CS481F01 Prelim 1

A. Demers

5 Oct

1. Which of the following sets is (are) regular? Justify your answers briefly.
(a) $\quad\left\{0^{i^{2}} \mid i \geq 0\right\}$
(b) $\quad\left\{0^{i^{2}} \mid i \geq 0\right\}^{*}$
(c) $\quad\left\{0^{i} 1^{j} \mid i \equiv j \quad(\bmod 11)\right\}^{*}$
(d) $\quad\left\{w \$ x \mid w, x \in\{0,1\}^{*} \wedge(\sharp 0(w)=\sharp 1(x))\right\}$
(e) $\quad\left\{0^{i} w 1^{i} \mid w \in\{0,1\}^{*} \wedge i \geq 0\right\}$
$(f) \quad\left\{w x \mid w, x \in\{0,1\}^{*} \wedge(\sharp 0(w)=\sharp 1(x))\right\}$
$(g) \quad$ the set of all syntactically correct Java programs
(h) the text of question 1 of this prelim
(i) $L_{A, S}=\{x \mid(\exists y \in A) x y \in S\}$

For part (i), assume $A \subseteq\{0,1\}^{*}$ is an arbitrary regular set and $S \subseteq\{0,1\}^{*}$ is an arbitrary (not necessarily regular) set. If the given set is necessarily regular for all A and S, give a convincing argument that this is true. Otherwise, give a counterexample.
(answer a) Not regular. The set $\left\{i^{2} \mid i \geq 0\right\}$ is not ultimately periodic.
(answer b) Regular. The set $A=\left\{0^{i^{2}} \mid i \geq 0\right\}$ contains $0^{0}=\epsilon$ and $0^{1}=0$; consequently $A^{*}=\{0\}^{*}$, which is regular.
(answer c) Regular. Rewrite as $\left\{0^{i} 1^{j} \mid(i \quad(\bmod 1) 1)=(j \quad(\bmod 1) 1)\right\}$, and observe that there are only 11 distinct values for $(i(\bmod 1) 1)$, and these can be remembered in the state of a FA.
(answer d) Not regular, proved in lecture by inverse homomorphism.
(answer e) Regular. The language includes $\left\{0^{0} w 1^{0} \mid w \in \Sigma^{*}\right\}$ which is all of Σ^{*}.
(answer f) Regular. This one is tricky. Claim any $z \in \Sigma^{*}$ can be written in this form, by strong induction on $|z|$. The basis is trivial. For the inductive step, there are two cases: $z=z^{\prime} 0$ or $z=z^{\prime} 1$. In the first case, use the i.h. to write $z^{\prime}=w x$ where $\sharp 0(w)=\sharp 1(x)$, and observe that $z=w(x 0)$ has the required property. In the second case, if z^{\prime} consists entirely of $1^{\prime} s$ the result is immediate. So write $z^{\prime}=y 0 z^{\prime \prime}$ where y consists entirely of $1^{\prime} s$. Use the i.h. to write $z^{\prime \prime}=w x$ and observe that $z=(y 0 w)(x 1)$ has the required property.
(answer g) Not regular. For example, use a homomorphism to map this to $\left\{0^{i} 1^{i}\right\}$.
(answer h) Regular. It may not seem so, but this question is finite.
(answer i) Not regular. Let $A=\{\epsilon\}$ and let S be any non-regular set.
2. In the introduction to this course we argued that we could always model function evaluation by language recognition, representing a function by the language of its argument-result pairs. Here we examine this claim more critically.

Let $\Sigma=\{0,1\}$, and let f be a function from Σ^{*} to Σ^{*}.
A language $L \subseteq(\Sigma \cup\{\$\})^{*}$ is said to represent f by pairs if

$$
L=\left\{x \$ y \mid x, y \in \Sigma^{*} \wedge y=f(x)\right\}
$$

A language $L \subseteq \Gamma^{*}$ is said to represent f by homomorphisms if there exist homomorphisms g and h from Γ^{*} to Σ^{*} such that

$$
y=f(x) \quad \text { iff } \quad(\exists z \in L)((x=g(z)) \wedge(y=h(z)))
$$

Now, let $P_{p}(f)$ be the proposition "there is some regular language A that represents f by pairs," and let $P_{h}(f)$ be the proposition "there is some regular language B that represents f by homomorphisms,'
(a) Does $P_{p}(f)$ imply $P_{h}(f)$?
(answer a) Yes. Use the inverse of the homomorphism

