Please remember to turn in each problem on a separate page, put your name on each page, and turn in the pages in three separate piles!

1. Give a NPDAs that recognize the following languages:

(a) The set of all strings in \{0, 1\}^* that contain twice as many 1s as 0s.

(b) The set

\[\{ x\$$y \mid (\exists n) (x = \text{binary}(n) \land y = \text{binary}(n + 1)) \} \]

where \text{binary}(n) is the binary encoding of natural number \(n\). For example, this set contains \(0\$$1, \(1101\$$1100 and \(001\$$101\) but not \(1\$$1 or \(11\$$10.

You may use whichever form of acceptance – empty stack or final state – is convenient. In each case prove your machine is correct.

2. An NPDA

\[M = (Q, \Sigma, \Gamma, \delta, s, \bot, F) \]

is a Binary-Stack NPDA if \(|\Gamma| = 2\). M is a Unary-Stack NPDA if \(|\Gamma| = 1\).

(a) Prove that every CFL is \(L_{es}(M)\) for some Binary-Stack NPDA \(M\).

\textbf{Hint:} You don’t need a grammar for this – you can do it entirely with machines – but think about the way a bottom-up recognizer as discussed in lecture implements “reduce” actions.
Give a language \(L \) that is not regular but is \(L_{es}(M) \) for some Unary-Stack NPDA \(M \).

Does there exist a CFL \(L \) that is not \(L_{es}(M) \) for any Unary-Stack NPDA \(M \)? Argue convincingly for your answer. A detailed proof is not necessary.

3. This is a “cumulative” problem – each part develops on the previous parts. We derive some properties of the Deterministic CFLs (DCFLs), i.e. languages that are \(L(M) \) for some Deterministic PDA \(M \).

(a) Show the set
\[
\{ a^i b^i c^i \mid i > 0 \}
\]
is not a CFL.

(b) Show the set
\[
\{ a^i b^j c^i \mid i, j > 0 \}
\]
is a DCFL.

(c) Show the DCFLs are not closed under intersection: give DCFLs \(L_1 \) and \(L_2 \) such that \(L_1 \cap L_2 \) is not a DCFL.

(d) In lecture and in the text we show that DCFLs are closed under complement:
\[
L \text{ is a DCFL} \implies \bar{L} \equiv (\Sigma^* - L) \text{ is a DCFL}
\]
It follows that the DCFLs cannot be closed under union (Why?). Give an example; that is, give two DCFLs \(L_1 \) and \(L_2 \) such that \(L_1 \cup L_2 \) is not a DCFL. (Note that \(L_1 \cup L_2 \) is certainly a CFL; it’s just not a deterministic one). Prove your answer.

(e) Let the tagged union of two languages be defined by
\[
L_0 \cup_t L_1 \equiv \{ 0w \mid w \in L_0 \} \cup \{ 1w \mid w \in L_1 \}
\]
Prove the DCFLs are closed under tagged union.

(f) Are the DCFLs closed under homomorphism? Explain your answer.