CS 481 FA01 HW1 Solutions
1.

by Allen Wang

(A) Let N=(Q,%,A,S F)be an NFA where

Q@ ={A B,C,D}

¥ ={0,1}
A is defined as follows:
| 0 1
A A A B
B C C
C D D
D | NULL NULL
S ={A}
F ={D}

The diagram is very similar to the one on page 27 of the text.

(B) From the definition of L, we can represent it as {wlablw € ¥* a,b € X}
We will do the proof by double inclusion.

First, show that x € L = = € L(N).
2 is of the form wlab as defined. We'll put this through A:

A(A, wlab) = A(A(A, w), 1ab)
From the definition of A (with the assistance of some induction,
not shown), we know that

A(A,y)NA # NULL,Vy € ©*

So, using nondeterminism (all “Guessable” states equivalent at any one
given transition), we can say

A(A(A,w), lab) = A(A, lad)
= A(A(A(A4,1),a),b) Definition of A

= A(A(B,a),b) Definition of A
= A(C,b) Definition of A
= D Definition of A
c F

This proves what we wanted to show.



Now we need to show z € L(N) = z € L.

z € L(N)= A(S,z)\F # NULL
working backwards, using the definition of A:

A(A(S,2/), D) F # NULL beS,a'b=x
A(A(A(S, 2”),a),b)F # NULL a,be X, aa=ua

since we bridge from S to F' in 2 transitions,

A(S,2") 2 B B is 2 transitions from F
Thus

A(A(S, ™), 1) C A(S, z") only transition to B, /1 = a”
A(A(A(A(S, 2/"),1),a),b) N F # NULL combining results

Note that z”” € ¥* is the only restriction
according to definition of A

Therefore = has a form of wlab, which is what we want.

We’ve shown both sides of the inclusion so we have proven L(N) = L.

(C) We will write the subset-states in the following form.
example: The state for {A, B} will be written as the state AB.
This is to prevent confusion with a set of states.

Let M = (Q',%,4, s, F’) be a DFA where

Q' = 29 (dropping unnecessary states if needed)
3 is the same as before

6 is defined as follows:

0 1
A A AB
AB AC ABC
AC AD ABD
AD A AB
ABC | ACD ABCD
ABD AC ABC
ACD AD ABD
ABCD | ACD ABCD
All other states unreachable.

s=A
F' = {AD, ABD, ACD, ABC D}

2.

by Anirban Dasgupta



(A) The language L, is not regular. A simple counterexample justifies our
claim. If L = 1*, then L, = {0"1*|¢ > 0}, and from the proof done in class, we
know that this is not regular.

(B) The language Ly is regular. We prove this by a construction. Let N =
(Q,%,6,s,F) be the finite automaton accepting the language L. WLOG, we
assume that ¥ = {0,1}. We construct an automaton accepting the language
Ly. Define the NFA N’ = (Q', Y, A, s, F')as Q' = Q,X =%, =s,F' = F.
Also, define the transition function as A(g, 0) = {d(g,0),(¢,1)}.

The following lemma then proves that L(N’) = Ly, once we couple it with
the definition of acceptance by a finite automaton.

Lemma 0.1 A(S7 Ok) = Uaz\m\:k{g(q)x) | qe S}

Proof. We just follow the definition of the multistep transition function and
do the proof by induction.

Base For k =0, the proof is done by just the definition of the function A.

IAnductive step Let the leplma be assumed to be Qroved till Kk = m . So,
A(S.0mH1) = {A(q.0) | ¢ € A(S,0™)} = {d(q,0)|q € A(S,0™)} U {d(q, 1)]q €
A(S,0m)} ={6(q,0)Ud(q, 1) | g € 6(S, @), [a] =m} = Uy —r{d(a: @) | g € S}.

After this, we note that, a string = € Ly iff §(¢,#) N F # 0. So that, from
our lemma, A(S,0%) N F # 0. Hence L(N') = L.

(C) This language is regular. We construct a finite automaton in order to
prove our claim.

Let N = (Q,X%,0,s, F) be the finite automaton accepting the language L.
We construct a new finite automaton N’ = (@', 3, A, 5", F’) where Q' = Q x Q,
S'={(s,f) | feF}and F' ={(q.9) | ¢ € Q}.

Define A((p,q),0) ={(@',¢') | P =06(p,0),Fa X : §(¢,a) =q}.

Lemma 0.2 A(R,0') = {(¢/,¢) | 3(p,q) € Rz € ¥* : |a| = i Ad(p.07) =
P A ) = q}

Proof. By induction.
Base. When ¢ =0 i.e. x =¢. The equality is trivial.

Inductive Step.  Let A = A(R, 07). So, A(R,071) = A(A,0) = {(p'.¢) | (p.q) €
A: p=56p,0)AJae€X: 6(¢,a) = q}. Putting in the definition of A, we get
the lemma.

After this lemma we just need two more steps to show that L. = L(N’).



e L. C L(N'): If 0" € L, then, by definition we know that 3z : |z| =
i AOiz € L. Hence, 3g € Q : §(s,0%) = ¢ Ad(q,z) € F. That is, ¢ is the
“midway” state in the path that the string takes. So, in the run on N’,
we have, (¢, ¢) € A(S’,0) N F’. Looking at the definition of F’, we obtain
that 0° € L(N').

e L(N') C L. : If 0/ € L(N’), then for some ¢ € Q,(q,q) € A(S',07).
Hence, from the above lemma that we proved, 5(5, 0) =qATz : |z| =
i A (g, x) € F. From the definition of L., we again have 0° € L.

3.

by Misha Zatsman

We'll pick an arbitrary @ € X and define Ly, = {a’ | 1 < i < k}. Ly is
regular because it is finite (it has k elements).

Assume that Ly = L(My), where My = (Qk, %, Ok, sk, Fr). We’'ll prove by
contradiction that |Fj| > k:

Assume |Fk| < k. L(Mk) L, =Vi<i<k, 5(Sk, ) c Fj.
Since |[{a’|lq <i < k}| = k > |Fk|, and {8(sy, a?)|1 < i < k} C F}, the pigeonhole
principle tells us 3, j < k,i # j : 6(s, a’) = (s, a’).

Now we assume without loss of genemh y (wlog) that i < j.
Wedeﬁned—jfzzlandq—&(sk, 4.

S(Qa ad) = S(S(‘Ska ai)’ ad) = S(Ska uia ) = 5(‘5/6; aier) = S(Ska aj) = S(Ska (Ll) =4q,
so we've discovered a loop.

Now we exploit our loop by noticing that 5(5k, attkdy = 5(sk alakd) = g(q, akd) =
ge by =a ™ c L, butd>1=i+kd>k=atki ¢ L,.

So we've reached a contradiction, and our assumption(|Fy| < k) must be false.



