
CS481F01 Prelim 1

A. Demers

5 Oct

1. Which of the following sets is (are) regular? Justify your answers briefly.

(a) { 0i2 | i ≥ 0 }
(b) { 0i2 | i ≥ 0 }∗
(c) { 0i1j | i ≡ j (mod 11) }∗
(d) { w$x | w, x ∈ {0, 1}∗ ∧ (]0(w) =]1(x)) }
(e) { 0iw1i | w ∈ {0, 1}∗ ∧ i ≥ 0 }
(f) { wx | w, x ∈ {0, 1}∗ ∧ (]0(w) =]1(x)) }
(g) the set of all syntactically correct Java programs
(h) the text of question 1 of this prelim
(i) LA,S = { x | (∃y ∈ A) xy ∈ S }

For part (i), assume A ⊆ {0, 1}∗ is an arbitrary regular set and S ⊆ {0, 1}∗ is
an arbitrary (not necessarily regular) set. If the given set is necessarily regular
for all A and S, give a convincing argument that this is true. Otherwise, give a
counterexample.

(answer a) Not regular. The set { i2 | i ≥ 0 } is not ultimately periodic.

(answer b) Regular. The set A = { 0i2 | i ≥ 0 } contains 00 = ε and 01 = 0;
consequently A∗ = {0}∗, which is regular.

(answer c) Regular. Rewrite as { 0i1j | (i (mod 1)1) = (j (mod 1)1) },
and observe that there are only 11 distinct values for (i (mod 1)1), and these
can be remembered in the state of a FA.

(answer d) Not regular, proved in lecture by inverse homomorphism.

1

(answer e) Regular. The language includes {00w10 | w ∈ Σ∗} which is all of
Σ∗.

(answer f) Regular. This one is tricky. Claim any z ∈ Σ∗ can be written
in this form, by strong induction on |z|. The basis is trivial. For the inductive
step, there are two cases: z = z′0 or z = z′1. In the first case, use the i.h.
to write z′ = wx where]0(w) =]1(x), and observe that z = w(x0) has the
required property. In the second case, if z′ consists entirely of 1′s the result is
immediate. So write z′ = y0z′′ where y consists entirely of 1′s. Use the i.h. to
write z′′ = wx and observe that z = (y0w)(x1) has the required property.

(answer g) Not regular. For example, use a homomorphism to map this to
{0i1i}.

(answer h) Regular. It may not seem so, but this question is finite.

(answer i) Not regular. Let A = {ε} and let S be any non-regular set.

2. In the introduction to this course we argued that we could always model
function evaluation by language recognition, representing a function by the lan-
guage of its argument-result pairs. Here we examine this claim more critically.

Let Σ = {0, 1}, and let f be a function from Σ∗ to Σ∗.

A language L ⊆ (Σ ∪ {$})∗ is said to represent f by pairs if

L = { x$y | x, y ∈ Σ∗ ∧ y = f(x) }

A language L ⊆ Γ∗ is said to represent f by homomorphisms if there exist ho-
momorphisms g and h from Γ∗ to Σ∗ such that

y = f(x) iff (∃z ∈ L)((x = g(z)) ∧ (y = h(z)))

Now, let Pp(f) be the proposition “there is some regular language A that rep-
resents f by pairs,” and let Ph(f) be the proposition “there is some regular
language B that represents f by homomorphisms,’

(a) Does Pp(f) imply Ph(f)?

2

(answer a) Yes. Use the inverse of the homomorphism

u(0) = u(a) = 0 u(1) = u(b) = 1 u($) = $

then intersect with L((0+1)∗$(a+b)∗). The resulting language is clearly regular,
and by using

g(0) = 0 g(1) = 1 g(a) = g(b) = g($) = ε

h(a) = 0 h(b) = 1 h(0) = h(a) = h($) = ε

clearly represents f by homomorphism.

(b) Does Ph(f) imply Pp(f)?

(answer b) No. The identity function f(x) = x is a counterexample. Clearly
Σ∗ represents the identity function using

g(0) = h(0) = 0 g(1) = h(1) = 1

But the (only) language representing the identity function by pairs is {w$w | w ∈ Σ∗},
which is not regular.

3. Consider the following languages of balanced parentheses:

L() is the set of strings of balanced parentheses nested arbitrarily deeply – for
example,

() (()) ()() (()(())(()())) (((((((()))))))) . . .

are all strings in L().

Lk
() is the set of strings of balanced parentheses nested no more than k deep.

For example, the string (()(())) is in mboxL3
() but not mboxL2

().

L()[] is the set of strings of balanced parentheses of two different types, () and
[]. We require different kinds of parentheses to be properly matched, so for
example the string [(()())[[]]] is in L()[], but the string [(()()]) is not.

