(1) True or false? (No explanation necessary or useful).

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| ☑ | ☐ | If $A = \emptyset$ then $AB = \emptyset$ for all languages B
| | | ... as a word in AB is a concatenation of words in A and B, but A has no words.
| ☐ | ☑ | If $A = \{\varepsilon\}$ then $AB = \emptyset$ for all languages B
| | | ... instead $AB = B$ for all languages B
| ☐ | ☑ | If $A = \emptyset$ then $A^0 = \emptyset$
| | | ... as we defined $A^0 = \{\varepsilon\}$ for any language A.
| ☐ | ☑ | $\emptyset = \{\varepsilon\}$
| ☑ | ☐ | If $A = \{a\}^*$ and $\Sigma = \{a, b\}$ then $\Sigma^* - A = \{b\}^*$
| | | ... for example $ab \in \Sigma^* - A$ but not in $\{b\}^*$.

(2) Design deterministic finite automata that accepts the strings in $\{0, 1\}^*$ that contain at least one 1.

Figure 1: DFA that accepts the language above. State s is the start state and f is the only accepting state.