
CS481F01 Final Solutions

A. Demers

18 Dec 2001

The solutions here were typeset during the exam. I didn’t quite finish, which
suggests – as usual – the exam was longer than I intended it to be.

1. (20 points) Post’s Correspondence Problem (PCP) is the following: You are
given a finite collection of pairs of strings

{ 〈x1, y1〉, 〈x2, y2〉, . . . , 〈xn, yn〉 }

and are asked whether

(∃n, i1, i2, . . . , in)( xi1xi2 . . . xin
= yi1yi2 . . . yin

)

that is, whether there is a way to chose a finite sequence of pairs (possibly with
repetitions) so that corresponding strings concatenate to the same result.

For example, the instance

〈00, 0〉, 〈10, 1〉, 〈1, 0001〉

has solution

n = 4, i1 = 2, i2 = 1, i3 = 1, i4 = 3

since

x2x1x1x3 = 10 00 00 1 = 1 0 0 0001 = y2y1y1y3

while you can verify that the instance

〈10, 1〉, 〈10, 01〉, 〈1, 11〉

has no solution.

Prove PCP is not decidable.
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Answer 1: PCP is a well known problem. Proofs of its undecidability “abound
in the literature” – see, for example, Hopcroft and Ullman, Introduction to Au-
tomata Theory, Languages and Computation, p. 193 ff. (the page number may
be wrong – I don’t own the latest edition). This text was on reserve in the
Engineering Library for this course.

A number of people tried to solve this problem using Rice’s Theorem. I don’t
know a correct way to do this. The incorrect attempts were of the following
form.

Any instance of PCP can be represented as a string

]x1]y1]x2]y2 . . . ]xn]yn]

Let the property P (L) be “L is {w}, where w is the encoding of
an instance of PCP that has a solution.” Clearly P is a nontrivial
property of sets, so Rice’s Theorem applies.

The problem is, Rice’s Theorem doesn’t tell us anything interesting about de-
cidability of PCP. What Rice’s Theorem tells us is

{ i | P (L(Mi)) } is not recursive.

What we’re interested in is

LPCP = { w | w encodes a PCP instance with a solution }
= { w | P ({w}) }

Rice’s Theorem does not imply that LPCP is undecidable.

Consider the property Q(L) given by “L is {w}, for some w such that length(w)
is prime.” Clearly this is a nontrivial property of sets, so by Rice’s Theorem

{ i | Q(L(Mi)) } is not recursive.

But just as clearlly

{ w | Q({w}) } is recursive.

It was an interesting idea, though.
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2. (24 points – each part 2 points for answer, 4 points for justification) For
this problem, define

Mi(x) ≺ Mj(y)

if Mi(x) halts in fewer steps than Mj(y). We do not specify whether Mi(x)
accepts or rejects, and we allow the possibility that Mj(y) never halts.

Consider the languages

(a) La = { 〈i, j, x〉 | Mi(x) ≺ Mj(x) }
(b) Lb = { 〈i, j〉 | (∃x)( Mi(x) ≺ Mj(x) ) }
(c) Lc = { 〈i, j〉 | (∀x)( Mi(x) ≺ Mj(x) ) }
(d) Ld = { 〈i, j〉 | (∃n∀x)( (Mi(x) ≺ Mj(x)) ⇒ (|x| ≤ n) ) }

For each of these languages, tell where it sits in the Arithmetic Hierarchy; e.g.

∆0
1 (recursive)

Σ0
1 (r.e. but not recursive)

Π0
1 (co-r.e. but not recursive)

∆0
2

(etc.)

Justify your answers.

Answer a: This set is r.e., Σ0
1. Given input 〈i, j, x〉 we can first simulate

Mi(x) until it halts. If it never halts, Mi(x) ≺ Mj(x) is necessarily false, so it’s
okay if we loop in this phase. If Mi(x) halts after n steps, we then simulate
Mj(x) for up to n+1 steps. If Mj(x) is still running after n+1 steps, we accept.

Answer b: Again, the set is r.e., Σ0
1. On input 〈i, j〉 we enumerate all pairs

〈x, n〉. For each pair, if Mi(x) halts within n steps and Mj(x) does not, we
accept.

