preserve identities)

Exercise 407. Lambek’s Lemma was originally formulated for algebras: the structure
map of every initial algebra is an isomorphism. Show that this follows from Theorem 406
by duality.

Exercise 408 (non-existence of final coalgebras). Lambek’s Lemma can be used to
show that for certain types, a final coalgebra does not exist. For instance, consider the
powerset functor P : Set→ Set (see Section 16.10 for its definition). A P-coalgebra (S, α)
consists of a set S of states and a transition function

α : S → P(S)

which maps a state s ∈ S to a set α(s) ⊆ S of successor states. Prove that there does not
exist a final P-coalgebra. Next consider the functor

P+ : Set→ Set P+(X) = {V | V ⊆ X and V 6= ∅}

Does there exist a final P+-coalgebra?

Chapter 15. Universal coalgebra 229

15.2 Homomorphisms

Many of the elementary properties of homomorphisms of stream systems and automata
hold for coalgebras of any type. Here is a basic example.

Theorem 409. Let f : (A,α) → (B, β) be an F -homomorphism and let g : B → A be an
arrow in C that is an inverse of f :

g ◦ f = 1A f ◦ g = 1B

Then g is an F -homomorphism.

Proof: If g is an inverse of f then

α ◦ g = 1F (A) ◦ α ◦ g
= F (1A) ◦ α ◦ g
= F (g ◦ f) ◦ α ◦ g
= F (g) ◦ F (f) ◦ α ◦ g
= F (g) ◦ β ◦ f ◦ g (f is a homomorphism)

= F (g) ◦ β ◦ 1B

= F (g) ◦ β

which proves that g is an F -homomorphism.

Exercise 410. Here is another example of a general property of homomorphisms of coal-
gebras. Let F : Set → Set be a functor. We call an F -homomorphism f : (A,α) → (B, β)
monic if, for all g, h : (C, γ)→ (A,α),

f ◦ g = f ◦ h =⇒ g = h

Prove that if a homomorphism is injective then it is monic. For the converse, consider a
homomorphism f : (A,α) → (B, β) that is monic. We shall see later, in Corollary 422,
that if the functor F preserves kernel pairs then the kernel of any homomorphism is an
F -bisimulation. Use this fact to prove that for such F , monics are injective.

15.3 Coproducts of coalgebras

A coproduct of two objects A,B ∈ C is an object A+B ∈ C together with two arrows

κ1 : A→ A+B κ2 : B → A+B

230 15.3. Coproducts of coalgebras

(called embeddings) with the following universal property: for all objects C and arrows
f : A → C and g : B → C there exists a unique arrow (which we call) [f, g] : A + B → C
satisfying

A

f

))

κ1 // A+B

[f,g]

��

B

g

uu

κ2oo

C

(15.1)

that is, [f, g] ◦ κ1 = f and [f, g] ◦ κ2 = g.

Exercise 411. Prove that any two coproducts are isomorphic.

Exercise 412. Describe the coproduct of two automata from Chapter 8.

There is the following general fact: if the category C has coproducts then the category
CoalgF of F -coalgebras and F -homomorphisms has coproducts as well.

Theorem 413. Consider two F -coalgebras (A,α) and (B, β) and let A+B be a coproduct
of A and B in the category C. Then there exists a unique structure map

γ : (A+B)→ F (A+B)

such that the coalgebra (A+B, γ) is a coproduct of (A,α) and (B, β) in the category CoalgF .

Proof: If we take in (15.1) C = F (A+B), f = F (κ1) ◦ α and g = F (κ2) ◦ β,

A

α

��

κ1 // A+B

γ∃!

��

B

β

��

κ2oo

F (A)
F (κ1)

// F (A+B) F (B)
F (κ2)

oo

then the unique existence of the arrow

γ = [F (κ1) ◦ α, F (κ2) ◦ β]

follows from the universal property of A + B. It is now a little exercise to show that the
F -coalgebra (A+B, γ) has the universal property of a coproduct in CoalgF .

Theorem 413 tells us not only that the coproduct of two coalgebras exists whenever
coproducts exist in the underlying category, but also that the carrier of the coproduct of
two coalgebras consists of the coproduct of their carriers.

Chapter 15. Universal coalgebra 231

Exercise 414. Prove that the F -coalgebra (A + B, γ) in the proof of Theorem 413 is a
coproduct in CoalgF .

Exercise 415. Be courageous and formulate and prove a version of Theorem 413 for other
examples of so-called categorical colimits – of which coproducts are an example – such as
push-outs or co-equalisers. Check one of the references in Section 15.6 below to see how
Theorem 413 can be generalised to arbitrary colimits.

Exercise 416. Describe the product of two automata from Chapter 8. What does the
dualisation of Theorem 413 tell us about products of coalgebras?

15.4 Bisimulation and finality

For well-behaved types of coalgebras, we shall prove that homomorphisms from a given
coalgebra into a final coalgebra map every state of that coalgebra to – a canonical repre-
sentation of – its bisimilarity equivalence class.

The well-behavedness mentioned above will be formulated with the help of the notion
of kernel pair, which is a categorical generalization of the equivalence relation induced by
a mapping of one set into another.

Definition 417 (kernel pair). A kernel pair for an arrow f : A → B in a category C is
a pair of arrows in C

(π1 : K → A, π2 : K → A)

such that f ◦ π1 = f ◦ π2 and such that the following universal property holds:

∀C

∀k

**

∀l

∃!g

%%
K

π1
��

π2 // A

f

��

A
f

// B

That is, for all pairs (k : C → A, l : C → A) such that f ◦ k = f ◦ l, there exists a unique
arrow g : C → K such that k = π1 ◦ g and l = π2 ◦ g.

Exercise 418. Describe kernel pairs in the category Set of sets and functions.

232 15.4. Bisimulation and finality

We say that a functor F : C → C preserves kernel pairs if for every kernel pair

(π1 : K → A, π2 : K → A)

for an arrow f : A→ B, the pair

(F (π1) : F (K)→ F (A), F (π2) : F (K)→ F (A))

is a kernel pair for the arrow F (f) : F (A)→ F (B).

Exercise 419. Show that the functors for stream systems in Chapter 7 and automata in
Chapter 8 preserve kernel pairs.

Theorem 420 (kernel pairs of F -homomorphisms). Let F : C → C be a functor,
f : (A,α)→ (B, β) an F -homomorphism, and let

(π1 : K → A, π2 : K → A)

be a kernel pair for the arrow f : A → B in the category C. If the functor F preserves
kernel pairs then (π1 : K → A, π2 : K → A) is a kernel pair in the category CoalgF for
the F -homomorphism f : (A,α)→ (B, β).

Proof: If F preserves kernel pairs and (π1 : K → A, π2 : K → A) is a kernel pair for
the arrow f : A→ B in the category C, then

(F (π1) : F (K)→ F (A), F (π2) : F (K)→ F (A))

is a kernel pair for the arrow F (f) : F (A)→ F (B). Since

F (f) ◦ α ◦ π1 = β ◦ f ◦ π1 (α is an F -homomorphism)

= β ◦ f ◦ π2 ((π1, π2) is a kernel pair)

= F (f) ◦ α ◦ π2 (α is an F -homomorphism)

it follows from the universal property of the kernel pair for F (f) that there exists a unique
arrow γ : K → F (K) such that

K

α◦π1

%%

α◦π2

""

∃!γ

$$

F (K)

F (π1)

��

F (π2)
// F (A)

F (f)

��

F (A)
F (f)

// F (B)

The arrow γ turns K into an F -coalgebra (K, γ) and the arrows π1 and π2 into F -
homomorphisms. It is now easily verified that the pair (π1 : K → A, π2 : K → A) has
the universal property of a kernel pair in the category CoalgF .

