(CS481F01 Solutions 0

A. Demers

12 Sep 2001

1: Facts about enumerations.
(a) Prove: if S has an enumeration consistent with T then [ is well-founded.

Answer: Suppose S has an enumeration f consistent with . Then for any
x € S, there exists some j € N such that z = f(j). By definition of consistency,

(yCa)A(y=f(@) = (<))
So

{yly c z}| < |{ili <j}| is finite

as required.

(b) Prove: there is no enumeration of the rational numbers consistent with
<, the usual arithmetic ordering.

Answer: By part (a), it suffices to argue that < over the rationals is not
well-founded. It is enough to exhibit a single rational such that infinitely many
rationals are less than it. For example, the set

{5 li>0)

is an infinite set of rationals less that 1, showing that < over the rationals is
not well-founded.



(c) Prove: the rational numbers are countable.

Answer: We need to show that there is an enumeration of the rationals. Our
definition of an enumeration of S requires that the function f : N — S be onto,
but not necessarily one-to-one. That’s convenient — it means we can just enu-
merate the ordered pairs (4, j), and we don’t have to worry about the fact that
every rational can be expressed in infinitely many ways as a quotient, for exam-
ple

1
2

In fact, we even can enumerate the ordered pairs redundantly if we wish. We
can use the Fundamental Theorem of Arithmetic (a.k.a. the Prime Factorization
Theorem) to define

7

1 where n = 21375% .. is the prime factorization of n
J

fn) =

Clearly this enumeration is onto, since

(Vi>0,k>0) f(2i3"1) = %
This enumeration is infinitely redundant, since

f(2i3k:71) _ f(27,3k715) _ f(2i3k:7152) —_ f(213k7153) _

Although it is redundant, the enumeration shows that the rationals are count-
able.

(d) Let ¥ be a finite alphabet with a total order defined on the symbols.
Assume Y has at least two symbols. Prove: there is no enumeration of ¥*
consistent with lexicographical order.

Answer: Like part (b), this simply requires us to show that lexicographical
ordering (we'll call it C) on ¥* is not well-founded. Let @ and b be distinct
symbols of ¥ such that ¢ T b (this is where we need the assumption that
|3] > 2). Then

(Vi >0) a"*'b C a'b



is easily proved by induction on i. Thus, C contains the infinite descending
chain

b 3 ab 3 a% 1 &b O

and is not well-founded. So by part (a), ¥* cannot be enumerated in lexico-
graphical order.

(e) Prove that ¥* is countable.

Answer: Asin part ¢, we will generate a redundant enumeration. Let k = 1 + |X].
Number the symbols of

ai, a2, ... Qg—1

in an arbitrary order (this does not have to be related to the C order). Then
define f : N — X* inductively by

fin) = ¢ if(n=0 (mod k))
f(n) =  G(n mod k)f(L%J) O0.W.

This is easily shown to be onto. Intuitively, we treat n as a base-(1+ |X|)
number, truncate at the first occurence of 0, and map digits to the symbols of
>

2: A problem about strings. This problem might remind you of famous
Euclid’s famous GCD algorithm. Let X be a finite alphabet, and let x,y € ¥*.
Prove that

(ry=yz) & Fs€X*i,jeN.(z=5" A y=2s)

That is, s is a “factor” of both = and y.
O

Answer: This can be proved by induction on |xy|.

Basis: If |zy| is 0, then z and y are both ¢, so the theorem is satisfied by
arbitrary s with i = 5 = 0.



Ind: Note the case |z| = |y| is trivial. So assume wlog (that is, “without loss of
generality”) that |z| > |y|. Let z be the first |z| — |y| characters of x, so

x = zw where [z|=|z]—y| and |w|=y|
Now we have
Ty = yr = yzw

where the first equality is by hypothesis and the second by definition of z. By
equating the first || symbols of zy and yzw we obtain

T = yz

By equating the last |y| symbols we obtain

From this and the definition x = zw we obtain

T = 2y
So we have
zy = x = yz

Since |zy| < |zy|, the inductive hypothesis applies to y and z, and we conclude
there exist s, 7 and k such that

y =5 A z =35 (byih)

Now, from the definition of z we can say

and the theorem follows at last.



3: More infinite sets. An arithmetic progression over N is a set of the form
Agp = {a+ib]i>0}

where a > 0, b > 0.

Certainly there are subsets of N that intersect every arithmetic progression —
for example, N itself is such a subset.

(a) Prove: no finite subset of N intersects every arithmetic progression.

Answer: If S is finite, let n be the largest element of S. Consider the arith-
metic progression A, 41,1, comprising

n+1l,n+1)+1,....,(n+1)+4,...

Clearly the intersection of A,,11 1 with S is empty, since every element of A, 1 1
is larger than the largest element of S.

(b) Prove there is a co-infinite subset of N intersects every arithmetic progres-
sion. (A co-infinite set is the complement of an infinite set; i.e., a set S such
that N — S is infinite).

Answer: We need to exhibit a co-infinite subset S C N that intersects every
arithmetic progression. Equivalently, we can choose an infinite set for S and
show that no arithmetic progression is entirely contained in our chosen S. We’ll
use this second approach.

Choose

S = {n*|n>0}

that is, the set of perfect squares. We need to show that no arithmetic progres-
sion is entirely contained S. To show this, given a and b, we choose an r such
that

2r+1 > b
Now consider the (unique) j such that

r? < a+bj < r24+b



Clearly such a j exists. Our choice of r guarantees that
2 : 2 2 _ 2
e < a+bj < rt4+b < r4+2r+1 = (r+1)

Thus, a + bj is not a perfect square, since it is strictly between r? and (r + 1)2.
So the arithmetic progression A, is not a subset of S. Since our choice of a
and b was arbitrary, this proves the result.

(c) Does the answer to part (b) change if we weaken the definition of an
arithmetic progression to allow b > 0 instead of b > 07

Answer: It certainly does. Otherwise, why would I have asked the question?
Consider the sets

Aao = {a+(0))[i=0} = {a}

Under the revised definition, every singleton set is an arithmetic progression,
and the only set that intersects every singleton set is N itself, which is not
co-infinite.

(d) Show that all arithmetic progressions can be intersected by sets that are
arbitrarily sparse in the following sense: for every function f : N — N there ex-
ists a function g : N — N such that ¢ > f and range(g) intersects every arith-
metic progression. That is, g enumerates a set that intersects every arithmetic
progression and is more sparse than range(f).

Answer: Here is a direct construction of a g that works.

First, recall (from the solution to 1c) that there is an enumeration of the ordered
pairs of natural numbers

NxN = {{u,v;)]|i>0}

in some order. This allows us to enumerate the arithmetic progressions
{ Awiw+1[1>0}

Both enumerations are redundant, but that won’t matter. Now define g by
g(i) = min{z|(z>f() A (@€ Ay 1)}

The set on the right hand side of this expression is clearly nonempty. By con-
struction, g > f, and range(g) intersects the progression A, ,,+1 for all 7. Since
every arithmetic progression is equal to Ay, .,+1 for some 4, the desired result
follows.