Answer c: This set is Π0
2. You can characterize it by

(∀x)(∃t)( Mi(x) halts in t steps and Mj(x) does not )

showing that it is in Π0
2. To show that it is properly in Π0

2, observe you can
reduce TOTAL (the set of total TM indices) to this language by letting Mj be a
machine that loops on every input (and modifying Mi if necessary so it accepts
if and only if it halts).
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Answer d: By a similar argument, this language is Σ0
2, As above, ≺ is basi-

cally a single existential. Rewrite

( (Mi(x) ≺ Mj(x)) ⇒ (|x| ≤ n) )

as

( ¬(Mi(x) ≺ Mj(x)) ∨ (|x| ≤ n) )

so the existential is inside a negation, and becomes a universal. Now the speci-
fication of Ld is

(∃n)(∀x)(∀t)( . . . )

We can combine the pair of adjacent universals so the specification becomes

(∃n)(∀x, t)( . . . )

putting Ld in Σ0
2; Again, as above, you can reduce FINITE (the set of indices

of TM’s that recognize finite languages) to this set by choosing Mj to be an
everywhere-looping machine.

3. (20 points) Let

F1, F2, F3, . . .

be an effective enumeration of the primitive recursive function definitions. Using
it, describe a total TM-computable function that is not primitive recursive.
Justify your answer.

Answer: As the hint suggests, this is just a diagonalization. Invoke Church’s
Thesis to argue that a TM can simulate a primitive recursive function definition.
That is, the function

(i, n) 7→ Fi(n)

is a total TM-computable function. Now construct a machine M which, given
input n, computes

(n) 7→ Fn(n) + 1

Clearly M is total, but the function it computes cannot be Fi for any i.
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4. (25 points) Language L is said to be bounded if

(∃k)(∃w1, w2, . . . , wk)( L ⊆ w∗
1w∗

2 . . . w∗
k )

Define

N(L,m) = |{ w ∈ L | length(w) ≤ m }|

that is, N(L,m) is the number of strings in L of length at most m.

(a) (8 points) Show that if L is bounded then there exists a polynomial p(m)
such that N(L,m) ≤ p(m) (that is, N(L,m) is bounded by some polynomial in
m).

Answer a: Suppose

w = wi1
1 wi2

2 . . . wik

k

We can assume without loss of generality that for all j the string wj is not the
empty string – otherwise we could just leave it out of the specification, and the
language would remain bounded by the remaining k − 1 strings. In that case,
each of i1, . . . , ik can be at most the length of w. Thus, there are fewer than
|w|k possible choices for i1 thru ik, so N(L,m) ≤ mk as desired.

(b) (9 points) Give examples of languages that are

(1) Regular but not bounded.
(2) Bounded and context-free but not regular; and
(3) Bounded but not context-free.

Justify your answers.

Answer b: For part (1), we can simply use Σ∗, since

N( Σ∗, m ) = |Σ|m

which grows faster than any polynomial in m (provided Σ has at least two
letters).
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For part (2), our old friend

{ 0n10n | n ≥ 0 }

is clearly bounded by 0∗1∗0∗.

For part (3), we can choose a language over 0∗ that is not ultimately periodic,
and argue by Parikh’s Theorem (I got the name right this time) that it cannot
be context-free. Thus, a set like

{ 0p | p is prime }

will do.

(c) (8 points) Given a TM description M , is it decidable whether L(M) is
bounded? Justify your answer.

Answer c: We have given examples above of r.e. sets that are bounded, and
of r.e. sets that are not bounded. Thus, “boundedness” is a nontrivial property
of the r.e. sets, so the result is immediate by Rice’s Theorem.

(d) (20 points extra credit) (This is not easy – don’t tackle it unless you have
time left at the end!) Given a right-linear grammar R, is it decidable whether
L(R) is bounded? Justify.

Answer d: Assume wlog that the grammar has no useless nonterminals –
every nonterminal is reachable from the start symbol and generates at least one
terminal string. Also we’ll assume the alphabet is {0, 1}.

Suppose there exists a nonterminal A and a pair of strings w and x such that

A →∗ 0wA and A →∗ 1xA

In this case, by part (a), L(R) cannot be bounded, since

N(L(R),m) ≥ 2q q = m/(1 + max(|w|, |x|))

which grows faster than any polynomial in m.
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Suppose a pair of derivations like the above cannot exist. Then for any A and
any pair of strings u and v,

(A →∗ uA ∧ A →∗ vA) ⇒ (u ≺ v)

where we use ≺ to mean “is a prefix of” and we assume wlog that u is shorter
than v.

Now choose any nonterminal A and let

g = gcd( { length(z) | A →∗ zA } )

Let

uA = the first g symbols of z where A →∗ zA

This is well-defined, since for any two such z one must be a prefix of the other.
You can show that

(A →∗ zA) ⇒ z ∈ u∗A

There is such a uA for each nonterminal A.

