CS481F01 HW 3 - Non-Regular Sets and State Minimization

A. Demers

26 Sep - due 3 Oct

Please remember to turn in each problem on a separate page. This week, please remember to put your name on each page, and turn in the pages in three separate piles!

1. For this question, you may assume the languages

$$
L_{01}=\left\{0^{i} 1^{i} \mid i \geq 0\right\}
$$

and

$$
L_{010}=\left\{0^{i} 10^{i} \mid i \geq 0\right\}
$$

are not regular, since we proved this in lecture.
Show that each of the languages given below is not regular by using closure properties to show that, if it were regular, then either L_{01} or L_{010} would have to be regular, leading to a contradiction.
(a) $\quad\left\{0^{2 i} 1^{3 i} \mid i \geq 0\right\}$
(b) $\quad\left\{0^{i} 1^{j} 2^{k} \mid i=j \vee j=k\right\}$
(c) $\quad\left\{0^{i} 1^{j} \mid j=(i+481)\right\}$
(d) $\quad\left\{w w \mid w \in\{0,1\}^{*}\right\}$
(e) $\quad\left\{w \in\{0,1\}^{*} \mid \sharp 0(w)=\sharp 1(w)\right\}$
(Recall $\sharp a(w)$ is the number of a 's in w).
2. Consider the DFA

$$
M=(Q, \Sigma, \delta, s, F)
$$

where

$$
\begin{aligned}
& Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\right\} \\
& s=q_{0} \\
& F=\left\{q_{0}, q_{5}\right\}
\end{aligned}
$$

and δ is given by the table:

q	$\delta(q, 0)$	$\delta(q, 1)$
q_{0}	q_{1}	q_{2}
q_{1}	q_{3}	q_{4}
q_{2}	q_{3}	q_{4}
q_{3}	q_{0}	q_{5}
q_{4}	q_{0}	q_{5}
q_{5}	q_{2}	q_{1}

a. Compute the state indistinbuishability relations $\equiv_{0}, \equiv_{1}, \ldots, \equiv_{\infty}$ for this machine.
b. Construct the minimal machine $M_{\equiv_{\infty}}$ equivalent to this machine. A state transition diagram is sufficient.
c. For any $k \geq 0$ show how to construct a DFA for which the indistinguishability relations do not converge until the $k^{\text {th }}$ step. That is, show how to construct a DFA such that

$$
\left(\equiv_{i+1}=\equiv_{i}\right) \Rightarrow(i \geq k)
$$

Convince us that your construction is correct; a formal inductive proof is not necessary.
3. Question 29 from p 323 of the text:

For A a set of natural numbers, define
binary $A=\{$ binary representations of numbers in $A\} \subseteq\{0,1\}^{*}$ unary $A=\left\{0^{n} \mid n \in A\right\} \subseteq\{0\}^{*}$

For example, if A is $\{2,3,5\}$ then
$\operatorname{binary} A=\{10,11,101\}$
unary $A=\{00,000,00000\}$
Consider the following two propositions:
(i) $\forall A$, if binary A is regular then so is unary A
(ii) $\forall A$, if unary A is regular then so is binary A

One of (i) and (ii) is true and the other is false. Which is which? Give a proof and a counterexample.