Chapter 15. Universal coalgebra 233

Exercise 421. Prove the following variation on Theorem 420: Let F : C → C be a functor
and (A,α) and (B, β) two F -coalgebras, and let A × B be a product of A and B in the
category C. If the functor F preserves products (define what this means) then there exists
a unique structure map

γ : (A×B)→ F (A×B)

such that (A×B, γ) is the product of (A,α) and (B, β) in the category CoalgF .

Now take courage again and formulate and prove similar variations for other examples
of so-called categorical limits – of which kernel pairs and products are examples – such as
pullbacks and equalisers. Check one of the references in Section 15.6 to see that Theorem
420 can be generalised to arbitrary limits.

Corollary 422 (kernel of F -homomorphism is a bisimulation). Let F : Set → Set
be a functor preserving kernel pairs. If f : (S, α)→ (T, β) is an F -homomorphism, then

ker(f) = {(s, s′) ∈ S × S | f(s) = f(s′) }

is an F -bisimulation equivalence.

Proof: The kernel ker(f) of any function is an equivalence relation. By Theorem 420,
there exists a function γ : ker(f)→ F (ker(f)) such that (ker(f), γ) is an F -coalgebra and
(π1 : ker(f)→ S, π2 : ker(f)→ S) is a kernel pair in CoalgF . In particular, the projections
π1 and π2 are F -homomorphisms:

S

α

��

ker(f)

γ∃
��

π1oo
π2 // S

α

��

F (S) F (ker(f))
F (π1)
oo

F (π2)
// F (S)

which is precisely the definition of an F -bisimulation given in Definition 33.

Exercise 423. Compare the proof of Corollary 422 with that of Proposition 71.

Corollary 422 can now be used to prove that homomorphisms into a final coalgebra
map every state to – a canonical representation of – its bisimilarity equivalence class. The
theorem below is formulated for functors on the category of sets, which allows us to speak
of states as elements of a coalgebra, but the theorem applies to functors on arbitrary
categories as well.

234 15.5. Enhanced coinduction

Theorem 424 (finality and F -bisimilarity). Let F : Set → Set be a functor that pre-
serves kernel pairs, (S, α) an F -coalgebra, and (B, β) a final F -coalgebra. By finality, there
exists a unique F -homomorphism

S

α

��

∃! J−K
// B

β

��

F (S)
F (J−K)

// F (B)

It satisfies, for all s, t ∈ S,
s ∼ t ⇐⇒ JsK = JtK

where we write s ∼ t if there exists an F -bisimulation relation containing (s, t).

Proof: Consider an F -bisimulation relation R ⊆ S×S, with projections π1, π2 : R→ S.
By the definition of bisimulation, the projections are homomorphisms. Composition with
J−K gives two homomorphisms from R to B. By finality, they must be equal, which
proves the implication from left to right. For the converse, assume that JsK = JtK, that
is, (s, t) ∈ ker(J−K). Since F preserves kernel pairs, it follows from Corollary 422 that
ker(J−K) is an F -bisimulation, which proves s ∼ t.

We observe that Theorem 84 on streams and Theorem 156 on languages are both special
instances of Theorem 424. The following coinduction proof principle for F -coalgebras is a
special case of Theorem 424. It generalises the earlier versions for streams (Theorem 96)
and languages (Theorem 160).

Theorem 425 (coinduction proof principle for F -coalgebras). Let F : Set→ Set be
a functor preserving kernel pairs and let (B, β) be a final F -coalgebra. Then:

s ∼ t ⇐⇒ s = t (s, t ∈ B)

Proof: This follows from Theorem 424 applied to (S, α) = (B, β) and the observation
that the identity map is the only homomorphism from a final coalgebra to itself.

Exercise 426. Compare Theorem 425 with the coinduction proof principle that we saw
in Chapter 4, that is, Theorem 34.

15.5 Enhanced coinduction

We have seen many examples of enhanced coinduction: the variation of coinduction based
on the combination of algebraic and coalgebraic structure, where one constructs bisimula-
tion relations up-to the closure under a given set of algebraic operators:

Chapter 15. Universal coalgebra 235

- for streams: bisimulation up-to-sum, Definition 105, and coinduction -sum, Proposi-
tion 106

- for automata: bisimulation up-to-equivalence, Definition 138, and coinduction up-to-
equivalence, Proposition 139

- for languages: bisimulation up-to-congruence, Definition 171, and coinduction up-to-
congruence, Proposition 172

- for non-deterministic automata: bisimulation up-to-union, Definition 228, and coin-
duction up-to-union, Proposition 229

- for systems of stream differential equations: bisimulation up-to-Σ, Definition 254,
and coinduction up-to-Σ, Proposition 255

- for linear stream systems: bisimulation up-to-linearity, Definition 386, and coinduc-
tion up-to-linearity, Proposition 387

Ultimately, all these variations are instances of one and the same, general principle. For a
universal coalgebraic account of enhanced coinduction, see [RBR13a], [Rot16], [RBB+17]
and [BPPR17]. Coalgebraic coinduction up-to techniques already occur in the work of
Lenisa [Len99] and Bartels [Bar04].

15.6 Discussion

The present chapter is based on [Rut96, Rut00c], where many more general properties
of coalgebras may be found. Several results presented there apply only to coalgebras
of which the functor type satisfies certain well-behavedness conditions (for instance, the
functor should preserve weak pullbacks). These conditions were studied in more detail,
and in some cases relaxed, in [Gum98]. There exists by now much literature on universal
coalgebra. Here is an incomplete selection for further reading, in chronological order:
[Tur96], [TP97], [MD97], [Mos99], [Acz00], [Kur01b], [Kur01a] [Gum01], [Pat03] [Bar04],
[Adá05], [AMV05], [KR05], [Kup06], [Ven06], [Han09], [Sil10], [JR11], [Sil15], [Rot16],
[Jac16], [Kur16], [AMM18].

236 15.6. Discussion

Chapter 16

Notation and preliminaries

16.1 Numbers

We define the following sets of numbers:

- N: the set of natural numbers 0, 1, 2, . . .

- Z: the set of integer numbers 0, 1,−1, 2,−2, . . .

- Q: the set of rational numbers n/m, with n,m ∈ Z and m 6= 0

- Qodd : the set of rational numbers n/m, with n,m ∈ Z and m odd

- R: the set of real numbers

16.2 Functions

Functions are sometimes also called maps. For a set X, the identity function is given by

1X : X → X 1X(x) = x

For functions f : X → Y and g : Y → Z, we define the composition of f and g by

g ◦ f : X → Z (g ◦ f)(x) = g(f(x))

We pronounce g ◦ f as: g after f . For a function f : X → X, we define

f 0 = 1X fn+1 = f ◦ fn

The image of f : X → Y is defined by

im(f) = {y ∈ Y | ∃ x ∈ X, y = f(x) }

237

238 16.3. Products and sums

For a subset V ⊆ X, the image of V under f is defined by

f(V) = {y ∈ Y | ∃ v ∈ V, y = f(v) }

It follows that im(f) = f(X). The graph of f : X → Y is defined by

graph(f) = {(x, y) ∈ X × Y | y = f(x) }

We define the kernel of a function f : X → Y by

ker(f) = {(x, x′) ∈ X ×X | f(x) = f(x′) }

For a linear map L : V → W between vector spaces V and W , we will also use

ker(L) = { v ∈ V | L(v) = 0 }

For sets X and A, we define

XA = { f | f : A→ X }

For a function g : X → Y , we define

gA : XA → Y A gA(f) = g ◦ f : A→ Y (f : A→ X)