Now, consider any derivation in R. It starts with S. It generates a string in u∗S
up to the last use of S in the derivation. It then generates either a 0 or a 1, and
a new nonterminal A. It then generates a string in u∗A until the last use of A.
The derivation continues in this fashion, possibly for every nonterminal in the
grammar. But no nonterminal is used more than once in this way. Eventually
the derivation ends with a use of a rule of the form

B → 0 or B → 1

Suppose the nonterminals are A, B, . . . , Z. The above argument shows the
language must be bounded by

( u∗Au∗B . . . u∗Z0∗1∗ )n

where n is the number of nonterminals in the grammar. Note most of the uses
of * are expanded 0 times.

To test whether L(R) is bounded, it suffices to test the condition given above,
that is, whether there is a nonterminal A and strings w and x such that

A →∗ 0wA and A →∗ 1xA

Since w and x can always be chosen to be no longer than the number of non-
terminals, this property is decidable.
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5. (54 points – each part 2 points for answer, 4 points for justification) For
this question, we use the notation

A,A1, . . . regular sets
L,L1, . . . context-free languages
D,D1, . . . deterministic CFLs
M, . . . Turing Machine descriptions

We use the symbol “]” as a separator symbol not otherwise in any of the lan-
guages.

For each of the following sets, tell whether it is necessarily

(1) regular,
(2) a deterministic CFL,
(3) a CFL,
(4) co-CFL, the complement of a CFL,
(5) recursive,
(6) r.e. (i.e. Σ0

1), or
(7) co-r.e (i.e. Π0

1).

The sets are

(a) AA = { xy | x ∈ A ∧ y ∈ A }
(b) { x]x | x ∈ A }
(c) { x | xrxxr ∈ A }
(d) { x | (∃y)( xy ∈ A ∧ y ∈ L ) }
(e) { x | (∃y)( x ∈ A ∧ xy ∈ L ) }
(f) D1 ∩ D2

(g) L1 ∩ L2

(h) ValCompsM,x

(i) ValCompsM =
⋃

x ValCompsM,x

Justify your answers briefly.

Answers:

(a) – regular (1)
(b) – co-CFL (4)
(c) – regular (1)
(d) – regular (1)
(e) – CFL (3)

8



(f) – co-CFL (4)
(g) – recursive (5)
(h) – regular (1)
(i) – co-CFL (4)

Justifications: (a) From lecture, regular sets are closed under concatenation.

(b) We showed in lecture that

D = { w]w | w ∈ Σ∗ }

is co-CFL. Then the language Lb is simply

Lb = D ∩ (A · {]} ·A)

so

Lb = D ∩ (A · {]} ·A) = D ∪ (A · {]} ·A)

This is the union of a CFL and a regular set, and thus is a CFL.

(c) A slick proof that this language is regular uses a 2-way DFA – remember
those? We proved they recognize only regular languages. A 2-way DFA can
recognize

{ x | xrxxr ∈ A }

by first moving its head to the right end of the input, then doing three scans
of the input tape: right-to-left, then left-to-right, then right-to-left again, while
simulating a DFA that recognizes A.

(d) We proved this in a homework for the case where L is an arbitrary set.

(e) The specified language Lc is context-free: it is the set of prefixes of the
intersection of a CFL with a regular set, and both these operations preserve
CFLs. To show that Lc is not in general regular or a DCFL, it is sufficient to
let A be Σ∗ and L be some prefix-closed CFL that is not a DCFL; the set

L = {0i1j2k | i, j, k ≥ 0 ∧ (i ≥ j ∨ igeqk) }

is sufficient.
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(f) Since DCFLs are closed under complement, we get

D1 ∩ D2 = D1 ∪ D2

Since the union of two DCFLs is in general a (nondeterministic) CFL, the result
follows.

(g) We know it is undecidable whether the intersection of two CFLs is empty, but
that does not tell us much about the complexity of the intersection – consider
parts (h) and (i). Obviously a CFL is recursive, and the recursive sets are closed
under intersection, so Lg is recursive. To show it is not a CFL, we can easily
choose L1 and L2 so their intersection is

L1 ∩ L2 = { aibici | i ≥ 0 }

which is not a CFL. To show Lg is not co-CFL, let L1 be Σ∗ and L2 be a CFL
whose complement is not a CFL (for example, {w]x | w 6= x }).

(h) Since V alCompsM,x is either empty (if M does not accept x) or a single
string (representing the accepting computation if M does accept x), it is always
regular. It’s just undecidable what regular set it is . . .

(i) In lecture (and in the text) we proved V alCompsM,x is co-CFL. The proof
goes over almost completely unchanged for V alCompsM . For the version in
the text, we replace condition (3) on p. 252 by “α0 represents some start
configuration of M .”
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