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1: Facts about enumerations.

(a) Prove: if S has an enumeration consistent with @ then @ is well-founded.

Answer: Suppose S has an enumeration f consistent with @. Then for any
x ∈ S, there exists some j ∈ N such that x = f(j). By definition of consistency,

(y @ x) ∧ (y = f(i)) ⇒ (i < j)

So

|{y|y @ x}| ≤ |{i|i < j}| is finite

as required.

(b) Prove: there is no enumeration of the rational numbers consistent with
<, the usual arithmetic ordering.

Answer: By part (a), it suffices to argue that < over the rationals is not
well-founded. It is enough to exhibit a single rational such that infinitely many
rationals are less than it. For example, the set

{ 1
2i
| i > 0}

is an infinite set of rationals less that 1, showing that < over the rationals is
not well-founded.
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(c) Prove: the rational numbers are countable.

Answer: We need to show that there is an enumeration of the rationals. Our
definition of an enumeration of S requires that the function f : N → S be onto,
but not necessarily one-to-one. That’s convenient – it means we can just enu-
merate the ordered pairs 〈i, j〉, and we don’t have to worry about the fact that
every rational can be expressed in infinitely many ways as a quotient, for exam-
ple

1
2

=
2
4

=
3
6

= . . . .

In fact, we even can enumerate the ordered pairs redundantly if we wish. We
can use the Fundamental Theorem of Arithmetic (a.k.a. the Prime Factorization
Theorem) to define

f(n) =
i

j + 1
where n = 2i3j5k . . . is the prime factorization of n

Clearly this enumeration is onto, since

(∀i ≥ 0, k > 0) f(2i3k−1) =
i

k

This enumeration is infinitely redundant, since

f(2i3k−1) = f(2i3k−15) = f(2i3k−152) = f(2i3k−153) = . . .

Although it is redundant, the enumeration shows that the rationals are count-
able.

(d) Let Σ be a finite alphabet with a total order defined on the symbols.
Assume Σ has at least two symbols. Prove: there is no enumeration of Σ∗

consistent with lexicographical order.

Answer: Like part (b), this simply requires us to show that lexicographical
ordering (we’ll call it @) on Σ∗ is not well-founded. Let a and b be distinct
symbols of Σ such that a @ b (this is where we need the assumption that
|Σ| ≥ 2). Then

(∀i ≥ 0) ai+1b @ aib
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is easily proved by induction on i. Thus, @ contains the infinite descending
chain

b A ab A a2b A a3b A . . .

and is not well-founded. So by part (a), Σ∗ cannot be enumerated in lexico-
graphical order.

(e) Prove that Σ∗ is countable.

Answer: As in part c, we will generate a redundant enumeration. Let k = 1 + |Σ|.
Number the symbols of Σ

a1, a2, . . . ak−1

in an arbitrary order (this does not have to be related to the @ order). Then
define f : N → Σ∗ inductively by

f(n) = ε if (n ≡ 0 (mod k))
f(n) = a(n mod k)f(bn

k c) o.w.

This is easily shown to be onto. Intuitively, we treat n as a base-(1 + |Σ|)
number, truncate at the first occurence of 0, and map digits to the symbols of
Σ.

2: A problem about strings. This problem might remind you of famous
Euclid’s famous GCD algorithm. Let Σ be a finite alphabet, and let x, y ∈ Σ∗.
Prove that

(xy = yx) ⇔ ∃s ∈ Σ∗, i, j ∈ N . (x = si ∧ y = sj)

That is, s is a “factor” of both x and y.
tu

Answer: This can be proved by induction on |xy|.

Basis: If |xy| is 0, then x and y are both ε, so the theorem is satisfied by
arbitrary s with i = j = 0.
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Ind: Note the case |x| = |y| is trivial. So assume wlog (that is, “without loss of
generality”) that |x| > |y|. Let z be the first |x| − |y| characters of x, so

x = zw where |z| = |x| − |y| and |w| = |y|

Now we have

xy = yx = yzw

where the first equality is by hypothesis and the second by definition of z. By
equating the first |x| symbols of xy and yzw we obtain

x = yz

By equating the last |y| symbols we obtain

y = w

From this and the definition x = zw we obtain

x = zy

So we have

zy = x = yz

Since |zy| < |xy|, the inductive hypothesis applies to y and z, and we conclude
there exist s, j and k such that

y = sj ∧ z = sk (by i.h.)

Now, from the definition of z we can say

x = zw = zy = sksj = sk+j

By setting i = k + j we get

y = sj ∧ x = si

and the theorem follows at last.
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3: More infinite sets. An arithmetic progression over N is a set of the form

Aa,b = { a + ib | i ≥ 0}

where a ≥ 0, b > 0.

Certainly there are subsets of N that intersect every arithmetic progression –
for example, N itself is such a subset.

(a) Prove: no finite subset of N intersects every arithmetic progression.

Answer: If S is finite, let n be the largest element of S. Consider the arith-
metic progression An+1,1, comprising

n + 1, (n + 1) + 1, . . . , (n + 1) + i, . . .

Clearly the intersection of An+1,1 with S is empty, since every element of An+1,1

is larger than the largest element of S.

(b) Prove there is a co-infinite subset of N intersects every arithmetic progres-
sion. (A co-infinite set is the complement of an infinite set; i.e., a set S such
that N− S is infinite).

Answer: We need to exhibit a co-infinite subset S ⊂ N that intersects every
arithmetic progression. Equivalently, we can choose an infinite set for S̄ and
show that no arithmetic progression is entirely contained in our chosen S̄. We’ll
use this second approach.

Choose

S̄ = { n2 | n ≥ 0 }

that is, the set of perfect squares. We need to show that no arithmetic progres-
sion is entirely contained S̄. To show this, given a and b, we choose an r such
that

2r + 1 > b

Now consider the (unique) j such that

r2 < a + bj ≤ r2 + b
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Clearly such a j exists. Our choice of r guarantees that

r2 < a + bj ≤ r2 + b < r2 + 2r + 1 = (r + 1)2

Thus, a + bj is not a perfect square, since it is strictly between r2 and (r + 1)2.
So the arithmetic progression Aa,b is not a subset of S̄. Since our choice of a

and b was arbitrary, this proves the result.

(c) Does the answer to part (b) change if we weaken the definition of an
arithmetic progression to allow b ≥ 0 instead of b > 0?

Answer: It certainly does. Otherwise, why would I have asked the question?
Consider the sets

Aa,0 = { a + (0i) | i ≥ 0} = { a }

Under the revised definition, every singleton set is an arithmetic progression,
and the only set that intersects every singleton set is N itself, which is not
co-infinite.

(d) Show that all arithmetic progressions can be intersected by sets that are
arbitrarily sparse in the following sense: for every function f : N → N there ex-
ists a function g : N → N such that g ≥ f and range(g) intersects every arith-
metic progression. That is, g enumerates a set that intersects every arithmetic
progression and is more sparse than range(f).

Answer: Here is a direct construction of a g that works.

First, recall (from the solution to 1c) that there is an enumeration of the ordered
pairs of natural numbers

N× N = {〈ui, vi〉 | i ≥ 0 }

in some order. This allows us to enumerate the arithmetic progressions

{ Aui,vi+1 | i ≥ 0 }

Both enumerations are redundant, but that won’t matter. Now define g by

g(i) = min{ x | (x > f(i)) ∧ (x ∈ Aui,vi+1) }

The set on the right hand side of this expression is clearly nonempty. By con-
struction, g > f , and range(g) intersects the progressionAui,vi+1 for all i. Since
every arithmetic progression is equal to Aui,vi+1 for some i, the desired result
follows.
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