16.3 Products and sums

The (Cartesian) product of two sets X and Y is

X × Y = {(x, y) | x ∈ X, y ∈ Y }

The projections of X × Y are

X X × Yπ1oo
π2 // Y π1((x, y)) = x π2((x, y)) = y

The product of two functions f1 : X1 → Y1 and f2 : X2 → Y2 is

f1 × f2 : (X1 ×X2) → (Y1 × Y2) (f1 × f2)(x1, x2) = (f1(x1), f2(x2))

The pairing of two functions f : Z → X and g : Z → Y is

〈f, g〉 : Z → X × Y 〈f, g〉(z) = (f(z), g(z))

The sum of two sets X and Y is

X + Y = X ∪̇Y

Chapter 16. Notation and preliminaries 239

where the disjoint union is defined by

X ∪̇Y = {(x, 0) | x ∈ X} ∪ {(y, 1) | y ∈ Y }

The embeddings of X + Y are

X
κ1 // X + Y Y

κ2oo κ1(x) = (x, 0) κ2(y) = (y, 1)

The sum

f1 + f2 : (X1 +X2) → (Y1 + Y2)

of two functions f1 : X1 → Y1 and f2 : X2 → Y2 is defined by

(f1 + f2)(x1, 0) = (f1(x1), 0) (f1 + f2)(x2, 1) = (f2(x2), 1)

The co-pairing of two functions f : X → Z and g : y → Z

[f, g] : (X + Y)→ Z

is defined by

[f, g]((x, 0)) = f(x) [f, g]((y, 1)) = g(y)

16.4 Subsets

We denote the set of all subsets of a set X by

P(X) = {V | V ⊆ X }

The set P(X) is called the powerset of the set X. The empty set has no elements and is
denoted by ∅. For

V ⊆ P(X)

we define the union and the intersection of V by⋃
V = {x ∈ X | ∃V ∈ V , x ∈ V }

⋂
V = {x ∈ X | ∀V ∈ V , x ∈ V }

240 16.5. Relations

16.5 Relations

A relation between two sets X and Y is a subset

R ⊆ X × Y

The projections of R are

X R
π1oo

π2 // Y π1((x, y)) = x π2((x, y)) = y

The inverse of R ⊆ X × Y is

R−1 ⊆ Y ×X R−1 = {(y, x) ∈ Y ×X | (x, y) ∈ R }

The composition of two relations R ⊆ X × Y and S ⊆ Y × Z is

R ◦ S = {(x, z) ∈ X × Z | ∃ y ∈ Y, (x, y) ∈ R and (y, z) ∈ S }

which we pronounce as: R followed by S. A relation

R ⊆ X ×X

is an equivalence if it satisfies

x 6 x (reflexivity)

(x 6 y and y 6 z) =⇒ x 6 z (transitivity)

x 6 y =⇒ y 6 x (symmetry)

For an equivalence relation R on X and x ∈ X, the R-equivalence class of x is

[x]R = { y ∈ X | (x, y) ∈ R }

The quotient of X with respect to the equivalence relation R is

X/R = { [x]R | x ∈ X }

that is, the set of R-equivalence classes. The quotient function of R is

q : X → X/R q(x) = [x]R

Chapter 16. Notation and preliminaries 241

16.6 Words and languages

Let A be a set. A word over A is a finite sequence

(a0, a1, . . . , an−1) (ai ∈ A, n > 0)

Words are often simply written as strings

a0a1 · · · an−1 (ai ∈ A, n > 0)

The case n = 0 represents the empty word, which we denote by ε. We sometimes call
the set A the alphabet and we call the elements a ∈ A letters. The length of a word w is
denoted by |w| and is defined, for w = a0a1 · · · an−1, by n. The set of all words over A is
denoted by

A∗ = {(a0, a1, . . . , an−1) | ai ∈ A, n > 0 }

Subsets of A∗ are called a languages. We denote the empty language, that is, the empty
subset, by ∅. For a letter a ∈ A and a word w = (a0, a1, . . . , an−1) ∈ A∗ we define

a · w = (a, a0, a1, . . . , an)

More generally, the concatenation of two words

v = (a0, a1, . . . , an−1) w = (b0, b1, . . . , bm−1)

is defined by

v · w = (a0, a1, . . . , an−1, b0, b1, . . . , bm−1)

which is often written as vw. We write wn for the n-fold concatenation of w with itself:

w0 = ε wn+1 = w · wn (n > 0)

For instance, the word an consists of n occurrences of the letter a. We call a word v a
prefix of a word w and write

v 6 w

if there exists a word u (possibly empty) such that v · u = w.

16.7 Monoids, (semi-)rings, integral domains, fields

A monoid

(M, · , e) · : M ×M →M e ∈ M

242 16.7. Monoids, (semi-)rings, integral domains, fields

consists of a set M , a binary operation · , and an identity element e, such that

(a · b) · c = a · (b · c) a · e = e · a = a

A monoid is called commutative if it moreover satisfies

a · b = b · a

A semi-ring

(R, +, ×, 0, 1) +: R×R→ R × : R×R→ R 0, 1 ∈ R

consists of a set R equipped with two binary operations called addition and multiplication,
such that

- (R,+) is a commutative monoid with identity element 0:

(a+ b) + c = a+ (b+ c) a+ b = b+ a a+ 0 = a

- (R,×) is a monoid with identity element 1:

(a× b)× c = a× (b× c) 1× a = a× 1 = a

- multiplication left and right distributes over addition:

a× (b+ c) = (a× b) + (a× c) (a+ b)× c = (a× c) + (b× c)

- multiplication by 0 annihilates R:

0× a = a× 0 = 0

A ring is a semi-ring with the additional property that for each a ∈ R there exists an
additive inverse −a ∈ R such that

a+ (−a) = 0

A ring is commutative if multiplication is not only associative but also commutative:

a× b = b× a

An integral domain is a commutative ring in which multiplication has no zero-divisors:

a× b = 0 =⇒ (a = 0 or b = 0)

A field is a commutative ring with the additional property that for each a ∈ R with a 6= 0,
there exists a multiplicative inverse a−1 ∈ R:

a× a−1 = 1

Chapter 16. Notation and preliminaries 243

16.8 Pre-orders and partial orders

A preorder

(P,6) 6 ⊆ P × P

consists of a set P and a binary relation 6 satisfying

a 6 a (reflexivity)

(a 6 b and b 6 c) =⇒ a 6 c (transitivity)

If a preorder moreover satisfies

(a 6 b and b 6 a) =⇒ a = b (anti-symmetry)

then it is a partial order. On the other hand, if a preorder satisfies

a 6 b =⇒ b 6 a (symmetry)

then 6 is an equivalence relation.
Let (P,6) and (Q,6) be two preorders. If a function f : P → Q satisfies

a 6 b =⇒ f(a) 6 f(b)

then f is monotone.

16.9 Vector spaces and linear maps

A real vector space (or: vector space over the field R)

(V, +, ×, 0) +: V × V → V × : R× V → V 0 ∈ V

consists of a set V equipped with two binary operations called addition and scalar multi-
plication, such that, for all u, v, w ∈ V , r, s ∈ R,

(u+ v) + w = u+ (v + w) u+ v = v + w u+ 0 = u

r(v + w) = rv + rw (r + s)v = rv + sv r(sv) = (rs)v

1v = v v + (−v) = 0

where we write rv = r × v, and where the additive inverse −v is assumed to exist, for
every v ∈ V . A map f : V → W between two vector spaces V and W is linear it it satisfies

f(u+ v) = f(u) + f(v) f(rv) = rf(v)

Linear maps between finite dimensional vector spaces can be represented by matrices,
which are occasionally used the present book. We refer the reader to the literature on
elementary linear algebra for the basic definitions and results, including the notion of a
basis of a vector space, and the operations of matrix multiplication and inversion.

