CS481F01 Solutions 8

A. Demers

7 Dec 2001

1. Prob. 111 from p. 344 of the text. One of the following sets is r.e. and the other is not. Which is which?

- (a) $\{i \mid L(M_i) \text{ contains at least } 481 \text{ elements } \}$
- (b) { $i \mid L(M_i)$ contains at most 481 elements }

Prove your answers.

Answer (a) This set is r.e. One proof: recall that the "membership" set

 $L_{\rm mbr} = \{ \langle j, k \rangle \mid M_j(k) \downarrow_a \}$

is r.e. To test whether input i is in L_a), a machine can simply enumerate the elements of L_{mbr} , and accept after enumerating the 481st pair of the form $\langle i, k \rangle$.

Answer (b) This set is not r.e. Recall the "diagonal divergence" set

$$L_{\uparrow d} = \{ j \mid M_j(j) \uparrow \}$$

This set is known not to be r.e., but we can easily reduce it to L_b . Given i, construct machine M_j such that $M_j(x)$ just simulates $M_i(i)$ until it halts. $M_j(x)$ accepts if $M_i(i)$; it loops otherwise. It is clear that computing j from i is a total TM-computable function. If $M_i(i)$ diverges, then $L(M_j)$ is empty, so j is in L_b . If $M_i(i)$ halts, then $L(M_j)$ is Σ^* , so j is not in L_b . Thus, we have shown

 $L_{\uparrow d} \leq_m L_b$

so L_b cannot be r.e.

2. Suppose P is any property of *pairs* of r.e. sets. We define

$$L_P = \{ \langle i, j \rangle \mid P(L(M_i), L(M_j)) \}$$

We say such a property is *nontrivial* if it is neither identically true nor identically false; i.e.,

P nontrivial $\Leftrightarrow (\exists \langle i, j \rangle \in L_P) \land (\exists \langle i, j \rangle \notin L_P)$

Prove the following extension of Rice's Theorem:

No nontrivial property of pairs of r.e. sets is decidable.

Answer Following the Hint, we note that P is decidable $iff \neg P$ is decidable. Thus, we can assume without loss of generality that

 $P(\emptyset, \emptyset) =$ false

since this must be true of either P or $\neg P$, and proving either of these sets undecidable is equivalent.

Since we assume P is nontrivial, there must exist p and q such that

 $P(L(M_p, L(M_q)) =$ true

We reduce the halting problem to L_P as follows.

Given input $\langle i, j \rangle$, construct a machine M_m which, on input x, will

- Simulate $M_i(j)$ until it halts; then
- Simulate $M_p(x)$

Clearly if $M_i(j)$ halts then $L(M_m)$ will be exactly $L(M_p)$; but if $M_i(j)$ loops then $L(M_m)$ will be empty.

Analogously, given input $\langle i, j \rangle$, we can construct a machine M_n which, on input x, will

- Simulate $M_i(j)$ until it halts; then
- Simulate $M_q(x)$

As above, if $M_i(j)$ halts then $L(M_n)$ will be exactly $L(M_q)$; but if $M_i(j)$ loops then $L(M_n)$ will be empty.

Both the above constructions are total TM-computable functions. Thus, from the pair $\langle i, j \rangle$ a TM can compute a pair $\langle n, m \rangle$. Following the above argument, if $M_i(j)$ halts then

$$P(L(M_m), L(M_n)) = P(L(M_p), L(M_q)) =$$
true

but if $M_i(j)$ loops

$$P(L(M_m), L(M_n)) = P(\emptyset, \emptyset) =$$
false

This yields the reduction

 $L_{\text{mbr}} \leq_m L_P$

so P cannot be decidable, as required.

3. Let L and L' denote CFLs (presented as CFGs), and let R denote a regular set (presented as a regular expression or right-linear grammar). Which of the following are decidable and which undecidable?

$$\begin{array}{rcl} (a) & L &= R \\ (b) & L &\subseteq R \\ (c) & L &\supseteq R \\ (d) & L &= L' \\ (e) & L &\subseteq L' \\ (f) & L &\supseteq L' \\ (g) & L &= L L \end{array}$$

Prove your answers.

Answer (a) Assume we're enumerating the regular sets by right-linear grammars, and let R_i denote the i^{th} right-linear grammar in the enumeration. Now part (a) just asks whether the set

$$L_a = \{ \langle i, j \rangle \mid L(G_i) = L(R_j) \}$$

is recursive.

Recall the set

$$\{ i \mid L(G_i) = \Sigma^* \}$$

is not recursive. For convenience, call this set L_u . We can reduce L_u to L_a almost trivially. Choose some n such that

$$L(R_n) = \Sigma^*$$

Then

$$L_u = \{ i \mid L(G_i) = L(R_n) \} \leq_m \{ \langle i, j \rangle \mid L(G_i) = L(R_j) \}$$

The reduction is the simple function

$$i \mapsto \langle i, n \rangle$$

Answer (b) This one is decidable. Note

 $L \subseteq R \Leftrightarrow L \cap \overline{R} = \emptyset$

We showed in lecture that CFLs are closed under intersection with regular sets. We also showed that it is decidable whether a CFG generates an empty language; i.e., the set

$$L_{\emptyset} = \{ i \mid L(G_i) = \emptyset \}$$

is recursive. To reduce L_b to L_{\emptyset} , given $\langle i, j \rangle$ we construct a CFG G_k such that

$$L(G_k) = L(G) \cap \overline{L(R_j)}$$

then ask whether k is in L_{\emptyset} .

Answer (c) Observe that, for any L whatsoever,

 $L \supseteq \Sigma^* \quad \Leftrightarrow \quad L = \Sigma^*$

so L_c is not recursive by the same argument as for part (a).

Answer (d) Since Σ^* is regular, it is also context-free, and L_d is not recursive by the same argument as for part (a).

Answer (e) Since

 $L \ \subseteq \ L' \ \Leftrightarrow \ L' \ \subseteq \ L$

parts (e) and (f) necessarily have the same answer.

Answer (f) L_f is not recursive by the same argument as for part (c).

Answer (g) This one required some inspiration. Consider the language

 $NVC_{i,j} = \overline{ValComps_{M_{i},j}}$

We showed in lecture that this language is a CFL, and given $\langle i, j \rangle$ we can effectively construct a grammar for NVC_{*i*,*j*}. Observe that

$$NVC_{i,j} = \Sigma^* \iff j \notin L(M_i)$$

That is, $NVC_{i,j}$ is Σ^* if $M_i(j)$ rejects, and is something smaller otherwise. Now, claim

$$NVC_{i,j} NVC_{i,j} = \Sigma^*$$

in all cases, whether $M_i(j)$ accepts or rejects. To see this, note that the empty string is not a valid computation. Thus, any w can be written

$$\begin{array}{lll} w & = & \epsilon \; w & & w \in \mathrm{NVC}_{i,j} \\ & & & \\ w & = & w_1 \; w_2 & & w_1, w_2 \in \mathrm{NVC}_{i,j} \; \text{ if } w \not\in \mathrm{NVC}_{i,j} \end{array}$$

In the second case, a valid computation w can always be expressed as the concatenation of two strings w_1 and w_2 , neither of which is itself a valid computation.

Thus, the function that maps a pair $\langle i, j \rangle$ to an index k such that

$$L(G_k) = \text{NVC}_{i,j}$$

yields a reduction

$$L_{\text{mbr}} \leq_m L_g = \{ i \mid l(G_i) = L(G_i)L(G_i) \}$$

proving that L_g is not recursive.