
CS481F01 Prelim 2 Solutions

A. Demers

7 Nov 2001

1 (30 pts = 4 pts each part + 2 free points). For this question we use the
following notation:

x � y means x is a prefix of y

m ≈k n means |m− n| ≤ k

For each of the following languages, tell whether it is (1) regular, (2) a determin-
istic CFL, (3) a nondeterministic CFL, or (4) not a CFL. Assume the languages
are over the alphabet Σ = {a, b, c}.

(a) { w | ]a(w) = ]b(w) }

DCFL. A deterministic PDA can maintain on its stack the excess a′s or b′s

that have been seen, popping them when complementary characters are read. I
simply ignores any c′s.

(b) { w | (]a(w) = ]b(w)) ∨ (]a(w) = ]c(w)) }

CFL. This is clearly the union of two DCFLs, and thus is a CFL. To see it is
not deterministic, note that taking the complement and then intersecting with
the regular set a∗b∗c∗ yields the set

{ aibjck | i 6= j ∧ i 6= k }

which is easily seen not to be a CFL.

(c) { w | (]a(w) = ]b(w)) ∧ (]a(w) = ]c(w)) }

NOT CFL. Intersect with the set a∗b∗c∗ and apply the pumping lemma.

(d) { w | (∀x � w)(]a(x) ≈2 ]b(x)) }

1



REGULAR. The conditions must hold for every prefix x of w. Thus, the letter
counts of a′s, b′s and c′s cannot differ by more than 2 at any point, and can be
checked continuously by a finite automaton.

(e) { w | (∀x � w)((]a(x) ≈2 ]b(x)) ∨ (]a(x) ≈2 ]c(x))) }

DCFL. The first edition of this solution set mistakenly called this set regular.
To see why it is not regular, consider the numbers

nb(w, i) = ]b(w[1..i])− ]a(w[1..i])
nc(w, i) = ]c(w[1..i])− ]a(w[1..i])

Then the desired language is exactly

{ w | (∀i, 1 ≤ i ≤ |w|)(|nb(w, i)| ≤ 2 ∨ |nc(w, i)| ≤ 2) }

If there were two universal quantifiers, “under” the ∨ operator, we would have

{ w | ((∀i, 1 ≤ i ≤ |w|)(|nb(w, i)| ≤ 2))
∨ ((∀i, 1 ≤ i ≤ |w|)(|nc(w, i) ≤ 2)) }

which is the union of two regular sets, and thus regular. However, with only a
single quantifier the language is not regular, because for any i one of nb(w, i) or
nc(w, i) is allowed to be arbitrarily large, as long as (the absolute value of) the
other remains below 2. Thus, roughly,

L ∩ (ab)∗c∗(abc)∗ ≈ { (ab)ici(abc)j | i, j > 0 }

which is easily seen not to be regular using the Pumping Lemma.

So what is the answer? This is a DCFL. (In fact, it’s a deterministic 1-counter
language, but that wasn’t one of the choices). To see this, consider scanning
w from left to right, keeping track of both nb(w, i) and nc(w, i). Initially, do
this with the finite states. Suppose nb(w, i) grows outside the range [-2,2]. At
that point begin using the stack to maintain nb(w, i). When the value returns
to the range [-2,2], switch back to maintaining nb(w, i) in the finite states.
(This is easy to detect, e.g. by using a different symbol for the bottom two
characters of the stack.) Similarly, whenever nc(w, i) goes out of range, use the
stack to maintain nc(w, i). The language definition requires that at most one
of nb(w, i) and nc(w, i) can be out of range at any point; thus at most one of
them needs the stack. The choice of which counter needs the stack can be made

2



deterministically. If at any point both counters need the stack, the machine
rejects.

(f) { w | (∀x � w)((]a(x) ≈2 ]b(x)) ∧ (]a(x) ≈2 ]c(x))) }

REGULAR, by an argument similar to part (d).

(g) { w | (]a(w) = ]b(w)) ∧ (∀x � w)(]a(x) ≈2 ]c(x)) }

DCFL. This language can be recognized by a product machine consisting of a
deterministic PDA as for part (a) running in parallel with a deterministic finite
automaton that makes sure the numbers of a′s and c′s always remain within 2
of one another.

2 (25 pts). Recall a CFG is linear if no production has more than one non-
terminal in its right hand side; that is, every production is of the form

A → x or A → xBy

where x and y are possibly-empty terminal strings. We say L is a linear language
if L = L(G) for some linear grammar G.

(a) Does every linear language have a linear grammar in GNF?

No. A linear grammar in GNF has productions of the form

A → a or A → aB

This is a right-linear grammar; it generates a regular set. There are many
non-regular linear languages – the palindromes, for example.

(b) Are the linear languages closed under union; i.e.,

L1, L2 linear ⇒ L1 ∪ L2 linear ?

Yes. Let

G1 = (N1,Σ, P1, S1) G2 = (N2,Σ, P2, S2)

Union the nonterminal and production sets, and add a new start symbol S′ with
the productions

S′ → S1 | S2

This grammar clearly generates the union language.

3



(c) Are the linear languages closed under intersection; i.e.,

L1, L2 linear ⇒ L1 ∩ L2 linear ?

No. Consider the two linear grammars

S → aS | B
B → bBc | bc

S′ → S′c | A
A → aAb | ab

The intersection of these languages is our old friend

{ aibici | i > 0 }

which is not even context-free.

(d) Are the linear languages closed under complement; i.e.,

L linear ⇒ L linear ?

No. Note that

L1 ∩ L2 = L1 ∪ L2

Since the linear languages are closed under union but not under intersection,
they cannot be closed under complement.