244 16.10. Functors on sets

16.10 Functors on sets

The category Set consists of sets and functions. The category Set × Set has pairs of sets
X1 and X2 as objects and pairs of functions f1 : X1 → Y1 and f2 : X2 → Y2 as arrows:

objects: (X1, X2) arrows: (f1, f2) : (X1, X2) → (Y1, Y2)

The functors

F× : Set× Set→ Set F+ : Set× Set→ Set

are defined by

F×((X1, X2)) = X1 ×X2 F×((f1, f2)) = (f1 × f2) : (X1 ×X2) → (Y1 × Y2)

F+((X1, X2)) = X1 +X2 F+((f1, f2)) = (f1 + f2) : (X1 +X2) → (Y1 + Y2)

with the product and sum of sets and functions as defined in Section 16.3.

The identity functor is

Id : Set→ Set Id(X) = X Id(f) = f : X → Y (f : X → Y)

For every set A, we have the constant functor

FA : Set→ Set FA(X) = A FA(f) = 1A : A→ A (f : X → Y)

and the exponentiation functor

(−)A : Set→ Set (−)A(X) = XA = { g | g : A→ X }
(−)A(f) : XA → Y A (−)A(f)(g) = fA(g) = f ◦ g (f : X → Y , g : A→ X)

The powerset functor is defined by

P : Set→ Set P(X) = {V | V ⊆ X }
P(f) : P(X)→ P(Y) P(f)(V) = f(V) (f : X → Y , V ⊆ X)

All the functors that occur in the present book are obtained by composing two or more
of the functors above. For instance, the functor for deterministic automata with inputs
from a given set S

dA : Set→ Set dA(S) = 2× SA

is obtained by composing the constant functor F2 and the exponentiation functor (−)A

with the product functor F×.

Chapter 16. Notation and preliminaries 245

16.11 On-line Encyclopedia of Integer Sequences

We will occasionally refer to OEIS: the On-line Encyclopedia of Integer Sequences (streams,
in our terminology), founded by N.J.A. Sloane [OEI]. This is a rather wonderful database,
containing descriptions of an incredible number of streams, presenting of each stream
its history, various ways in which it can be constructed and characterised, streams to
which it is related, etc. One can search the encyclopedia on-line, by simply typing in the
first few initial values of a stream. Streams are numbered, and we will use, for instance,
[OEI, A000045] to refer to the stream with number A000045 in OEIS, which is the stream
(0, 1, 1, 2, 3, 5, 8, . . .) of Fibonacci numbers. Each such stream can be directly accessed
on-line; for instance, one finds the stream of Fibonacci numbers at https://oeis.org/

A000045.

https://oeis.org/A000045
https://oeis.org/A000045

246 16.11. On-line Encyclopedia of Integer Sequences

Bibliography

[Acz88] P. Aczel. Non-well-founded sets. Number 14 in CSLI Lecture Notes. Center
for the Study of Languages and Information, Stanford, 1988.

[Acz00] Peter Aczel. Algebras and coalgebras. In Algebraic and Coalgebraic Methods
in the Mathematics of Program Construction, International Summer School
and Workshop, Oxford, UK, April 10-14, 2000, Revised Lectures, pages 79–88,
2000.

[Adá05] Jiŕı Adámek. Introduction to coalgebra. Theory and Applications of Categories,
14(8):157–199, 2005.

[AFV01] L. Aceto, W.J. Fokkink, and C. Verhoef. Structural operational semantics.
In J.A. Bergstra, A. Ponse, and S.A. Smolka, editors, Handbook of Process
Algebra, pages 197–292. Elsevier, 2001.

[AM75] M.A. Arbib and E.G. Manes. Adjoint machines, state-behaviour machines,
and duality. Journal of Pure and Applied Algebra, 6:313–344, 1975.

[AM82] M.A. Arbib and E.G. Manes. Parametrized data types do not need highly
constrained parameters. Information and Control, 52(2):139–158, 1982.

[AM89] P. Aczel and N. Mendler. A final coalgebra theorem. In D.H. Pitt, D.E.
Ryeheard, P. Dybjer, A. M. Pitts, and A. Poigne, editors, Proceedings cate-
gory theory and computer science, number 389 in Lecture Notes in Computer
Science, pages 357–365. Springer-Verlag, 1989.

[AMM18] Jiŕı Adámek, Stefan Milius, and Lawrence S. Moss. Fixed points of functors.
Journal of Logical and Algebraic Methods in Programming, 95:41 – 81, 2018.

[AMV05] Jiŕı Adámek, Stefan Milius, and Jiri Velebil. A general final coalgebra theorem.
Mathematical Structures in Computer Science, 15(3):409–432, 2005.

[AT11] Samson Abramsky and Nikos Tzevelekos. Introduction to categories and cat-
egorical logic. CoRR, abs/1102.1313, 2011.

[Awo10] S. Awodey. Category theory, volume 52 of Oxford Logic Guides. Oxford Uni-
versity Press, 2nd edition, 2010.

247

248 Bibliography

[Bar93] M. Barr. Terminal coalgebras in well-founded set theory. Theoretical Computer
Science, 114(2):299–315, June 1993. Some additions and corrections were pub-
lished in TCS Vol. 124, 1994, pp. 189–192.

[Bar03] Falk Bartels. Generalised coinduction. Mathematical Structures in Computer
Science, 13(2):321–348, 2003.

[Bar04] F. Bartels. On generalised coinduction and probabilistic specification formats.
PhD thesis, Vrije Universiteit, Amsterdam, 2004.

[Bas18] H. Basold. Mixed Inductive-Coinductive Reasoning. PhD thesis, Radboud
Universiteit Nijmegen, 2018.

[BBB+12] F. Bonchi, M. Bonsangue, M. Boreale, J. Rutten, and A. Silva. A coalgebraic
perspective on linear weighted automata. Inf. Comput., 211:77–105, 2012.

[BHKR15] M. Bonsangue, H. Hansen, A. Kurz, and J. Rot. Presenting distributive laws.
Logical Methods in Computer Science, 11(3), 2015.

[BHPR17] H. Basold, H. Hansen, J.E. Pin, and J. Rutten. Newton series, coinductively:
A comparative study of composition. Mathematical Structures in Computer
Science, pages 1–29, 2017.

[BIM95] B. Bloom, S. Istrail, and A. Meyer. Bisimulation can’t be traced. J. ACM,
42(1):232–268, 1995.

[BKK17] F. Bonchi, B. König, and S. Küpper. Up-to techniques for weighted systems.
In TACAS 2017, volume 10205 of LNCS, pages 535–552, 2017.

[BLL98] F. Bergeron, G. Labelle, and P. Leroux. Combinatorial species and tree-like
structures, volume 67 of Encyclopedia of Mathematics and its Applications.
Cambridge University Press, 1998.

[Bor17] M. Boreale. Algebra, coalgebra, and minimization in polynomial differential
equations. In J. Esparza and A.S. Murawski, editors, FOSSACS 2017, Pro-
ceedings, volume 10203 of LNCS, pages 71–87, 2017.

[BP13] F. Bonchi and D. Pous. Checking NFA equivalence with bisimulations up to
congruence. In POPL ’13, pages 457–468, 2013.

