1. Prob. 111 from p. 344 of the text. One of the following sets is r.e. and the other is not. Which is which?

(a) \(\{ i \mid L(M_i) \text{ contains at least 481 elements} \} \)
(b) \(\{ i \mid L(M_i) \text{ contains at most 481 elements} \} \)

Prove your answers.

Answer (a) This set is r.e. One proof: recall that the “membership” set

\[
L_{\text{mbr}} = \{ \langle j, k \rangle \mid M_j(k) \downarrow_a \}
\]

is r.e. To test whether input \(i \) is in \(L_{\text{mbr}} \), a machine can simply enumerate the elements of \(L_{\text{mbr}} \), and accept after enumerating the 481st pair of the form \(\langle i, k \rangle \).

Answer (b) This set is not r.e. Recall the “diagonal divergence” set

\[
L_{\uparrow d} = \{ j \mid M_j(j) \uparrow \}
\]

This set is known not to be r.e., but we can easily reduce it to \(L_b \). Given \(i \), construct machine \(M_j \) such that \(M_j(x) \) just simulates \(M_i(i) \) until it halts. \(M_j(x) \) accepts if \(M_i(i) \); it loops otherwise. It is clear that computing \(j \) from \(i \) is a total TM-computable function. If \(M_i(i) \) diverges, then \(L(M_j) \) is empty, so \(j \) is in \(L_b \). If \(M_i(i) \) halts, then \(L(M_j) \) is \(\Sigma^* \), so \(j \) is not in \(L_b \). Thus, we have shown

\[
L_{\uparrow d} \leq_m L_b
\]

so \(L_b \) cannot be r.e.
2. Suppose P is any property of pairs of r.e. sets. We define

$$L_P = \{ (i, j) \mid P(L(M_i), L(M_j)) \}$$

We say such a property is nontrivial if it is neither identically true nor identically false; i.e.,

$$P \text{ nontrivial} \iff (\exists (i, j) \in L_P) \land (\exists (i, j) \notin L_P)$$

Prove the following extension of Rice’s Theorem:

No nontrivial property of pairs of r.e. sets is decidable.

Answer Following the Hint, we note that P is decidable *iff* $\neg P$ is decidable. Thus, we can assume without loss of generality that

$$P(\emptyset, \emptyset) = \text{false}$$

since this must be true of either P or $\neg P$, and proving either of these sets undecidable is equivalent.

Since we assume P is nontrivial, there must exist p and q such that

$$P(L(M_p, L(M_q)) = \text{true}$$

We reduce the halting problem to L_P as follows.

Given input (i, j), construct a machine M_m which, on input x, will

- Simulate $M_i(j)$ until it halts; then
- Simulate $M_p(x)$

Clearly if $M_i(j)$ halts then $L(M_m)$ will be exactly $L(M_p)$; but if $M_i(j)$ loops then $L(M_m)$ will be empty.

Analogously, given input (i, j), we can construct a machine M_n which, on input x, will

- Simulate $M_i(j)$ until it halts; then
- Simulate $M_q(x)$
As above, if $M_i(j)$ halts then $L(M_n)$ will be exactly $L(M_q)$; but if $M_i(j)$ loops then $L(M_n)$ will be empty.

Both the above constructions are total TM-computable functions. Thus, from the pair $\langle i, j \rangle$ a TM can compute a pair $\langle n, m \rangle$. Following the above argument, if $M_i(j)$ halts then

$$P(L(M_m), L(M_n)) = P(L(M_p), L(M_q)) = \text{true}$$

but if $M_i(j)$ loops

$$P(L(M_m), L(M_n)) = P(\emptyset, \emptyset) = \text{false}$$

This yields the reduction

$$L_{\text{mbr}} \leq_m L_P$$

so P cannot be decidable, as required.

3. Let L and L' denote CFLs (presented as CFGs), and let R denote a regular set (presented as a regular expression or right-linear grammar). Which of the following are decidable and which undecidable?

(a) $L = R$
(b) $L \subseteq R$
(c) $L \supseteq R$
(d) $L = L'$
(e) $L \subseteq L'$
(f) $L \supseteq L'$
(g) $L = LL$

Prove your answers.

Answer (a) Assume we’re enumerating the regular sets by right-linear grammars, and let R_i denote the i^{th} right-linear grammar in the enumeration. Now part (a) just asks whether the set

$$L_a = \{ (i, j) \mid L(G_i) = L(R_j) \}$$

is recursive.
Recall the set

\[\{ i \mid L(G_i) = \Sigma^* \} \]

is not recursive. For convenience, call this set \(L_u \). We can reduce \(L_u \) to \(L_a \) almost trivially. Choose some \(n \) such that

\[L(R_n) = \Sigma^* \]

Then

\[L_u = \{ i \mid L(G_i) = L(R_n) \} \subseteq_m \{ \langle i, j \rangle \mid L(G_i) = L(R_j) \} \]

The reduction is the simple function

\[i \mapsto \langle i, n \rangle \]

Answer (b) This one is decidable. Note

\[L \subseteq R \iff L \cap \overline{R} = \emptyset \]

We showed in lecture that CFLs are closed under intersection with regular sets. We also showed that it is decidable whether a CFG generates an empty language; i.e., the set

\[L_\emptyset = \{ i \mid L(G_i) = \emptyset \} \]

is recursive. To reduce \(L_b \) to \(L_\emptyset \), given \(\langle i, j \rangle \) we construct a CFG \(G_k \) such that

\[L(G_k) = L(G) \cap \overline{L(R_j)} \]

then ask whether \(k \) is in \(L_\emptyset \).

Answer (c) Observe that, for any \(L \) whatsoever,

\[L \supseteq \Sigma^* \iff L = \Sigma^* \]

so \(L_c \) is not recursive by the same argument as for part (a).
Answer (d) Since Σ^* is regular, it is also context-free, and L_d is not recursive by the same argument as for part (a).

Answer (e) Since

$$L \subseteq L' \iff L' \subseteq L$$

parts (e) and (f) necessarily have the same answer.

Answer (f) L_f is not recursive by the same argument as for part (c).

Answer (g) This one required some inspiration. Consider the language

$$NVC_{i,j} = \text{ValComps}_{M_{i,j}}$$

We showed in lecture that this language is a CFL, and given (i, j) we can effectively construct a grammar for $NVC_{i,j}$. Observe that

$$NVC_{i,j} = \Sigma^* \iff j \notin L(M_i)$$

That is, $NVC_{i,j}$ is Σ^* if $M_i(j)$ rejects, and is something smaller otherwise. Now, claim

$$NVC_{i,j} \ = \Sigma^*$$

in all cases, whether $M_i(j)$ accepts or rejects. To see this, note that the empty string is not a valid computation. Thus, any w can be written

$$w = \epsilon \ w \quad w \in NVC_{i,j}$$

or

$$w = w_1 \ w_2 \quad w_1, w_2 \in NVC_{i,j} \text{ if } w \notin NVC_{i,j}$$

In the second case, a valid computation w can always be expressed as the concatenation of two strings w_1 and w_2, neither of which is itself a valid computation.

Thus, the function that maps a pair (i, j) to an index k such that

$$L(G_k) = NVC_{i,j}$$

yields a reduction

$$L_{\text{mbr}} \leq_m L_g = \{ i \mid l(G_i) = L(G_i)L(G_i) \}$$

proving that L_g is not recursive.