
CS481F01 HW 7 – TMs

A. Demers

14 Nov – due 21 Nov

Please remember to turn in each problem on a separate page, put your name
on each page, and turn in the pages in three separate piles!

1. Consider the language

L = {0i102i

| i > 0 }

L is the exponentiation function “represented by pairs.”

(a) Prove that L is not a CFL.

(b) Give a formal description of a deterministic total TM recognizing L. Give
all the components of the 9-tuple, including a complete specification of the tape
alphabet and the transition function. Describe informally how your machine
works. A formal proof of correctness is not necessary.

2. Part (a) of this question is from Q. 100 on p. 341 of the text.

A deterministic 1-counter automaton (D1CA) is a deterministic automaton with
a finite set of states Q, a 2-way read-only input head, and a separate counter that
can hold any nonnegative integer. The input x ∈ Σ∗ is enclosed in endmarkers `
and a that are not in Σ, and the input head may not go outside the endmarkers.
The machine starts in its start state s with its counter set to 0 and with its input
head on the left endmarker a. In each step, it can test its counter for zero. Based
on this information, the current state, and the symbol its input head is currently
reading, the machine updates its counter value (by adding or subtracting one,
or leaving the counter unchanged), moves its head (left, right, or stationary),
and enters a new state. The machine accepts by entering a distinguished final
state.

1

(a) Give a rigorous formal definition of these machines, including a definition
of acceptance. Your definition should begin as follows:
“A deterministic 1-counter automaton is a 7-tuple

M = (Q,Σ,`,a, s, t, δ)

where . . . ”

(b) Using your definition from part (a), give a formal description of a D1CA
that recognizes the (non-context-free) language

L3 = { aibici | i ≥ 0 }

Describe informally how your machine works. A formal proof of correctness is
not necessary.

(c) Describe informally how a D1CA can recognize the language

{ wwr | w ∈ Σ∗ }

of even-length palindromes. Your description should be informal but complete,
roughly at the level of the descriptions in Examples 29.1 and 29.2 on pp. 216-219
of the textbook. In particular, you need not give a list of all the transitions.

3. Consider the set of DFAs with input alphabet {0, 1}. We can describe such
a DFA by a string over the alphabet {f, n, 0, 1} as follows. Assume the states
are numbered from 1 to N , and by convention the start state is q1. Each state
q is completely described by specifying whether q is final or not, and giving
δ(q, 0) and δ(q, 0). We use the string f0i1j to describe a final state q such
that δ(q, 0) = qi and δ(q, 1) = qj . The string n0i1j describes a nonfinal state
analogously. To describe a DFA, we simply concatenate the descriptions of its
states q1, q2, . . . , in order.

(a) Let

R = { w ∈ {0, 1}∗ |]0(w) and]1(w) are both even }

Describe a DFA recognizing R and give its encoding as a string as described
above.

2

(b) Now consider the language

L = {m$w | m ∈ {f, n, 0, 1}∗ ∧ w ∈ {0, 1}∗
∧ m is the description of a DFA M

∧ w ∈ L(M) }

Describe a deterministic TM that recognizes L. Your description should be
informal but complete, as discussed in question 2(c) above. Describe the action
of your TM on your DFA description from part (a) on input 0110.

Hint: Your TM should simulate the DFA described by m computing on input
w. We have argued that multiple tapes do not increase the power of the TM
model; so if you wish you may describe a multi-tape machine to recognize L.
This should make your life somewhat easier.

Danger Will Robinson: Suppose the input string is the description of a
DFA M followed by an input that is not in L(M). Your TM should reject in
this case.

Suppose the input string is not a DFA description followed by an input. Your
TM had better reject in this case as well, right? So it should perform some sort
of “sanity check” on its input.

Suppose there is a state description like n02117 in (the description of) a DFA
with only 16 states. You may treat this as a “run-time error” – you don’t need
to detect this situation unless sometime during the simulated computation you
actually try to change to the nonexistent state 17.

This is a judgement call in the interpretation of

“m is the description of a DFA M”

above. I choose to interpret an out-of-range state transition as an explicit re-
ject action, and still consider m a well-formed DFA description. Using this
interpretation, the set of well-formed DFA descriptions is regular.

3

