CS 481 FA01 HW1 Solutions

1.

by Allen Wang

(A) Let $N = (Q, \Sigma, \Delta, S, F)$ be an NFA where

$$Q = \{A, B, C, D\}$$

$$\Sigma = \{0, 1\}$$

 Δ is defined as follows:

	0	1
\overline{A}	A	A, B
B	C	C
C	D	D
D	NULL	NULL

$$S = \{A\}$$

$$F = \{D\}$$

The diagram is very similar to the one on page 27 of the text.

(B) From the definition of L, we can represent it as $\{w1ab|w\in\Sigma^*, a,b\in\Sigma\}$ We will do the proof by double inclusion.

First, show that $x \in L \Rightarrow x \in L(N)$.

x is of the form w1ab as defined. We'll put this through Δ :

$$\hat{\Delta}(A, w1ab) = \hat{\Delta}(\hat{\Delta}(A, w), 1ab)$$

From the definition of Δ (with the assistance of some induction, not shown), we know that

$$\hat{\Delta}(A, y) \cap A \neq NULL, \forall y \in \Sigma^*$$

So, using nondeterminism (all "Guessable" states equivalent at any one given transition), we can say

$$\hat{\Delta}(\hat{\Delta}(A, w), 1ab) = \hat{\Delta}(A, 1ab)$$

$$= \Delta(\Delta(\Delta(A, 1), a), b)$$
 Definition of $\hat{\Delta}$

$$=$$
 $\Delta(\Delta(B, a), b)$ Definition of Δ

$$=$$
 $\Delta(C,b)$ Definition of Δ

$$=$$
 D Definition of Δ

$$\subseteq$$
 F

This proves what we wanted to show.

Now we need to show $x \in L(N) \Rightarrow x \in L$.

$$x\in L(N)\Rightarrow \hat{\Delta}(S,x)\bigcap F\neq NULL$$
 working backwards, using the definition of Δ :
$$\Delta(\hat{\Delta}(S,x'),b)\bigcap F\neq NULL \qquad \qquad b\in \Sigma, x'b=x$$

$$\Delta(\Delta(\hat{\Delta}(S,x''),a),b)\bigcap F\neq NULL \qquad \qquad a,b\in \Sigma, x''a=x'$$
 since we bridge from S to F in 2 transitions,
$$\hat{\Delta}(S,x'')\supseteq B \qquad \qquad B \text{ is 2 transitions from } F$$
 Thus
$$\Delta(\hat{\Delta}(S,x'''),1)\subseteq \hat{\Delta}(S,x'') \qquad \text{only transition to B, } x'''1=x''$$

$$\Delta(\Delta(\Delta(\Delta(\hat{\Delta}(S,x'''),1),a),b)\bigcap F\neq NULL \qquad \text{combining results}$$
 Note that $x'''\in \Sigma^*$ is the only restriction according to definition of Δ

Therefore x has a form of w1ab, which is what we want.

We've shown both sides of the inclusion so we have proven L(N) = L.

(C) We will write the subset-states in the following form. example: The state for $\{A, B\}$ will be written as the state AB. This is to prevent confusion with a set of states.

Let $M = (Q', \Sigma, \delta, s, F')$ be a DFA where

 $Q' = 2^Q$ (dropping unnecessary states if needed)

 Σ is the same as before

 δ is defined as follows:

	0	1
\overline{A}	A	AB
AB	AC	ABC
AC	AD	ABD
AD	A	AB
ABC	ACD	ABCD
ABD	AC	ABC
ACD	AD	ABD
ABCD	ACD	ABCD

All other states unreachable.

$$s = A$$

$$F' = \{AD, ABD, ACD, ABCD\}$$

2.

by Anirban Dasgupta

- (A) The language L_a is not regular. A simple counterexample justifies our claim. If $L = 1^*$, then $L_a = \{0^i 1^i | i \ge 0\}$, and from the proof done in class, we know that this is not regular.
- (B) The language L_b is regular. We prove this by a construction. Let $N = (Q, \Sigma, \delta, s, F)$ be the finite automaton accepting the language L. WLOG, we assume that $\Sigma = \{0, 1\}$. We construct an automaton accepting the language L_b . Define the NFA $N' = (Q', \Sigma', \Delta, s', F')$ as $Q' = Q, \Sigma' = \Sigma, s' = s, F' = F$. Also, define the transition function as $\Delta(q, 0) = \{\delta(q, 0), \delta(q, 1)\}$.

The following lemma then proves that $L(N') = L_b$, once we couple it with the definition of acceptance by a finite automaton.

Lemma 0.1
$$\hat{\Delta}(S, 0^k) = \bigcup_{x:|x|=k} {\{\hat{\delta}(q, x) \mid q \in S\}}$$

Proof. We just follow the definition of the multistep transition function and do the proof by induction.

Base For k = 0, the proof is done by just the definition of the function Δ .