[BP15] F. Bonchi and D. Pous. Hacking nondeterminism with induction and coinduc-
tion. Commun. ACM, 58(2):87–95, 2015.

[BPPR17] F. Bonchi, D. Petrisan, D. Pous, and J. Rot. A general account of coinduction
up-to. Acta Informatica, 54(2):127–190, 2017.

[BR78] G. Birkhoff and G.-C. Rota. Ordinary differential equations (third edition).
John Wiley and Sons, 1978.

Bibliography 249

[BR88] J. Berstel and C. Reutenauer. Rational series and their languages, volume 12 of
EATCS Monographs on Theoretical Computer Science. Springer-Verlag, 1988.

[Brz64] J.A. Brzozowski. Derivatives of regular expressions. Journal of the ACM,
11(4):481–494, 1964.

[BvBL+11] J. Baeten, D. van Beek, B. Luttik, J. Markovski, and J. Rooda. A process-
theoretic approach to supervisory control theory. In Proceedings of ACC 2011,
pages 4496–4501. IEEE, 2011.

[Cal13] G. Caltais. Coalgebraic Tools for Bisimilarity and Decorated Trace Semantics.
PhD thesis, Radboud Universiteit, Nijmegen, 2013.

[Com74] L. Comtet. Advanced combinatorics. D. Reidel Publishing Company, 1974.

[Con71] J.H. Conway. Regular algebra and finite machines. Chapman and Hall, 1971.

[Cos10] D. Costa. Formal models for component connectors. PhD thesis, Vrije Univer-
siteit, Amsterdam, 2010.

[DKV09] Manfred Droste, Werner Kuich, and Heiko Vogler, editors. Handbook of
weighted automata. Springer-Verlag, 2009.

[Eil74] S. Eilenberg. Automata, languages and machines (Volume A). Pure and ap-
plied mathematics. Academic Press, 1974.

[Eil76] S. Eilenberg. Automata, languages and machines (Volume B). Pure and applied
mathematics. Academic Press, 1976.

[Gou93] F.Q. Gouvêa. p-adic Numbers: An Introduction. Springer, 1993.

[Gum98] H. Peter Gumm. Elements of the general theory of coalgebra. Course Notes for
LUATCS. 1998.

[Gum01] H. Peter Gumm. Functors for coalgebras. Algebra Universalis, 45:135–147,
2001.

[Han09] H. Hansen. Coalgebraic Modelling: Applications in Automata Theory and
Modal Logic. PhD thesis, Vrije Universiteit, Amsterdam, 2009.

[HCR06] H. Hansen, D. Costa, and J. Rutten. Synthesis of Mealy machines using deriva-
tives. In Proceedings of CMCS 2006, volume 164(1) of ENTCS, pages 27–45.
Elsevier Science Publishers, 2006.

[HH79] E.C.R. Hehner and R.N. Horspool. A new representation of the rational num-
bers for fast easy arithmetic. SIAM Journal on Computing, 8:124–134, 1979.

250 Bibliography

[Hin08] Ralf Hinze. Scans and convolutions - a calculational proof of Moessner’s theo-
rem. In Proceedings of the 20th International Symposium on the Implementa-
tion and Application of Functional Languages (IFL ’08), 2008.

[Hin11] Ralf Hinze. Concrete stream calculus: an extended study. Journal of Func-
tional Programming, pages 1–70, 2011.

[HK71] J. Hopcroft and R. Karp. A linear algorithm for testing equivalence of finite au-
tomata. Technical Report 114, Dept. of Computer Science, Cornell University,
December 1971.

[HKR17] H.H. Hansen, C. Kupke, and J. Rutten. Stream differential equations: speci-
fication formats and solution methods. Logical Methods in Computer Science,
12, 2017.

[HMU07] J.E. Hopcroft, R. Motwani, and J.D. Ullman. Introduction to Automata The-
ory, Languages, and Computation, 3rd Edition. Pearson, 2007.

[Hop71] John Hopcroft. An n log n algorithm for minimizing states in a finite automa-
ton. In Z. Kohavi and A. Paz, editors, Theory of Machines and Computations,
pages 189–196. Academic Press, New York, 1971.

[HR10] H.H. Hansen and J. Rutten. Symbolic synthesis of Mealy machines from arith-
metic bitstream functions. Scientific Annals of Computer Science, XX:97–130,
2010.

[Jac16] Bart Jacobs. Introduction to coalgebra. Towards mathematics of states and
observations. Cambridge University Press, 2016.

[JR11] B. Jacobs and J. Rutten. An introduction to (co)algebras and (co)induction. In
Davide Sangiorgi and Jan Rutten, editors, Advanced topics in bisimulation and
coinduction, volume 52 of Cambridge Tracts in Theoretical Computer Science,
pages 38–99. Cambridge University Press, 2011.

[Kle56] S.C. Kleene. Representation of events in nerve nets and finite automata. In
Shannon and McCarthy, editors, Automata Studies, pages 3–41. Princeton
Univ. Press, 1956.

[Kli11] B. Klin. Bialgebras for structural operational semantics: An introduction.
Theoretical Computer Science, 412:5043–5069, 2011.

[Koz97] D.C. Kozen. Automata and computability. Undergraduate Texts in Computer
Science. Springer-Verlag, 1997.

[KPS16] R. Krebbers, L. Parlant, and A. Silva. Moessner’s theorem: An exercise in
coinductive reasoning in coq. In Theory and Practice of Formal Methods,
volume 9660 of Lecture Notes in Computer Science, pages 309–324. Springer,
2016.

Bibliography 251

[KR05] Alexander Kurz and Jiŕı Rosický. Operations and equations for coalgebras.
Mathematical Structures in Computer Science, 15(1):149–166, 2005.

[KS13] Dexter Kozen and Alexandra Silva. On Moessner’s theorem. The American
Mathematical Monthly, 120(2):131–139, February 2013.

[Kup06] C. Kupke. Finitary Coalgebraic Logics. PhD thesis, Universiteit van Amster-
dam, 2006.

[Kur01a] A. Kurz. Coalgebras and modal logic. Course Notes for ESSLLI. 2001.

[Kur01b] Alexander Kurz. Specifying coalgebras with modal logic. Theor. Comput. Sci.,
260(1-2):119–138, 2001.

[Kur16] A. Kurz. Coalgebras and their logics. ACM SIGACT News – Logic column,
15, 2016.

[Lam68] J. Lambek. A fixed point theorem for complete categories. Math. Zeitschr.,
103:151–161, 1968.

[Lan02] S. Lang. Algebra. Graduate Texts in Mathematics. Springer, 2002.

[Len99] M. Lenisa. From set-theoretic coinduction to coalgebraic coinduction. In B. Ja-
cobs and J. Rutten, editors, Proceedings of CMCS’99, volume 19 of ENTCS.
Elsevier, 1999.

[LPW04] M. Lenisa, J. Power, and H. Watanabe. Category theory for operational se-
mantics. Theoretical Computer Science, 327(1-2):135–154, 2004.

[LS97] F.W. Lawvere and S.H. Schanuel. Conceptual mathematics. Cambridge Uni-
versity Press, 1997.

[MA86] E.G. Manes and M.A. Arbib. Algebraic approaches to program semantics. Texts
and monographs in computer science. Springer-Verlag, 1986.

[Mar16] Jasen Markovski. A process-theoretic approach to supervisory coordination
under partial observation. Sci. Comput. Program., 115-116:127–145, 2016.

[MD97] L.S. Moss and N. Danner. On the foundations of corecursion. Logic Journal
of the IGPL, 5(2):231–257, 1997.

