CS481F01 Solutions 0

A. Demers

12 Sep 2001

1: Facts about enumerations.

(a) Prove: if \mathbf{S} has an enumeration consistent with \sqsubset then \sqsubset is well-founded.

Answer: Suppose \mathbf{S} has an enumeration f consistent with \sqsubset. Then for any $x \in \mathbf{S}$, there exists some $j \in \mathbb{N}$ such that $x=f(j)$. By definition of consistency,

$$
(y \sqsubset x) \wedge(y=f(i)) \quad \Rightarrow \quad(i<j)
$$

So

$$
|\{y \mid y \sqsubset x\}| \leq|\{i \mid i<j\}| \text { is finite }
$$

as required.
(b) Prove: there is no enumeration of the rational numbers consistent with $<$, the usual arithmetic ordering.

Answer: By part (a), it suffices to argue that < over the rationals is not well-founded. It is enough to exhibit a single rational such that infinitely many rationals are less than it. For example, the set

$$
\left\{\left.\frac{1}{2^{i}} \right\rvert\, i>0\right\}
$$

is an infinite set of rationals less that 1 , showing that $<$ over the rationals is not well-founded.
(c) Prove: the rational numbers are countable.

Answer: We need to show that there is an enumeration of the rationals. Our definition of an enumeration of \mathbf{S} requires that the function $f: \mathbb{N} \rightarrow \mathbf{S}$ be onto, but not necessarily one-to-one. That's convenient - it means we can just enumerate the ordered pairs $\langle i, j\rangle$, and we don't have to worry about the fact that every rational can be expressed in infinitely many ways as a quotient, for example

$$
\frac{1}{2}=\frac{2}{4}=\frac{3}{6}=\ldots
$$

In fact, we even can enumerate the ordered pairs redundantly if we wish. We can use the Fundamental Theorem of Arithmetic (a.k.a. the Prime Factorization Theorem) to define

$$
f(n)=\frac{i}{j+1} \text { where } n=2^{i} 3^{j} 5^{k} \ldots \text { is the prime factorization of } n
$$

Clearly this enumeration is onto, since

$$
(\forall i \geq 0, k>0) f\left(2^{i} 3^{k-1}\right)=\frac{i}{k}
$$

This enumeration is infinitely redundant, since

$$
f\left(2^{i} 3^{k-1}\right)=f\left(2^{i} 3^{k-1} 5\right)=f\left(2^{i} 3^{k-1} 5^{2}\right)=f\left(2^{i} 3^{k-1} 5^{3}\right)=\ldots
$$

Although it is redundant, the enumeration shows that the rationals are countable.
(d) Let Σ be a finite alphabet with a total order defined on the symbols. Assume Σ has at least two symbols. Prove: there is no enumeration of Σ^{*} consistent with lexicographical order.

Answer: Like part (b), this simply requires us to show that lexicographical ordering (we'll call it \sqsubset) on Σ^{*} is not well-founded. Let a and b be distinct symbols of Σ such that $a \sqsubset b$ (this is where we need the assumption that $|\Sigma| \geq 2)$. Then

$$
(\forall i \geq 0) a^{i+1} b \sqsubset a^{i} b
$$

is easily proved by induction on i. Thus, \sqsubset contains the infinite descending chain

$$
b \sqsupset a b \sqsupset a^{2} b \sqsupset a^{3} b \sqsupset \ldots
$$

and is not well-founded. So by part (a), Σ^{*} cannot be enumerated in lexicographical order.
(e) Prove that Σ^{*} is countable.

Answer: As in part c, we will generate a redundant enumeration. Let $k=1+|\Sigma|$. Number the symbols of Σ

$$
a_{1}, a_{2}, \ldots a_{k-1}
$$

in an arbitrary order (this does not have to be related to the \sqsubset order). Then define $f: \mathbb{N} \rightarrow \Sigma^{*}$ inductively by

$$
\begin{aligned}
& f(n)=\varepsilon \quad \text { if }(n \equiv 0 \quad(\bmod k)) \\
& f(n)=a_{(n \bmod k)} f\left(\left\lfloor\frac{n}{k}\right\rfloor\right) \quad \text { o.w. }
\end{aligned}
$$

This is easily shown to be onto. Intuitively, we treat n as a base- $(1+|\Sigma|)$ number, truncate at the first occurence of 0 , and map digits to the symbols of Σ.

2: A problem about strings. This problem might remind you of famous Euclid's famous GCD algorithm. Let Σ be a finite alphabet, and let $x, y \in \Sigma^{*}$. Prove that

$$
(x y=y x) \Leftrightarrow \exists s \in \Sigma^{*}, i, j \in \mathbb{N} .\left(x=s^{i} \wedge y=s^{j}\right)
$$

That is, s is a "factor" of both x and y.

Answer: This can be proved by induction on $|x y|$.
Basis: If $|x y|$ is 0 , then x and y are both ε, so the theorem is satisfied by arbitrary s with $i=j=0$.