Inductive step Let the lemma be assumed to be proved till k = m. So, $\hat{\Delta}(S, 0^{m+1}) = \{\Delta(q, 0) \mid q \in \hat{\Delta}(S, 0^m)\} = \{\delta(q, 0) \mid q \in \hat{\Delta}(S, 0^m)\} \cup \{\delta(q, 1) \mid q \in \hat{\Delta}(S, 0^m)\} = \{\delta(q, 0) \cup \delta(q, 1) \mid q \in \hat{\delta}(S, x), |x| = m\} = \bigcup_{x:|x|=k} \{\hat{\delta}(q, x) \mid q \in S\}.$

After this, we note that, a string $x \in L_b$ iff $\hat{\delta}(q, x) \cap F \neq \emptyset$. So that, from our lemma, $\hat{\Delta}(S, 0^k) \cap F \neq \emptyset$. Hence $L(N') = L_b$.

(C) This language is regular. We construct a finite automaton in order to prove our claim.

Let $N=(Q,\Sigma,\delta,s,F)$ be the finite automaton accepting the language L. We construct a new finite automaton $N'=(Q',\Sigma,\Delta,S',F')$ where $Q'=Q\times Q$, $S'=\{(s,f)\mid f\in F\}$ and $F'=\{(q,q)\mid q\in Q\}$.

Define
$$\Delta((p,q),0) = \{(p',q') \mid p' = \delta(p,0), \exists a \in \Sigma : \delta(q',a) = q \}.$$

Lemma 0.2 $\hat{\Delta}(R, 0^i) = \{(p', q') \mid \exists (p, q) \in R, x \in \Sigma^* : |x| = i \land \hat{\delta}(p, 0^i) = p' \land \hat{\delta}(q', x) = q\}$

Proof. By induction.

Base. When i = 0 i.e. $x = \epsilon$. The equality is trivial.

Inductive Step. Let $A = \hat{\Delta}(R, 0^i)$. So, $\hat{\Delta}(R, 0^{i+1}) = \hat{\Delta}(A, 0) = \{(p', q') \mid \exists (p, q) \in A : p' = \delta(p, 0) \land \exists a \in \Sigma : \delta(q', a) = q \}$. Putting in the definition of A, we get the lemma.

After this lemma we just need two more steps to show that $L_c = L(N')$.

- $L_c \subseteq L(N')$: If $0^i \in L_c$, then, by definition we know that $\exists x : |x| = i \wedge 0^i x \in L$. Hence, $\exists q \in Q : \hat{\delta}(s, 0^i) = q \wedge \hat{\delta}(q, x) \in F$. That is, q is the "midway" state in the path that the string takes. So, in the run on N', we have, $(q, q) \in \hat{\Delta}(S', 0^i) \cap F'$. Looking at the definition of F', we obtain that $0^i \in L(N')$.
- $L(N') \subseteq L_c$: If $0^i \in L(N')$, then for some $q \in Q, (q,q) \in \hat{\Delta}(S',0^i)$. Hence, from the above lemma that we proved, $\hat{\delta}(s,0^i) = q \land \exists x : |x| = i \land \hat{\delta}(q,x) \in F$. From the definition of L_c , we again have $0^i \in L_c$.

3.

by Misha Zatsman

We'll pick an arbitrary $\alpha \in \Sigma$ and define $L_k = \{a^i \mid 1 \leq i \leq k\}$. L_k is regular because it is finite (it has k elements).

Assume that $L_k = L(M_k)$, where $M_k = (Q_k, \Sigma, \delta_k, s_k, F_k)$. We'll prove by contradiction that $|F_k| \geq k$:

Assume $|F_k| < k$. $L(M_k) = L_k \Rightarrow \forall i \le i \le k$, $\hat{\delta}(s_k, a^i) \in F_k$.

Since $|\{a^i|q \leq i \leq k\}| = k > |F_k|$, and $\{\hat{\delta}(s_k, a^i)|1 \leq i \leq k\} \subseteq F_k$ the pigeonhole principle tells us $\exists i, j < k, i \neq j : \hat{\delta}(s_k, a^i) = \hat{\delta}(s_k, a^j)$.

Now we assume without loss of generality (wlog) that i < j.

We define $d = j - i \ge 1$ and $q = \hat{\delta}(s_k, a^i)$.

 $\hat{\delta}(q, a^d) = \hat{\delta}(\hat{\delta}(s_k, a^i), a^d) = \hat{\delta}(s_k, a^i a^d) = \hat{\delta}(s_k, a^{i+d}) = \hat{\delta}(s_k, a^j) = \hat{\delta}(s_k, a^i) = q,$ so we've discovered a loop.

Now we exploit our loop by noticing that $\hat{\delta}(s_k, a^{i+kd}) = \hat{\delta}(s_k, a^i a^{kd}) = \hat{\delta}(q, a^{kd}) = q \in F_k \Rightarrow a^{i+kd} \in L_k$, but $d \ge 1 \Rightarrow i + kd > k \Rightarrow a^{i+kd} \notin L_k$.

So we've reached a contradiction, and our assumption $(|F_k| < k)$ must be false.