[Mil80] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes
in Computer Science. Springer-Verlag, 1980.

[Mil89] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[ML71] S. Mac Lane. Categories for the Working Mathematician, volume 5 of Graduate
Texts in Mathematics. Springer-Verlag, New York, 1971.

252 Bibliography

[Moe51] A. Moessner. Eine Bemerkung über die Potenzen der natürlichen Zahlen.
Aus den Sitzungsberichten der Bayerische Akademie der Wissenschaften,
Mathematisch-naturwissenschaftliche Klasse 1951 Nr.3, 1951.

[Mos99] Lawrence S. Moss. Coalgebraic logic. Ann. Pure Appl. Logic, 96(1-3):277–317,
1999.

[NR11] Milad Niqui and Jan Rutten. A proof of Moessner’s theorem by coinduction.
Higher-Order Symbolic Computing, 24(3):191–206, 2011.

[NR13] M. Niqui and J. Rutten. Stream processing coalgebraically. Sci. Comput.
Program., 78(11):2192–2215, 2013.

[OEI] OEIS Foundation inc. (2018), The On-Line Encyclopedia of Integer Sequences.
https://oeis.org.

[Paa52] I. Paasche. Ein neuer Beweis des Moessnerschen Satz. Aus den Sitzungs-
berichten der Bayerische Akademie der Wissenschaften, Mathematisch-
naturwissenschaftliche Klasse 1952 Nr.1, 1952.

[Par81] D.M.R. Park. Concurrency and automata on infinite sequences. In P. Deussen,
editor, Proceedings 5th GI conference, volume 104 of Lecture Notes in Computer
Science, pages 167–183. Springer-Verlag, 1981.

[Pat03] D. Pattinson. An introduction to the theory of coalgebra. Course Notes for
NASSLLI. 2003.

[PE98] D. Pavlović and M. Escardó. Calculus in coinductive form. In Proceedings
of the 13th Annual IEEE Symposium on Logic in Computer Science, pages
408–417. IEEE Computer Society Press, 1998.

[Per51] O. Perron. Beweis des Moessnerschen Satz. Aus den Sitzungsberichten der Bay-
erische Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche
Klasse 1951 Nr.4, 1951.

[Plo81] G.D. Plotkin. A structural approach to operational semantics. Report DAIMI
FN-19, Aarhus University, Aarhus, September 1981.

[Ran58] G.N. Raney. Sequential functions. J. Assoc. Comput. Mach., 3:177–180, 1958.

[RBB+17] J. Rot, F. Bonchi, M. Bonsangue, D. Pous, J. Rutten, and A. Silva. En-
hanced coalgebraic bisimulation. Mathematical Structures in Computer Sci-
ence, 27(7):1236–1264, 2017.

[RBR13a] J. Rot, M. Bonsangue, and J. Rutten. Coalgebraic bisimulation-up-to. In
SOFSEM 2013: Theory and Practice of Computer Science, 39th International
Conference on Current Trends in Theory and Practice of Computer Science,

https://oeis.org

Bibliography 253

Špindler̊uv Mlýn, Czech Republic, January 26-31, 2013. Proceedings, pages
369–381, 2013.

[RBR13b] J. Rot, M. Bonsangue, and J. Rutten. Coinductive proof techniques for lan-
guage equivalence. In A. H. Dediu, C. Mart́ın-Vide, and B. Truthe, editors,
Proc. LATA 2013, volume 7810 of LNCS, pages 480–492. Springer, 2013.

[RBR16] J. Rot, M. Bonsangue, and J. Rutten. Proving language inclusion and equiv-
alence by coinduction. Information and Computation, 246:62–76, 2016.

[Rot16] J. Rot. Enhanced coinduction. PhD thesis, Universiteit Leiden, 2016.

[RT93] J. Rutten and D. Turi. On the foundations of final semantics: non-standard
sets, metric spaces, partial orders. In J.W. de Bakker, W.-P. de Roever, and
G. Rozenberg, editors, Proceedings of the REX Workshop on Semantics, vol-
ume 666 of LNCS, pages 477–530. Springer-Verlag, 1993.

[Rut96] J. Rutten. Universal coalgebra: a theory of systems. Report CS-R9652, CWI,
1996. A slightly modified version of this report appeared in 2000 in Theoretical
Computer Science Vol. 249(1).

[Rut98] J. Rutten. Automata and coinduction (an exercise in coalgebra). In D. San-
giorgi and R. de Simone, editors, Proceedings of CONCUR’98, volume 1466 of
LNCS, pages 194–218, 1998.

[Rut99a] J. Rutten. Automata, power series, and coinduction: taking input derivatives
seriously (extended abstract). In J. Wiedermann, P. van Emde Boas, and
M. Nielsen, editors, Proceedings of ICALP’99, volume 1644 of LNCS, pages
645–654, 1999.

[Rut99b] J. Rutten. Coalgebra, concurrency, and control. Report SEN-R9921, CWI,
1999. Extended abstract in: Discrete Event Systems, R. Boel and G. Stremer-
sch (eds.), Kluwer, 2000.

[Rut99c] J. Rutten. A note on coinduction and weak bisimilarity for while programs.
Theoretical Informatics and Applications (RAIRO), 33:393–400, 1999.

[Rut00a] J. Rutten. Behavioural differential equations: a coinductive calculus of streams,
automata, and power series. Report SEN-R0023, CWI, 2000.

[Rut00b] J. Rutten. Coalgebra, concurrency, and control. In R. Boel and G. Stremersch,
editors, Discrete Event Systems, pages 31–38. Kluwer, 2000.

[Rut00c] J. Rutten. Universal coalgebra: a theory of systems. Theoretical Computer
Science, 249(1):3–80, 2000. Fundamental Study.

254 Bibliography

[Rut01] J. Rutten. Elements of stream calculus (an extensive exercise in coinduction).
In S. Brooks and M. Mislove, editors, Proceedings of MFPS 2001, volume 45
of ENTCS, pages 1–66. Elsevier Science Publishers, 2001.

[Rut03a] J. Rutten. Behavioural differential equations: a coinductive calculus of streams,
automata, and power series. Theoretical Computer Science, 308(1):1–53, 2003.
Fundamental Study.

[Rut03b] J. Rutten. Coinductive counting with weighted automata. Journal of Au-
tomata, Languages and Combinatorics, 8(2):319–352, 2003.

[Rut05a] J. Rutten. A coinductive calculus of streams. Mathematical Structures in
Computer Science, 15:93–147, 2005.

[Rut05b] J. Rutten. A tutorial on coinductive stream calculus and signal flow graphs.
Theoretical Computer Science, 343(3):443–481, 2005.

[Rut06] J. Rutten. Algebraic specification and coalgebraic synthesis of Mealy automata.
In Proceedings of FACS 2005, volume 160 of ENTCS, pages 305–319. Elsevier
Science Publishers, 2006.

[Rut08] J. Rutten. Rational streams coalgebraically. Logical Methods in Computer
Science, 4(3), 2008.

[RW87] P.J. Ramadge and W.M. Wonham. Supervisory control of a class of discrete
event processes. SIAM J. Control and Optimization, 25:206–230, 1987.

[Sal52] H. Salié. Bemerkung zum einen Satz von Moessner. Aus den Sitzungs-
berichten der Bayerische Akademie der Wissenschaften, Mathematisch-
naturwissenschaftliche Klasse 1952 Nr.2, 1952.

[Sal18] J. Salamanca. Coequations and Eilenberg-type Correspondences. PhD thesis,
Radboud Universiteit Nijmegen, 2018.

