CS481F01 Prelim 1

A. Demers

5 Oct

1. Which of the following sets is (are) regular? Justify your answers briefly.

{0]iz0}

{07 [iz0}

{01V |i=j (mod11) }*

{whz | w,xz € {0,1}* A (H0(w) = #1(x)) }
{0wl® | we {0,1}* Ai>0}

{wr | w,z€{0,1}" A (0(w) = #1(z)) }

the set of all syntactically correct Java programs
the text of question 1 of this prelim

Las ={z|(FyecA)ayecs}

EESTESER

NN N N N N N
= @
—

For part (i), assume A C {0,1}* is an arbitrary regular set and S C {0,1}* is
an arbitrary (not necessarily regular) set. If the given set is necessarily regular
for all A and S, give a convincing argument that this is true. Otherwise, give a
counterexample.

(answer a) Not regular. The set { i | i > 0 } is not ultimately periodic.

(answer b) Regular. Theset A = { 0" | i > 0 } contains 0° = € and 0 = 0;
consequently A* = {0}*, which is regular.

(answer c) Regular. Rewrite as { 0°17 | (i (mod 1)1) = (5 (mod 1)1) },
and observe that there are only 11 distinct values for (¢ (mod 1)1), and these
can be remembered in the state of a FA.

(answer d) Not regular, proved in lecture by inverse homomorphism.

(answer e) Regular. The language includes {0%w1° | w € ¥*} which is all of
r.

(answer f) Regular. This one is tricky. Claim any z € ¥* can be written
in this form, by strong induction on |z|. The basis is trivial. For the inductive
step, there are two cases: z = 2’0 or z = 2’1. In the first case, use the i.h.
to write 2’ = wx where §0(w) = §1(x), and observe that z = w(x0) has the
required property. In the second case, if 2’ consists entirely of 1’s the result is
immediate. So write 2/ = y0z” where y consists entirely of 1’s. Use the i.h. to
write 2" = wz and observe that z = (yOw)(z1) has the required property.

(answer g) Not regular. For example, use a homomorphism to map this to

{0717},
(answer h) Regular. It may not seem so, but this question is finite.
(answer i) Not regular. Let A = {¢} and let S be any non-regular set.

2. In the introduction to this course we argued that we could always model
function evaluation by language recognition, representing a function by the lan-
guage of its argument-result pairs. Here we examine this claim more critically.

Let ¥ = {0,1}, and let f be a function from ¥* to X*.

A language L C (X U {$})* is said to represent f by pairs if
L = {aby|a,yeX Ay=fla)}

A language L C I'* is said to represent f by homomorphisms if there exist ho-
momorphisms g and A from I'* to ¥* such that

y=[f(x) i (Fzel)((z=9g(2) Ay =h(z)))
Now, let P,(f) be the proposition “there is some regular language A that rep-

resents f by pairs,” and let P,(f) be the proposition “there is some regular
language B that represents f by homomorphisms,’

(a) Does P,(f) imply Pn(f)?

(answer a) Yes. Use the inverse of the homomorphism

then intersect with L((0+1)*$(a+b)*). The resulting language is clearly regular,
and by using

9(0)=0 g(1)=1
=0 h(b)=1 h(0)=ha)=h(S) =c

clearly represents f by homomorphism.
(b) Does Py(f) imply P,(f)?

(answer b) No. The identity function f(x) = x is a counterexample. Clearly
>* represents the identity function using

But the (only) language representing the identity function by pairs is {w$w | w € ¥*},
which is not regular.

3. Consider the following languages of balanced parentheses:

Ly is the set of strings of balanced parentheses nested arbitrarily deeply — for
example,

are all strings in L.

L’(“) is the set of strings of balanced parentheses nested no more than k deep.
For example, the string (()(())) is in mboxL:(”) but not mboxL%).

Ly is the set of strings of balanced parentheses of two different types, () and
[]. We require different kinds of parentheses to be properly matched, so for
example the string [(()())[[]]] is in Ly, but the string [(()()]) is not.

Lg)ﬁ is the set of strings of balanced parentheses of two types, with the nesting
of () limited to j, and the nesting of [] limited to k. The nesting depth is counted
separately for the two kinds of parentheses, so for example the string [[(([]))]] is
. 12,3

in L()[]’

Believe it or not, this is mostly a Myhill-Nerode question.