$$
u(0)=u(a)=0 \quad u(1)=u(b)=1 \quad u(\$)=\$
$$

then intersect with $L\left((0+1)^{*} \$(a+b)^{*}\right)$. The resulting language is clearly regular, and by using

$$
\begin{array}{lll}
g(0)=0 & g(1)=1 & g(a)=g(b)=g(\$)=\epsilon \\
h(a)=0 & h(b)=1 & h(0)=h(a)=h(\$)=\epsilon
\end{array}
$$

clearly represents f by homomorphism.
(b) Does $P_{h}(f)$ imply $P_{p}(f)$?
(answer b) No. The identity function $f(x)=x$ is a counterexample. Clearly Σ^{*} represents the identity function using

$$
g(0)=h(0)=0 \quad g(1)=h(1)=1
$$

But the (only) language representing the identity function by pairs is $\left\{w \$ w \mid w \in \Sigma^{*}\right\}$, which is not regular.
3. Consider the following languages of balanced parentheses:
$L_{()}$is the set of strings of balanced parentheses nested arbitrarily deeply - for example,

$$
() \quad(()) \quad()() \quad(()(())(()())) \quad((((((()))))))) \ldots
$$

are all strings in $L_{()}$.
$L_{()}^{k}$ is the set of strings of balanced parentheses nested no more than k deep. For example, the string $(()(()))$ is in $\operatorname{mbox} L_{()}^{3}$ but not $\operatorname{mbox} L_{()}^{2}$.
$L_{()[]}$is the set of strings of balanced parentheses of two different types, () and []. We require different kinds of parentheses to be properly matched, so for example the string $[(()())[[]]]$ is in $L_{()[]}$, but the string $[(()()])$is not.
$L_{()[]}^{j, k}$ is the set of strings of balanced parentheses of two types, with the nesting of () limited to j, and the nesting of [] limited to k . The nesting depth is counted separately for the two kinds of parentheses, so for example the string $[[(([]))]]$ is in $L_{()[]}^{2,3}$.
Believe it or not, this is mostly a Myhill-Nerode question.
(a) Describe the equivalence classes of the relations

$$
\equiv_{L_{()}}, \quad \equiv_{L_{()]}}, \quad \equiv_{L_{()}^{k}}, \quad \equiv_{L_{()]]}^{j, k}}
$$

Do this informally, but in enough detail to enable a reader to decide whether $[x]_{\equiv}=[y]_{\equiv}$ for arbitrary strings x and y.
(answer a) For any language L, the equivalence classes of \equiv_{L} are sets of strings that behave equivalently under extension; i.e.,

$$
x \equiv_{L} y \quad \text { iff }(\forall z)(x z \in L \Leftrightarrow y z \in L)
$$

For our parenthesis languages, a string $x z$ is in L iff z "closes" all the open - that is, unmatched - (and [characters in x. So you can think of z as the string in $\left.\left.\left({ }^{6}\right)^{\prime}+{ }^{6}\right]^{\prime}\right)^{*}$ that matches all the unmatched left bracket symbols of x. Any y with the same sequence of unmatched bracket symbols as x will also match z, hence be equivalent to x. We may as well choose the shortest such y, which consists entirely of (and [characters, and use this as the canonical representative of the equivalence class. Specifically:

For $L_{()}$the equivalence classes correspond to (arbitrary-length) strings in $\left\{(\}^{*}\right.$. For $L_{()}^{k}$ the classes correspond to strings in $\left\{(\}^{*}\right.$ of length at most k.
For $L_{()][}$the equivalence classes correspond to (arbitrary-length) strings in $\left\{(, \text {, }\}^{*}\right.$. For $L_{()[]}^{j, k}$ the classes correspond to strings in $\left\{\left(,[\}^{*}\right.\right.$ containing at most j (characters and a most k [characters. For a given pair $\langle j, k\rangle$ there are many such strings, and the order of symbols is important. For example, "(([]))" is in $L_{()[]}$, but " $[([]))$ " is not.

There is, in addition, a single equivalence class containing all strings that have errors. All such strings are equivalent, since there is no way to correct an error by extending the string.