[San12] Davide Sangiorgi. Introduction to Bisimulation and Coinduction. Cambridge
University Press, 2012.

[SBBR13] A. Silva, F. Bonchi, M. Bonsangue, and J. Rutten. Generalizing determiniza-
tion from automata to coalgebras. Logical Methods in Computer Science, 9(1),
2013.

[Sch61] M.P. Schützenberger. On the definition of a family of automata. Information
and Control, 4(2-3):245–270, 1961.

[Sch68] F. Scheid. Theory and problems of numerical analysis (Schaum’s outline se-
ries). McGraw-Hill, 1968.

Bibliography 255

[Sil10] A. Silva. Kleene coalgebra. PhD thesis, Radboud Universiteit, Nijmegen, 2010.

[Sil15] A. Silva. A short introduction to the coalgebraic method. SIGLOG News,
2(2):16–27, 2015.

[SR12] Davide Sangiorgi and Jan Rutten. Advanced Topics in Bisimulation and Coin-
duction. Cambridge University Press, 2012.

[TP97] D. Turi and G.D. Plotkin. Towards a mathematical operational semantics. In
Proc. 12th LICS Conf., pages 280–291. IEEE, Computer Society Press, 1997.

[Tur96] D. Turi. Functorial operational semantics and its denotational dual. PhD
thesis, Vrije Universiteit, Amsterdam, 1996.

[Ven06] Y. Venema. Algebras and coalgebras. In J. van Benthem, P. Blackburn, and
F. Wolter, editors, Handbook of Modal Logic, pages 331–426. Elsevier, 2006.

[WBR11] J. Winter, M. Bonsangue, and J. Rutten. Context-free languages, coalge-
braically. In Proceedings of CALCO 2011, volume 6859 of LNCS, pages 359–
376, 2011.

[WBR13] J. Winter, M. Bonsangue, and J. Rutten. Coalgebraic characterizations of
context-free languages. Logical Methods in Computer Science, 9(3), 2013.

[WBR15] J. Winter, M. Bonsangue, and J. Rutten. Context-free coalgebras. J. Comput.
Syst. Sci., 81(5):911–939, 2015.

[Wil94] H.S. Wilf. Generatingfunctionology. Academic Press, 1994.

[Win14] J. Winter. Coalgebraic characterizations of automata-theoretic classes. PhD
thesis, Radboud Universiteit, Nijmegen, 2014.

[Win15] Joost Winter. A completeness result for finite λ-bisimulations. In FoSSaCS
2015, pages 117–132, 2015.

Index

F -algebra, 19
F -bisimulation, 30
F -coalgebra, 21
F -congruence, 28
R-equivalence class, 240
X, 155
∅, 239
even, 27, 56, 133
N, 237
Q, 237
R, 237
Z, 237
nat, 67, 70, 132
odd, 27, 56
ones, 131, 146
P(X), 239
σ(n), 53
σ−n, 167
σ〈n〉, 68, 180
σn, 165
ε, 241
zip, 23, 57
a-derivative, 89
fn, 237

algebra, 19
alphabet, 241
analytic

differential equation, 171
function, 171
stream derivative, 168

anti-symmetry, 243
Arden’s rule, 99
arrow, 11
automaton

deterministic, 79

infinite, 82
Mealy, 189
minimal, 100
minimal for a language, 102
Moore, 194
non-deterministic, 119
partial, 115
weighted stream, 205

BDE, 147
Bell numbers, 223
bisimilarity

of automata, 84
of stream systems, 49

bisimulation
functional, 51
of deterministic automata, 83, 84
of dynamical systems, 54
of partial systems, 110
of stream systems, 48, 49
on F -coalgebras, 30
proof method, 60, 61
up-to, 8, 234
up-to-Σ, 145
up-to-congruence, 98
up-to-equivalence, 85
up-to-linearity, 215
up-to-sum, 66
up-to-union, 124

bitstream, 44, 195

carrier
of a coalgebra, 21
of an algebra, 19

Catalan numbers, 187, 207, 223
category, 11

256

Index 257

opposite, 16
causal stream function, 146, 190, 191
circularity, 73
coalgebra, 21
coinduction, 7, 8

defining streams by, 55, 129
definitions by, 25, 27, 55
enhanced, 8, 234
fixed point, 31
proof principle, 30

for ext. natural numbers, 112
for automata, 91
for languages, 93
for streams, 60

up-to, 8, 107, 234
up-to-Σ, 145
up-to-congruence, 99
up-to-equivalence, 86
up-to-linearity, 215
up-to-sum, 66
up-to-union, 124

commuting diagram, 15
composition

of functions, 237
of streams, 162

concatenation
of languages, 93
of words, 241

congruence
bisimilarity is a, 138
closure, 98
on F -algebras, 28

context-free
stream, 187

convolution product, 151, 152
inverse, 159

coproduct
categorical, 16
of coalgebras, 230

derivative
analytic stream, 168
higher-order, 53

of a language, 89
of a regular operator, 94
of a stream, 52
of a stream function, 191

difference operator, 175
differential equation

analytic, 171
behavioural, 147
stream, 129

disjoint union, 239
distributive law, 149
duality, 15

embeddings, 16
empty

set, 239
word, 241

enhanced coinduction, 234
epic, 12
epimorphism, 39, 83
equivalence

class, 240
closure, 85
Myhill-Nerode, 102
relation, 240, 243

Euler expansion, 179
exponentiation of streams, 167, 210
extended natural numbers, 111

factorial numbers, 75, 133, 178, 207
Fibonacci numbers, 132, 177, 209
field, 242
final

F -coalgebra, 26
automaton of languages, 90
dynamical system, 54
Mealy automaton, 191, 195
Moore automaton, 195
object, 15
partial automaton, 117
partial system, 111
stream system, 53

fixed point

258 Index

of a dynamical system, 38
of a monotone function, 32

formal power series, 148, 188, 195
functor, 14
fundamental theorem

of bitstream calculus, 198, 202
of calculus, 156
of difference calculus, 175
of stream calculus, 156

generating function, 157
graph, 238
GSOS format, 140, 143, 149

Hamming numbers, 134
higher-order

derivative, 53
SDE, 132

homomorphism
of algebras, 20
of coalgebras, 22
of deterministic automata, 82
of dynamical systems, 39
of Mealy automata, 192
of partial systems, 110
of stream systems, 46

image
of a function, 237
of a homomorphism, 48

induction
and coinduction, 25
definitions by, 25, 26
fixed point, 31
mathematical, 28
proof principle, 28

initial
F -algebra, 25
object, 15
value of

a language, 89
a regular operator, 94
a stream, 52

injective, 12

input derivative, 89
integral domain, 159, 242
inverse

additive, 243
convolution, 158, 159
image, 38
left, 40
multiplicative, 242
of a relation, 240
of an arrow, 229
shuffle, 167

isomorphic, 13
isomorphism, 83

kernel
of a function, 238

kernel pair
of F -homomorphism, 232
of an arrow, 231
preservation of, 232

Kleene
star, 93
Theorem, 104

Lambek’s lemma, 228
language, 89, 241

accepted, 80
inclusion, 100
partial, 116
regular, 93

linear
map, 243
stream system, 210
system of SDEs, 181

matrix, 243
minimisation

and finality, 55
of automata, 100, 101
of linear stream systems, 220
of Mealy automata, 192
of stream systems, 51, 55

