Reading. To review the material covered so far, read sections 1-6.

For each problem set please write both your name and your cornell.edu email address on top.

When designing a DFA or NFA provide the required definitions (a transition diagram is good enough), and also a brief English explanation of the main idea (e.g., what the states represent, etc). In designing NFA you may use \(\varepsilon \)-transitions defined on page 36 of Kozen, but it is not necessary.

(1) Let \(\Sigma = \{0, 1\} \).

(a) In class we gave a nondeterministic finite automata with \(k+1 \) states that accepts the language \(L_k = \Sigma^* \cdot 1 \cdot \Sigma^{k-1} \) (all words where the letter \(k \) from the end is a 1). Give a deterministic finite automata that accepts the language \(L_k \). How many states did you use?

(b) Give a deterministic finite automata that accepts the language \(L_k = \Sigma^* \cdot 1^k \) (the last \(k \) characters are all 1). Do this with less than \(2^k \) states.

(2) Show that for any regular language \(\mathcal{L} \subseteq \Sigma^* \) the language \(\text{Even}(\mathcal{L}) \) is also regular, where \(\text{Even}(\mathcal{L}) \) is defined as

\[
\text{Even}(\mathcal{L}) = \{ \sigma_2 \sigma_4 \ldots \sigma_{2n} \mid \exists \sigma_1, \sigma_3, \ldots, \sigma_{2n-1} \in \Sigma \text{ such that } \sigma_1 \sigma_2 \sigma_3 \sigma_4 \ldots \sigma_{2n} \in \mathcal{L} \}
\]

(3) Let \(\Sigma \) be an alphabet with \(k \) characters. Define the language

\[
\text{Incomplete}(\Sigma) = \{ w \in \Sigma^* \mid \exists a \in \Sigma \text{ such that } w \text{ does not contain } a \}\.
\]

Design a NFA using at most \(k \) states that accepts \(\text{Incomplete}(\Sigma) \).

(4) The Hamming distance between two equal length strings \(x \) and \(y \) is the number of places they differ. We will use \(H(x, y) \) to denote this distance. For any language \(\mathcal{L} \subseteq \Sigma^* \) we say that \(H(x, \mathcal{L}) = \min_{y \in \mathcal{L}} H(x, y) \) (where the Hamming distance of strings \(x \) and \(y \) with \(|x| \neq |y| \) is infinite. Now let

\[
N_k(\mathcal{L}) = \{ x \in \Sigma^* \mid H(x, \mathcal{L}) \leq k \}.
\]

Prove that if \(\mathcal{L} \) is regular than so is \(N_1(\mathcal{L}) \). Hint: use two copies of the machine \(M \) accepting \(\mathcal{L} \), and use nondeterministic transitions to guess where the error occurs.