(e) Is every linear language a deterministic CFL?

No. A grammar similar to those in part (b) above can be constructed to show
that the language

{ aibjck | i 6= j ∨ j 6= k }

is linear, and its complement is not context-free.

4



3 (20 pts). Younger’s algorithm for a CNF grammar can be expressed as
follows. Given an input string x = a1a2 . . . an, execute the following code:

for i = 0 to n− 1 do
T [i, i + 1] ← { A | A→ ai+1 ∈ P }

for d = 2 to n do
for i = 0 to n− d do

j ← i + d; T [i, j] ← ∅
for k = i + 1 to j − 1 do

T [i, j] ← T [i, j] ∪ { A | (A→ BC ∈ P )
∧ (B ∈ T [i, k]) ∧ (C ∈ T [k, j]) }

if S ∈ T [0, n] then return true else return false

We showed in lecture that a CNF grammar can be converted to an equivalent
GNF grammar in which every production right hand side has at most two
nonterminals; i.e., every production is of the form

A → aB1 . . . Bm 0 ≤ m ≤ 2

How would you modify the above algorithm to work on such a GNF grammar?
What is the running time of the revised algorithm, as a function of the input
length n? The size of the grammar (e.g. the number of productions) may be
ignored in your answer.

The change is straightforward. The GNF grammar has productions of three
types:

(1) A → a

(2) A → aB

(3) A → aBC

The type (1) productions are just as in CNF, and are handled by the first
loop of the algorithm. The type (2) productions are handled by an additional
assignment outside the innermost loop. Type (3) productions are handled by a

5



slight modification of the inner loop. Thus, the revised algorithm is

for i = 0 to n− 1 do
T [i, i + 1] ← { A | A→ ai+1 ∈ P }

for d = 2 to n do
for i = 0 to n− d do

j ← i + d

T [i, j] ← { A | (A→ aB ∈ P )
∧ (a = ai+1) ∧ (B ∈ T [i + 1, j]) }

for k = i + 2 to j − 1 do
T [i, j] ← T [i, j] ∪ { A | (A→ aBC ∈ P )

∧ (a = ai+1)
∧ (B ∈ T [i + 1, k]) ∧ (C ∈ T [k, j]) }

if S ∈ T [0, n] then return true else return false

The running time is still dominated by the inner loop, which is easily seen to
be O(n3).

4 (25 pts = 12 + 13). Let Bk be the alphabet of k different kinds of paren-
theses:

Bk = { [1, [2, . . . , [k, ]1, ]2, . . . , ]k }

Recall DSk ⊆ B∗
k , the Dyck Set of order k, is the set of all balanced strings of

parentheses of k kinds.

In lecture we proved the Chomsky-Schutzenberger Theorem: every CFL L can
be expressed as

L = h(DSm ∩ R)

for suitably chosen natural number m, homomorphism h, and regular set R.
Here we examine how many kinds of parentheses are really necessary.

(a) Let

Σ = {0, 1} Γ = {a1, a2, . . . , am}

Give a homomorphism h : Γ∗ → Σ∗ that is 1-to-1:

(∀x, y ∈ Γ∗)( h(x) = h(y) ⇒ x = y )

6



Your homomorphism need not be onto Σ∗ – it is okay if

(∃z ∈ Σ∗)( h−1(z) = ∅ )

But your h must be 1-to-1 and must be defined on every element of Γ∗. You
should explain why your answer is correct; a formal proof is not necessary.

Here is one simple approach.

h(ai) = 0i1(m−i)

This is like a fixed-length unary encoding of i. It ensures that, for all i 6= j

h(ai) 6= h(aj) but |h(ai)| = |h(aj)| = m

Thus, the image of any word in Γ∗ can be decoded uniquely by breaking it into
blocks of exactly m symbols each, then counting the leading 0’s in each block.

Of course, there is a similar solution that uses binary rather than unary encoding
of ai.

(b) Show how your solution to part (a) can be extended to give a 1-to-1
homomorphism gm : B∗

m → B∗
2 such that

g−1
m ( DS2 ) = DSm

Explain your answer.

Hint: Your solution for gm does not need to be onto B∗
2 , or even onto DS2.

But it does need to preserve the property of being a balanced string. If you can
show

w ∈ DSm ⇒ gm(w) ∈ DS2

w ∈ (B∗
m − DSm) ⇒ gm(w) ∈ (B∗

2 − DS2)

and gm is 1-to-1, then it is a correct solution. Why?

As in part (a), we map each symbol to a fixed length block of symbols. We
map left brackets to blocks of left brackets, and right brackets to blocks of right
brackets:

gm( [i ) = [i0 [m−i
1

gm( ]i ) = ]m−i
1 ]i0

7



The argument that this homomorphism is 1-to-1 goes just as in part (a). For
the rest, observe that

gm( [i ) matches gm( ]j ) ⇔ i = j

Note the left-bracket and right-bracket mappings need to be “reversed” in order
to achieve this matching.

From this observation it is easily seen that gm preserves the property of being a
balanced string as described above. A string x in DS2 is the image of a string
w in DSm iff the m-symbol blocks of x are all of consistent handedness (left
or right), and each block consists of a (possibly empty) sequence of [0 (or ]1)
characters followed by a (possibly empty) sequence of [1 (or ]0) characters. For
each such block you can determine the inverse image by counting the number
of leading [0 (or ]1) characters.

You can now conclude from the Chomsky-Schutzenberger Theorem that every
CFL L is

L = h( g−1
m (DS2) ∩ R )

for suitably chosen natural number m, homomorphism h, and regular set R.

8