Lj,k
()[] is the set of strings of balanced parentheses of two types, with the nesting

of () limited to j, and the nesting of [] limited to k. The nesting depth is counted
separately for the two kinds of parentheses, so for example the string [[(([]))]] is
in L2,3

()[].

Believe it or not, this is mostly a Myhill-Nerode question.

3

(a) Describe the equivalence classes of the relations

≡L() , ≡L()[] , ≡Lk
()
, ≡Lj,k

()[]

Do this informally, but in enough detail to enable a reader to decide whether
[x]≡ = [y]≡ for arbitrary strings x and y.

(answer a) For any language L, the equivalence classes of ≡L are sets of
strings that behave equivalently under extension; i.e.,

x ≡L y iff (∀z)(xz ∈ L ⇔ yz ∈ L)

For our parenthesis languages, a string xz is in L iff z “closes” all the open – that
is, unmatched – (and [characters in x. So you can think of z as the string in
(‘)′+‘]′)∗ that matches all the unmatched left bracket symbols of x. Any y with
the same sequence of unmatched bracket symbols as x will also match z, hence
be equivalent to x. We may as well choose the shortest such y, which consists
entirely of (and [characters, and use this as the canonical representative of the
equivalence class. Specifically:

For L() the equivalence classes correspond to (arbitrary-length) strings in {(}∗.
For Lk

() the classes correspond to strings in {(}∗ of length at most k.

For L()[] the equivalence classes correspond to (arbitrary-length) strings in {(, [}∗.
For Lj,k

()[] the classes correspond to strings in {(, [}∗ containing at most j (char-
acters and a most k [characters. For a given pair 〈j, k〉 there are many such
strings, and the order of symbols is important. For example, “(([]))” is in L()[],
but “([(]))” is not.

There is, in addition, a single equivalence class containing all strings that have
errors. All such strings are equivalent, since there is no way to correct an error
by extending the string.

The non-error equivalence classes for L() can also be though of as natural num-
bers. The equivalence class of a string corresponds to the number of unclosed
parentheses it contains. For example,

((((()(()(() ()()()(()((. . .

are in equivalence class 3.

(b) Construct a minimum state DFA recognizing L4
(). A state diagram is

sufficient. Include all the states.

4

(answer b) The states are the equivalence classes of ≡L4
()
, that is,

{ qε, q(, q((, q(((, q((((, qerr }

The transition function is

δ(q(i , ‘(′) = q(i+1 0 ≤ i < 4
δ(q(i , ‘)′) = q(i−1 0 < i ≤ 4
δ(q, a) = qerr otherwise

The only final state is qε. It should be clear that this is the minimal machine,
constructed using the Myhill-Nerode relation from part (a).

(c) Construct a minimum state DFA recognizing L2,1
()[]. Give a state diagram,

and describe the machine’s operation well enough for us to understand it.

(answer c) We proceed in a similar fashion. Now the states of our machine
are

{ qerr } ∪ { qw | w ∈ {‘(′, ‘[′}∗ ∧]((w) ≤ 2 ∧][(w) ≤ 1 }

The transition function is

δ(qw, ‘(′) = qw(]((w) < 2
δ(qw(, ‘)′) = qw]((w) < 2
δ(qw, ‘[′) = qw[][(w) < 1
δ(qw[, ‘]′) = qw][(w) < 1
δ(q, a) = qerr otherwise

The only final state is qε. Again, this is just the minimal machine, constructed
using the Myhill-Nerode relation from part (a).

(d) How many states are there in a minimum state DFA recognizing Lm,1
()[] ,

expressed as a function of m? Explain your answer. If you want to show off,
give a formula for the number of states in the minimum state DFA recognizing
Lm,n

()[] as a function of m and n.

5

(answer d) Since at most one [is allowed, we can express the answer by brute
force: for each possible number i of (characters, there are i + 2 possibilities:
i + 1 possible positions of a [character, or no [character at all. This yields

N =
m∑

i=0

(i + 2) = 2m + 2 +
m∑

i=0

i = 2m + 2 +
m(m + 1)

2

Note this is quadratic in m.

To show off, observe that the number of ways to construct a string of i (char-
acters and j [characters is just the number of ways to choose j positions (the
square brackets) out of i + j positions (all the characters). This is just the
binomial coefficient(

i + j

j

)
leading to the expression

N =
m∑

i=0

n∑
j=0

(
i + j

j

)

which you may feel free to simplify.

(e) For any m and n, show (inductively) how to construct a regular expression
Rm,n that generates Lm,n

()[] .

answer e This is similar to the technique we used in class extended to handle
two kinds of parentheses. We’ll define Rm,n inductively by

R0,0 = ε

Ri+1,j = Ri,j
{
(Ri,j)Ri,j

}∗
Ri,j+1 = Ri,j

{
[Ri,j]Ri,j

}∗
Since there is no requirement that m and n be equal, we need to induct sepa-
rately on i and j.

6

