Please remember to turn in each problem on a separate page.

In all the following problems, let $\Sigma = \{0, 1\}$.

1. Give DFAs accepting the sets of strings defined by the following regular expressions. Try to simplify your machines as much as possible.

 \begin{align*}
 (a) & \quad (0 + 1)^*10(0 + 1) \\
 (b) & \quad (0(0 + 1)^*1(00)^*) + (1(0 + 1)^*1(00)^*0) \\
 (c) & \quad ((00)^*10) + ((000)^*11)
 \end{align*}

 Argue convincingly that your answers are correct, but formal proofs are not necessary.

2. We mentioned in class that the language

 \[\{ x \in \Sigma^* \mid \exists y \in B \ xy \in A \} \]

 is regular, given that both A and B are regular languages.

 Professor M. Howard claims to have a proof of this result that does not make use of regularity of B, so the result must hold even if B is not regular. That is, the professor claims that if $A \subseteq \Sigma^*$ is a regular language and $S \subseteq \Sigma^*$ is an arbitrary (not necessarily regular) language, then the set

 \[\{ x \in \Sigma^* \mid \exists y \in S \ xy \in A \} \]

 is regular.

 Prove or disprove the professor’s claim.
3. Let \(L_e \) be the set of all strings containing an even number of zeroes and an even number of ones:

\[
L_e = \{ x \in \Sigma^* \mid (\#0(x) \mod 2) = (\#1(x) \mod 2) = 0 \}
\]

(a) Give a deterministic finite automaton that recognizes \(L_e \). Argue convincingly that it does so; you don’t need to give a formal proof.

(b) We define the size of a union-dot-star regular expression by counting atomic patterns and operators. Formally

\[
\begin{align*}
\text{size}(\emptyset) &= \text{size}(\epsilon) = \text{size}(a) = 1 \\
\text{size}(\alpha + \beta) &= \text{size}(\alpha \cdot \beta) = 1 + \text{size}(\alpha) + \text{size}(\beta) \\
\text{size}(\alpha^*) &= 1 + \text{size}(\alpha)
\end{align*}
\]

Suppose you were to construct a regular expression \(\alpha \) for the language recognized by a given DFA, using the standard procedure discussed in lecture and given in Chapter 9 of the text. (Note the procedure works essentially unchanged for either a DFA or an NFA).

Recall the procedure constructs regular expressions

\[
\alpha_{u,v}^A \quad \text{for } A \subseteq Q \text{ and } u, v \in Q
\]

for the sets of strings that can take the machine from state \(u \) to state \(v \) with all intermediate states lying in \(A \).

Derive an (approximate) formula for the size of \(\alpha_{u,v}^A \) as a function of \(|A|\). Explain your answer.

Note an exact formula would depend on the particular FA. For your answer you may assume the machine has no self-loops; i.e.

\[
\delta(q, a) \neq q
\]

and no parallel edges; i.e.

\[
\delta(q, a) = \delta(q, b) \Rightarrow a = b
\]

You may make any other reasonable assumption you find helpful – just be sure to state your assumptions.

How big would \(\alpha \) be for the machine you constructed in part (a)?

(c) Give a more “efficient” (i.e. smaller) regular expression for this language. Correctness is more important than size, but a Gold Star will be awarded for the smallest correct solution.