Ind: Note the case $|x|=|y|$ is trivial. So assume wlog (that is, "without loss of generality") that $|x|>|y|$. Let z be the first $|x|-|y|$ characters of x, so

$$
x=z w \text { where }|z|=|x|-|y| \text { and }|w|=|y|
$$

Now we have

$$
x y=y x=y z w
$$

where the first equality is by hypothesis and the second by definition of z. By equating the first $|x|$ symbols of $x y$ and $y z w$ we obtain

$$
x=y z
$$

By equating the last $|y|$ symbols we obtain

$$
y=w
$$

From this and the definition $x=z w$ we obtain

$$
x=z y
$$

So we have

$$
z y=x=y z
$$

Since $|z y|<|x y|$, the inductive hypothesis applies to y and z, and we conclude there exist s, j and k such that

$$
y=s^{j} \wedge z=s^{k} \quad \text { (by i.h.) }
$$

Now, from the definition of z we can say

$$
x=z w=z y=s^{k} s^{j}=s^{k+j}
$$

By setting $i=k+j$ we get

$$
y=s^{j} \wedge x=s^{i}
$$

and the theorem follows at last.

3: More infinite sets. An arithmetic progression over \mathbb{N} is a set of the form

$$
\mathcal{A}_{a, b}=\{a+i b \mid i \geq 0\}
$$

where $a \geq 0, b>0$.
Certainly there are subsets of \mathbb{N} that intersect every arithmetic progression for example, \mathbb{N} itself is such a subset.
(a) Prove: no finite subset of \mathbb{N} intersects every arithmetic progression.

Answer: If S is finite, let n be the largest element of S. Consider the arithmetic progression $\mathcal{A}_{n+1,1}$, comprising

$$
n+1,(n+1)+1, \ldots,(n+1)+i, \ldots
$$

Clearly the intersection of $\mathcal{A}_{n+1,1}$ with S is empty, since every element of $\mathcal{A}_{n+1,1}$ is larger than the largest element of S.
(b) Prove there is a co-infinite subset of \mathbb{N} intersects every arithmetic progression. (A co-infinite set is the complement of an infinite set; i.e., a set \mathbf{S} such that $\mathbb{N}-\mathbf{S}$ is infinite).

Answer: We need to exhibit a co-infinite subset $S \subset \mathbb{N}$ that intersects every arithmetic progression. Equivalently, we can choose an infinite set for \bar{S} and show that no arithmetic progression is entirely contained in our chosen \bar{S}. We'll use this second approach.

Choose

$$
\bar{S}=\left\{n^{2} \mid n \geq 0\right\}
$$

that is, the set of perfect squares. We need to show that no arithmetic progression is entirely contained \bar{S}. To show this, given a and b, we choose an r such that

$$
2 r+1>b
$$

Now consider the (unique) j such that

$$
r^{2}<a+b j \leq r^{2}+b
$$

Clearly such a j exists. Our choice of r guarantees that

$$
r^{2}<a+b j \leq r^{2}+b<r^{2}+2 r+1=(r+1)^{2}
$$

Thus, $a+b j$ is not a perfect square, since it is strictly between r^{2} and $(r+1)^{2}$. So the arithmetic progression $\mathcal{A}_{a, b}$ is not a subset of \bar{S}. Since our choice of a and b was arbitrary, this proves the result.
(c) Does the answer to part (b) change if we weaken the definition of an arithmetic progression to allow $b \geq 0$ instead of $b>0$?

Answer: It certainly does. Otherwise, why would I have asked the question? Consider the sets

$$
\mathcal{A}_{a, 0}=\{a+(0 i) \mid i \geq 0\}=\{a\}
$$

Under the revised definition, every singleton set is an arithmetic progression, and the only set that intersects every singleton set is \mathbb{N} itself, which is not co-infinite.
(d) Show that all arithmetic progressions can be intersected by sets that are arbitrarily sparse in the following sense: for every function $f: \mathbb{N} \rightarrow \mathbb{N}$ there exists a function $g: \mathbb{N} \rightarrow \mathbb{N}$ such that $g \geq f$ and range (g) intersects every arithmetic progression. That is, g enumerates a set that intersects every arithmetic progression and is more sparse than range (f).

Answer: Here is a direct construction of a g that works.
First, recall (from the solution to 1c) that there is an enumeration of the ordered pairs of natural numbers

$$
\mathbb{N} \times \mathbb{N}=\left\{\left\langle u_{i}, v_{i}\right\rangle \mid i \geq 0\right\}
$$

in some order. This allows us to enumerate the arithmetic progressions

$$
\left\{\mathcal{A}_{u_{i}, v_{i}+1} \mid i \geq 0\right\}
$$

Both enumerations are redundant, but that won't matter. Now define g by

$$
g(i)=\min \left\{x \mid(x>f(i)) \wedge\left(x \in \mathcal{A}_{u_{i}, v_{i}+1}\right)\right\}
$$

The set on the right hand side of this expression is clearly nonempty. By construction, $g>f$, and range (g) intersects the progression $\mathcal{A}_{u_{i}, v_{i}+1}$ for all i. Since every arithmetic progression is equal to $\mathcal{A}_{u_{i}, v_{i}+1}$ for some i, the desired result follows.