(a) Describe the equivalence classes of the relations

=L =Lop» =Lk it
Do this informally, but in enough detail to enable a reader to decide whether
[x]= = [y]= for arbitrary strings x and y.

(answer a) For any language L, the equivalence classes of =j, are sets of
strings that behave equivalently under extension; i.e.,

x=py iff (Vz)(zzeLeyzel)

For our parenthesis languages, a string xz is in L iff z “closes” all the open — that
is, unmatched — (' and [characters in 2. So you can think of z as the string in
()’ +¢’)* that matches all the unmatched left bracket symbols of . Any y with
the same sequence of unmatched bracket symbols as x will also match z, hence
be equivalent to z. We may as well choose the shortest such y, which consists
entirely of (and [characters, and use this as the canonical representative of the
equivalence class. Specifically:

For Ly the equivalence classes correspond to (arbitrary-length) strings in {(}*.
For L’(“) the classes correspond to strings in {(}* of length at most k.

For L) the equivalence classes correspond to (arbitrary-length) strings in {(, [}*.
For Lz)lﬁ the classes correspond to strings in {(, [}* containing at most j (char-
acters and a most k [characters. For a given pair (j, k) there are many such
strings, and the order of symbols is important. For example, “(([]))” is in Ly,
but “([(]))” is not.

There is, in addition, a single equivalence class containing all strings that have
errors. All such strings are equivalent, since there is no way to correct an error
by extending the string.

The non-error equivalence classes for L) can also be though of as natural num-
bers. The equivalence class of a string corresponds to the number of unclosed
parentheses it contains. For example,

are in equivalence class 3.

(b) Construct a minimum state DFA recognizing L‘(l). A state diagram is
sufficient. Include all the states.

(answer b) The states are the equivalence classes of = L that is,

{06, 90906 9 A Gerr }
The transition function is
) = q(i+1 0<i1<4
6((](1‘, ‘)/) = q@-1 0<i<4

Qerr otherwise

The only final state is g.. It should be clear that this is the minimal machine,
constructed using the Myhill-Nerode relation from part (a).

(¢) Construct a minimum state DFA recognizing L(Q)[l] Give a state diagram,
and describe the machine’s operation well enough for us to understand it.

(answer c¢) We proceed in a similar fashion. Now the states of our machine
are

{ Gerr } U { quw | w € {‘(/at[/}* A ﬂ((’ll)) <2 A ﬁ[(w) <1 }

The transition function is

6(quw, ‘(") = Qw(f(w) <
6<qw(7)) Guw ((w)
Mqw:'T) = qup Hlw) <
6(qul;’]) = qu ﬁ[(w) <
3(q;a) = Gerr otherwise

The only final state is g.. Again, this is just the minimal machine, constructed
using the Myhill-Nerode relation from part (a).

(d) How many states are there in a minimum state DFA recognizing LZ')L[’]l,
expressed as a function of m? Explain your answer. If you want to show off,
give a formula for the number of states in the minimum state DFA recognizing

Lgb[’]" as a function of m and n.

(answer d) Since at most one [is allowed, we can express the answer by brute
force: for each possible number i of (characters, there are ¢ + 2 possibilities:
i+ 1 possible positions of a [character, or no [character at all. This yields

m(m + 1)

m m
N = > (i+2) = 2m+2+) i = 2m+2+ 5
=0

i=0
Note this is quadratic in m.

To show off, observe that the number of ways to construct a string of ¢ (char-
acters and j [characters is just the number of ways to choose j positions (the
square brackets) out of i + j positions (all the characters). This is just the
binomial coefficient

(7)

leading to the expression
m n . .
1+
vy ()
i=0 j=0 J

which you may feel free to simplify.

(e) For any m and n, show (inductively) how to construct a regular expression

R™™ that generates Lgb[’}”.

answer e This is similar to the technique we used in class extended to handle
two kinds of parentheses. We’ll define R™™ inductively by

RO = ¢
Ri—i—l,j — Ri,j {(R'I,])R77J}*
Ri,j+1 — Rz',j {[le]RzJ}*

Since there is no requirement that m and n be equal, we need to induct sepa-
rately on ¢ and j.

