CS481F01 Solutions 0

A. Demers

12 Sep 2001

1: Facts about enumerations.

(a) Prove: if **S** has an enumeration consistent with \Box then \Box is well-founded.

Answer: Suppose **S** has an enumeration f consistent with \Box . Then for any $x \in \mathbf{S}$, there exists some $j \in \mathbb{N}$ such that x = f(j). By definition of consistency,

$$(y \sqsubset x) \land (y = f(i)) \quad \Rightarrow \quad (i < j)$$

 So

$$|\{y|y \sqsubset x\}| \leq |\{i|i < j\}|$$
 is finite

as required.

(b) Prove: there is no enumeration of the rational numbers consistent with <, the usual arithmetic ordering.

Answer: By part (a), it suffices to argue that < over the rationals is not well-founded. It is enough to exhibit a single rational such that infinitely many rationals are less than it. For example, the set

$$\{\frac{1}{2^i} \mid i > 0\}$$

is an infinite set of rationals less that 1, showing that < over the rationals is not well-founded.

(c) Prove: the rational numbers are countable.

Answer: We need to show that there is an enumeration of the rationals. Our definition of an enumeration of **S** requires that the function $f : \mathbb{N} \to \mathbf{S}$ be onto, but not necessarily one-to-one. That's convenient – it means we can just enumerate the ordered pairs $\langle i, j \rangle$, and we don't have to worry about the fact that every rational can be expressed in infinitely many ways as a quotient, for example

$$\frac{1}{2} = \frac{2}{4} = \frac{3}{6} = \dots$$

In fact, we even can enumerate the ordered pairs redundantly if we wish. We can use the Fundamental Theorem of Arithmetic (a.k.a. the Prime Factorization Theorem) to define

$$f(n) = \frac{i}{j+1}$$
 where $n = 2^i 3^j 5^k \dots$ is the prime factorization of n

Clearly this enumeration is onto, since

$$(\forall i \ge 0, k > 0) \quad f(2^i 3^{k-1}) = \frac{i}{k}$$

This enumeration is infinitely redundant, since

$$f(2^{i}3^{k-1}) = f(2^{i}3^{k-1}5) = f(2^{i}3^{k-1}5^{2}) = f(2^{i}3^{k-1}5^{3}) = \dots$$

Although it is redundant, the enumeration shows that the rationals are countable.

(d) Let Σ be a finite alphabet with a total order defined on the symbols. Assume Σ has at least two symbols. Prove: there is no enumeration of Σ^* consistent with lexicographical order.

Answer: Like part (b), this simply requires us to show that lexicographical ordering (we'll call it \Box) on Σ^* is not well-founded. Let *a* and *b* be distinct symbols of Σ such that $a \sqsubset b$ (this is where we need the assumption that $|\Sigma| \geq 2$). Then

$$(\forall i \ge 0) \ a^{i+1}b \ \sqsubset \ a^i b$$

is easily proved by induction on i. Thus, \sqsubset contains the infinite descending chain

 $b \ \square \ ab \ \square \ a^2b \ \square \ a^3b \ \square \ \dots$

and is not well-founded. So by part (a), Σ^* cannot be enumerated in lexicographical order.

(e) Prove that Σ^* is countable.

Answer: As in part c, we will generate a redundant enumeration. Let $k = 1 + |\Sigma|$. Number the symbols of Σ

 $a_1, a_2, \ldots a_{k-1}$

in an arbitrary order (this does not have to be related to the \sqsubset order). Then define $f: \mathbb{N} \to \Sigma^*$ inductively by

 $f(n) = \varepsilon \quad \text{if } (n \equiv 0 \pmod{k}) \\ f(n) = a_{(n \bmod k)} f(\lfloor \frac{n}{k} \rfloor) \quad \text{o.w.}$

This is easily shown to be onto. Intuitively, we treat n as a base- $(1 + |\Sigma|)$ number, truncate at the first occurence of 0, and map digits to the symbols of Σ .

2: A problem about strings. This problem might remind you of famous Euclid's famous GCD algorithm. Let Σ be a finite alphabet, and let $x, y \in \Sigma^*$. Prove that

 $(xy = yx) \iff \exists s \in \Sigma^*, i, j \in \mathbb{N} . (x = s^i \land y = s^j)$

That is, s is a "factor" of both x and y. \Box

Answer: This can be proved by induction on |xy|.

Basis: If |xy| is 0, then x and y are both ε , so the theorem is satisfied by arbitrary s with i = j = 0.