The non-error equivalence classes for $L_{()}$can also be though of as natural numbers. The equivalence class of a string corresponds to the number of unclosed parentheses it contains. For example,

$$
(() \quad(()(())() \quad())()(()((\ldots
$$

are in equivalence class 3 .
(b) Construct a minimum state DFA recognizing $L_{()}^{4}$. A state diagram is sufficient. Include all the states.
(answer b) The states are the equivalence classes of $\equiv_{L_{()}^{4}}$, that is,

$$
\left\{q_{\epsilon}, q_{(}, q_{(()}, q_{(()}, q_{\left(() \left(\left(, q_{\text {err }}\right.\right.\right.}\right\}
$$

The transition function is

$$
\begin{array}{lr}
\delta\left(q_{(i},{ }^{\prime}\left({ }^{\prime}\right)=q_{\left(^{i+1}\right.}\right. & 0 \leq i<4 \\
\left.\delta\left(q_{(i},{ }^{\prime}\right)^{\prime}\right)=q_{(i-1} & 0<i \leq 4 \\
\delta(q, a)=q_{\text {err }} & \text { otherwise }
\end{array}
$$

The only final state is q_{ϵ}. It should be clear that this is the minimal machine, constructed using the Myhill-Nerode relation from part (a).
(c) Construct a minimum state DFA recognizing $L_{()[]}^{2,1}$. Give a state diagram, and describe the machine's operation well enough for us to understand it.
(answer c) We proceed in a similar fashion. Now the states of our machine are

$$
\left\{q_{\mathrm{err}}\right\} \cup\left\{q_{w} \mid w \in\left\{{ }^{\prime}\left(^{\prime},{ }^{\prime}\left[^{\prime}\right\}^{*} \wedge \not \sharp_{(}(w) \leq 2 \wedge \not \sharp_{[}(w) \leq 1\right\}\right.\right.
$$

The transition function is

$$
\begin{array}{ll}
\delta\left(q_{w},{ }^{\prime}\left({ }^{\prime}\right)=q_{w}(\right. & \sharp((w)<2 \\
\left.\delta\left(q_{w}()^{\prime}\right)^{\prime}\right)=q_{w} & \sharp((w)<2 \\
\delta\left(q_{w},,^{\prime}\left[^{\prime}\right)=q_{w[}\right. & \sharp[(w)<1 \\
\delta\left(q_{w}\left[,^{\prime}\right]^{\prime}\right)=q_{w} & \sharp[(w)<1 \\
\delta(q, a)=q_{\text {err }} & \text { otherwise }
\end{array}
$$

The only final state is q_{ϵ}. Again, this is just the minimal machine, constructed using the Myhill-Nerode relation from part (a).
(d) How many states are there in a minimum state DFA recognizing $L_{()[]}^{m, 1}$, expressed as a function of m ? Explain your answer. If you want to show off, give a formula for the number of states in the minimum state DFA recognizing $L_{()[]}^{m, n}$ as a function of m and n.
(answer d) Since at most one [is allowed, we can express the answer by brute force: for each possible number i of (characters, there are $i+2$ possibilities: $i+1$ possible positions of a [character, or no [character at all. This yields

$$
N=\sum_{i=0}^{m}(i+2)=2 m+2+\sum_{i=0}^{m} i=2 m+2+\frac{m(m+1)}{2}
$$

Note this is quadratic in m.
To show off, observe that the number of ways to construct a string of i (characters and j [characters is just the number of ways to choose j positions (the square brackets) out of $i+j$ positions (all the characters). This is just the binomial coefficient

$$
\binom{i+j}{j}
$$

leading to the expression

$$
N=\sum_{i=0}^{m} \sum_{j=0}^{n}\binom{i+j}{j}
$$

which you may feel free to simplify.
(e) For any m and n, show (inductively) how to construct a regular expression $R^{m, n}$ that generates $L_{()[]}^{m, n}$.
answer e This is similar to the technique we used in class extended to handle two kinds of parentheses. We'll define $R^{m, n}$ inductively by

$$
\begin{aligned}
& R^{0,0}=\epsilon \\
& R^{i+1, j}=R^{i, j}\left\{\left(R^{i, j}\right) R^{i, j}\right\}^{*} \\
& R^{i, j+1}=R^{i, j}\left\{\left[R^{i, j}\right] R^{i, j}\right\}^{*}
\end{aligned}
$$

Since there is no requirement that m and n be equal, we need to induct separately on i and j.