Moessner’s theorem, 67, 69
monic, 12

Index 259

monoid, 241
as category, 12
commutative, 242

monomorphism, 39, 83
monotone function, 243
morphism, 11
Myhill-Nerode equivalence, 102

numbers
integer, 237
natural, 237
rational, 237
real, 237

object, 11
OEIS, 245

Paasche’s Theorem, 75
partial

automata, 115
order, 243
system, 110
system with outputs, 113

periodic
state, 38

polynomial stream, 162
powerset, 239

construction, 121
functor, 14, 244
generalised, 212

preorder, 243
as category, 12

product
Cartesian, 13, 238
categorical, 13
convolution, 151, 152
Hadamard, 68, 132, 178
infiltration, 178
of stream systems, 50
of two functions, 238
shuffle, 60, 133, 164

projections, 13, 238, 240

quotient

of stream system, 51
w.r.t. equivalence relation, 240

rational
bitstream function, 201
stream, 162, 223

recurrence relation, 132
reflexivity, 240
regular

language, 94
operator, 93

relation, 240
equivalence, 240, 243

ring, 242
commutative, 242
semi, 242

Schröder numbers, 187, 223
SDE, 129

higher-order, 132
system of, 131

shuffle
inverse, 167
product, 60, 133, 164

simulation relation, 100
splitting stream derivatives, 74, 207
state, 37

accepting, 80
non-accepting, 80

stream, 45
calculus, 151

fundamental theorem of, 156
constant X, 155
context-free, 187
derivative, 52
differential equation, 129
eventually periodic, 58, 196, 199
exponentiation, 167, 210
initial value of, 52
polynomial, 162
rational, 162, 223
system, 45

structure map

260 Index

of a coalgebra, 21
of an algebra, 19

subautomaton, 87
subsystem

of dynamical system, 42
of stream system, 48

sum
infinite, 156
of two sets, 238
of two streams, 58, 64

support of a function, 205
surjective, 12
symmetry, 240
syntactic solution method, 134
system

dynamical, 37
linear stream, 210
partial, 110
stream, 45

Taylor
coefficients, 156
series, 156, 157, 166
transform, 172

transform
Laplace, 168
Newton, 175
Taylor, 172

transitivity, 240
type

of a coalgebra, 21, 34
of an algebra, 19
of an arrow, 12

universal properties, 15

vector space, 243

weight, 205
weighted

language, 195, 224
stream automaton, 205

while programs, 113
word, 241

empty, 241

	Introduction
	The method of coalgebra
	History, roughly and briefly
	Exercises in coinduction
	Enhanced coinduction: algebra plus coalgebra
	Universal coalgebra
	How to read this book
	Acknowledgements

	Categories – where coalgebra comes from
	The basic definitions
	Category theory in slogans
	Discussion

	Algebras and coalgebras
	Algebras
	Coalgebras
	Discussion

	Induction and coinduction
	Inductive and coinductive definitions
	Proofs by induction and coinduction
	Discussion

	The method of coalgebra
	Basic types of coalgebras
	Coalgebras, systems, automata …

	Dynamical systems
	Homomorphisms of dynamical systems
	On the behaviour of dynamical systems
	Discussion

	Stream systems
	Homomorphisms and bisimulations of stream systems
	The final system of streams
	Defining streams by coinduction
	Coinduction: the bisimulation proof method
	Moessner's Theorem
	The heart of the matter: circularity
	Discussion

	Deterministic automata
	Basic definitions
	Homomorphisms and bisimulations of automata
	The final automaton of languages
	Regular languages
	Proving language equality by coinduction
	Minimal automata
	Discussion

	Partial automata
	Partiality
	Partial systems with outputs
	Partial automata
	Discussion

	Non-deterministic automata
	The powerset construction
	Language equivalence of non-deterministic automata
	Discussion

	Stream differential equations
	Examples of stream differential equations
	Introducing the syntactic solution method
	GSOS: a general format for stream differential equations
	Behavioural differential equations
	Discussion

	A calculus of streams
	Basic stream operations
	Convolution inverse
	Stream composition
	Shuffle product
	Laplace transform
	Solving analytic differential equations
	Newton transform
	Rational streams and linear systems of SDEs
	Discussion

	Mealy automata
	Causal stream functions
	Constructing minimal Mealy automata
	Moore automata
	A calculus of bitstreams
	Mealy machines for bitstream functions
	Discussion

	Weighted stream automata
	Representing streams by weighted automata
	Splitting stream derivatives
	Weighted automata and linear stream systems
	Rational streams and linear stream systems
	Minimisation of linear stream systems
	Weighted automata with inputs
	Discussion

	Universal coalgebra
	Lambek's Lemma
	Homomorphisms
	Coproducts of coalgebras
	Bisimulation and finality
	Enhanced coinduction
	Discussion

	Notation and preliminaries
	Numbers
	Functions
	Products and sums
	Subsets
	Relations
	Words and languages
	Monoids, (semi-)rings, integral domains, fields
	Pre-orders and partial orders
	Vector spaces and linear maps
	 Functors on sets
	 On-line Encyclopedia of Integer Sequences

	methodofcoalgebra(2).pdf
	Introduction
	The method of coalgebra
	History, roughly and briefly
	Exercises in coinduction
	Enhanced coinduction: algebra plus coalgebra
	Universal coalgebra
	How to read this book
	Acknowledgements

	Categories – where coalgebra comes from
	The basic definitions
	Category theory in slogans
	Discussion

	Algebras and coalgebras
	Algebras
	Coalgebras
	Discussion

	Induction and coinduction
	Inductive and coinductive definitions
	Proofs by induction and coinduction
	Discussion

	The method of coalgebra
	Basic types of coalgebras
	Coalgebras, systems, automata …

	Dynamical systems
	Homomorphisms of dynamical systems
	On the behaviour of dynamical systems
	Discussion

	Stream systems
	Homomorphisms and bisimulations of stream systems
	The final system of streams
	Defining streams by coinduction
	Coinduction: the bisimulation proof method
	Moessner's Theorem
	The heart of the matter: circularity
	Discussion

	Deterministic automata
	Basic definitions
	Homomorphisms and bisimulations of automata
	The final automaton of languages
	Regular languages
	Proving language equality by coinduction
	Minimal automata
	Discussion

	Partial automata
	Partiality
	Partial systems with outputs
	Partial automata
	Discussion

	Non-deterministic automata
	The powerset construction
	Language equivalence of non-deterministic automata
	Discussion

	Stream differential equations
	Examples of stream differential equations
	Introducing the syntactic solution method
	GSOS: a general format for stream differential equations
	Behavioural differential equations
	Discussion

	A calculus of streams
	Basic stream operations
	Convolution inverse
	Stream composition
	Shuffle product
	Laplace transform
	Solving analytic differential equations
	Newton transform
	Rational streams and linear systems of SDEs
	Discussion

	Mealy automata
	Causal stream functions
	Constructing minimal Mealy automata
	Moore automata
	A calculus of bitstreams
	Mealy machines for bitstream functions
	Discussion

	Weighted stream automata
	Representing streams by weighted automata
	Splitting stream derivatives
	Weighted automata and linear stream systems
	Rational streams and linear stream systems
	Minimisation of linear stream systems
	Weighted automata with inputs
	Discussion

	Universal coalgebra
	Lambek's Lemma
	Homomorphisms
	Coproducts of coalgebras
	Bisimulation and finality
	Enhanced coinduction
	Discussion

	Notation and preliminaries
	Numbers
	Functions
	Products and sums
	Subsets
	Relations
	Words and languages
	Monoids, (semi-)rings, integral domains, fields
	Pre-orders and partial orders
	Vector spaces and linear maps
	 Functors on sets
	 On-line Encyclopedia of Integer Sequences

	Blank Page