Ind: Note the case |x| = |y| is trivial. So assume wlog (that is, "without loss of generality") that |x| > |y|. Let z be the first |x| - |y| characters of x, so

x = zw where |z| = |x| - |y| and |w| = |y|

Now we have

xy = yx = yzw

where the first equality is by hypothesis and the second by definition of z. By equating the first |x| symbols of xy and yzw we obtain

x = yz

By equating the last |y| symbols we obtain

y = w

From this and the definition x = zw we obtain

$$x = zy$$

So we have

$$zy = x = yz$$

Since |zy| < |xy|, the inductive hypothesis applies to y and z, and we conclude there exist s, j and k such that

$$y = s^j \wedge z = s^k$$
 (by i.h.)

Now, from the definition of z we can say

$$x = zw = zy = s^k s^j = s^{k+j}$$

By setting i = k + j we get

$$y = s^j \wedge x = s^i$$

and the theorem follows at last.

3: More infinite sets. An *arithmetic progression* over \mathbb{N} is a set of the form

$$\mathcal{A}_{a,b} = \{ a+ib \mid i \ge 0 \}$$

where $a \ge 0, b > 0$.

Certainly there are subsets of \mathbb{N} that intersect every arithmetic progression – for example, \mathbb{N} itself is such a subset.

(a) Prove: no finite subset of \mathbb{N} intersects every arithmetic progression.

Answer: If S is finite, let n be the largest element of S. Consider the arithmetic progression $\mathcal{A}_{n+1,1}$, comprising

 $n+1, (n+1)+1, \ldots, (n+1)+i, \ldots$

Clearly the intersection of $\mathcal{A}_{n+1,1}$ with S is empty, since every element of $\mathcal{A}_{n+1,1}$ is larger than the largest element of S.

(b) Prove there is a co-infinite subset of \mathbb{N} intersects every arithmetic progression. (A co-infinite set is the complement of an infinite set; i.e., a set **S** such that $\mathbb{N} - \mathbf{S}$ is infinite).

Answer: We need to exhibit a co-infinite subset $S \subset \mathbb{N}$ that intersects every arithmetic progression. Equivalently, we can choose an infinite set for \overline{S} and show that no arithmetic progression is entirely contained in our chosen \overline{S} . We'll use this second approach.

Choose

$$\bar{S} = \{ n^2 \mid n \ge 0 \}$$

that is, the set of perfect squares. We need to show that no arithmetic progression is entirely contained \bar{S} . To show this, given a and b, we choose an r such that

 $2r+1 \ > \ b$

Now consider the (unique) j such that

$$r^2 < a + bj \leq r^2 + b$$

Clearly such a j exists. Our choice of r guarantees that

 $r^{2} < a + bj \leq r^{2} + b < r^{2} + 2r + 1 = (r + 1)^{2}$

Thus, a + bj is not a perfect square, since it is strictly between r^2 and $(r + 1)^2$. So the arithmetic progression $\mathcal{A}_{a,b}$ is not a subset of \overline{S} . Since our choice of a and b was arbitrary, this proves the result.

(c) Does the answer to part (b) change if we weaken the definition of an arithmetic progression to allow $b \ge 0$ instead of b > 0?

Answer: It certainly does. Otherwise, why would I have asked the question? Consider the sets

 $\mathcal{A}_{a,0} = \{ a + (0i) \mid i \ge 0 \} = \{ a \}$

Under the revised definition, every singleton set is an arithmetic progression, and the only set that intersects every singleton set is \mathbb{N} itself, which is not co-infinite.

(d) Show that all arithmetic progressions can be intersected by sets that are arbitrarily sparse in the following sense: for every function $f : \mathbb{N} \to \mathbb{N}$ there exists a function $g : \mathbb{N} \to \mathbb{N}$ such that $g \ge f$ and $\operatorname{range}(g)$ intersects every arithmetic progression. That is, g enumerates a set that intersects every arithmetic progression and is more sparse than $\operatorname{range}(f)$.

Answer: Here is a direct construction of a g that works.

First, recall (from the solution to 1c) that there is an enumeration of the ordered pairs of natural numbers

 $\mathbb{N} \times \mathbb{N} = \{ \langle u_i, v_i \rangle \mid i \ge 0 \}$

in some order. This allows us to enumerate the arithmetic progressions

 $\{ \mathcal{A}_{u_i,v_i+1} \mid i \ge 0 \}$

Both enumerations are redundant, but that won't matter. Now define g by

$$g(i) = \min\{ x \mid (x > f(i)) \land (x \in \mathcal{A}_{u_i, v_i+1}) \}$$

The set on the right hand side of this expression is clearly nonempty. By construction, g > f, and $\operatorname{range}(g)$ intersects the progression \mathcal{A}_{u_i,v_i+1} for all *i*. Since every arithmetic progression is equal to \mathcal{A}_{u_i,v_i+1} for some *i*, the desired result follows.