CS481F01 HW 2 - FAs and Regular Expressions

A. Demers

17 Sep - due 24 Sept

Please remember to turn in each problem on a separate page.
In all the following problems, let $\Sigma=\{0,1\}$.

1. Give DFAs accepting the sets of strings defined by the following regular expressions. Try to simplify your machines as much as possible.
(a) $\quad(0+1)^{*} 10(0+1)$
(b) $\quad\left(0(0+1)^{*} 1(00)^{*}\right)+\left(1(0+1)^{*} 1(00)^{*} 0\right)$
(c) $\quad\left((00)^{*} 10\right)+\left((000)^{*} 11\right)$

Argue convincingly that your answers are correct, but formal proofs are not necessary.
2. We mentioned in class that the language

$$
\left\{x \in \Sigma^{*} \mid \exists y \in B \quad x y \in A\right\}
$$

is regular, given that both A and B are regular languages.
Professor M. Howard claims to have a proof of this result that does not make use of regularity of B, so the result must hold even if B is not regular. That is, the professor claims that if $A \subseteq \Sigma^{*}$ is a regular language and $S \subseteq \Sigma^{*}$ is an arbitrary (not necessarily regular) language, then the set

$$
\left\{x \in \Sigma^{*} \mid \exists y \in S \quad x y \in A\right\}
$$

is regular.
Prove or disprove the professor's claim.
3. Let L_{e} be the set of all strings containing an even number of zeroes and an even number of ones:

$$
L_{e}=\left\{x \in \Sigma^{*} \mid(\sharp 0(x) \bmod 2)=(\sharp 1(x) \bmod 2)=0\right\}
$$

(a) Give a deterministic finite automaton that recognizes L_{e}. Argue convincingly that it does so; you don't need to give a formal proof.
(b) We define the size of a union-dot-star regular expression by counting atomic patterns and operators. Formally

$$
\begin{aligned}
& \operatorname{size}(\emptyset)=\operatorname{size}(\epsilon)=\operatorname{size}(a)=1 \\
& \operatorname{size}(\alpha+\beta)=\operatorname{size}(\alpha \cdot \beta)=1+\operatorname{size}(\alpha)+\operatorname{size}(\beta) \\
& \operatorname{size}\left(\alpha^{*}\right)=1+\operatorname{size}(\alpha)
\end{aligned}
$$

Suppose you were to construct a regular expression α for the language recognized by a given DFA, using the standard procedure discussed in lecture and given in Chapter 9 of the text. (Note the procedure works essentially unchanged for either a DFA or an NFA).

Recall the procedure constructs regular expressions

$$
\alpha_{u, v}^{A} \quad \text { for } A \subseteq Q \text { and } u, v \in Q
$$

for the sets of strings that can take the machine from state u to state v with all intermediate states lying in A.
Derive an (approximate) formula for the size of $\alpha_{u, v}^{A}$ as a function of $|A|$. Explain your answer.
Note an exact formula would depend on the particular FA. For your answer you may assume the machine has no self-loops; i.e.

$$
\delta(q, a) \neq q
$$

and no parallel edges; i.e.

$$
\delta(q, a)=\delta(q, b) \Rightarrow a=b
$$

You may make any other reasonable assumption you find helpful - just be sure to state your assumptions.
How big would α be for the machine you constructed in part (a)?
(c) Give a more "efficient" (i.e. smaller) regular expression for this language. Correctness is more important than size, but a Gold Star will be awarded for the smallest correct solution.

