CS481F01 Final Solutions

A. Demers

18 Dec 2001

The solutions here were typeset during the exam. I didn't quite finish, which suggests - as usual - the exam was longer than I intended it to be.

1. (20 points) Post's Correspondence Problem (PCP) is the following: You are given a finite collection of pairs of strings

$$
\left\{\left\langle x_{1}, y_{1}\right\rangle,\left\langle x_{2}, y_{2}\right\rangle, \ldots,\left\langle x_{n}, y_{n}\right\rangle\right\}
$$

and are asked whether

$$
\left(\exists n, i_{1}, i_{2}, \ldots, i_{n}\right)\left(x_{i_{1}} x_{i_{2}} \ldots x_{i_{n}}=y_{i_{1}} y_{i_{2}} \ldots y_{i_{n}}\right)
$$

that is, whether there is a way to chose a finite sequence of pairs (possibly with repetitions) so that corresponding strings concatenate to the same result.

For example, the instance

$$
\langle 00,0\rangle,\langle 10,1\rangle,\langle 1,0001\rangle
$$

has solution

$$
n=4, i_{1}=2, i_{2}=1, i_{3}=1, i_{4}=3
$$

since

$$
x_{2} x_{1} x_{1} x_{3}=1000001=1000001=y_{2} y_{1} y_{1} y_{3}
$$

while you can verify that the instance
$\langle 10,1\rangle,\langle 10,01\rangle,\langle 1,11\rangle$
has no solution.
Prove PCP is not decidable.

Answer 1: PCP is a well known problem. Proofs of its undecidability "abound in the literature" - see, for example, Hopcroft and Ullman, Introduction to $A u$ tomata Theory, Languages and Computation, p. 193 ff . (the page number may be wrong - I don't own the latest edition). This text was on reserve in the Engineering Library for this course.

A number of people tried to solve this problem using Rice's Theorem. I don't know a correct way to do this. The incorrect attempts were of the following form.

Any instance of PCP can be represented as a string

$$
\sharp x_{1} \sharp y_{1} \sharp x_{2} \sharp y_{2} \ldots \sharp x_{n} \sharp y_{n} \sharp
$$

Let the property $P(L)$ be " L is $\{w\}$, where w is the encoding of an instance of PCP that has a solution." Clearly P is a nontrivial property of sets, so Rice's Theorem applies.

The problem is, Rice's Theorem doesn't tell us anything interesting about decidability of PCP. What Rice's Theorem tells us is

$$
\left\{i \mid P\left(L\left(M_{i}\right)\right)\right\} \text { is not recursive. }
$$

What we're interested in is

$$
\begin{aligned}
L_{P C P} & =\{w \mid w \text { encodes a PCP instance with a solution }\} \\
& =\{w \mid P(\{w\})\}
\end{aligned}
$$

Rice's Theorem does not imply that $L_{P C P}$ is undecidable.
Consider the property $Q(L)$ given by " L is $\{w\}$, for some w such that length (w) is prime." Clearly this is a nontrivial property of sets, so by Rice's Theorem

$$
\left\{i \mid Q\left(L\left(M_{i}\right)\right)\right\} \text { is not recursive. }
$$

But just as clearlly

$$
\{w \mid Q(\{w\})\} \quad \text { is recursive. }
$$

It was an interesting idea, though.
2. (24 points - each part 2 points for answer, 4 points for justification) For this problem, define

$$
M_{i}(x) \prec M_{j}(y)
$$

if $M_{i}(x)$ halts in fewer steps than $M_{j}(y)$. We do not specify whether $M_{i}(x)$ accepts or rejects, and we allow the possibility that $M_{j}(y)$ never halts.
Consider the languages
(a) $\quad L_{a}=\left\{\langle i, j, x\rangle \mid M_{i}(x) \prec M_{j}(x)\right\}$
(b) $\quad L_{b}=\left\{\langle i, j\rangle \mid(\exists x)\left(M_{i}(x) \prec M_{j}(x)\right)\right\}$
(c) $\quad L_{c}=\left\{\langle i, j\rangle \mid(\forall x)\left(M_{i}(x) \prec M_{j}(x)\right)\right\}$
(d) $\quad L_{d}=\left\{\langle i, j\rangle \mid(\exists n \forall x)\left(\left(M_{i}(x) \prec M_{j}(x)\right) \Rightarrow(|x| \leq n)\right)\right\}$

For each of these languages, tell where it sits in the Arithmetic Hierarchy; e.g.

```
\Delta (1 (recursive)
\Sigma (r.e. but not recursive)
\Pi
\Delta 0
(etc.)
```

Justify your answers.

Answer a: This set is r.e., Σ_{1}^{0}. Given input $\langle i, j, x\rangle$ we can first simulate $M_{i}(x)$ until it halts. If it never halts, $M_{i}(x) \prec M_{j}(x)$ is necessarily false, so it's okay if we loop in this phase. If $M_{i}(x)$ halts after n steps, we then simulate $M_{j}(x)$ for up to $n+1$ steps. If $M_{j}(x)$ is still running after $n+1$ steps, we accept.

Answer b: Again, the set is r.e., Σ_{1}^{0}. On input $\langle i, j\rangle$ we enumerate all pairs $\langle x, n\rangle$. For each pair, if $M_{i}(x)$ halts within n steps and $M_{j}(x)$ does not, we accept.

Answer c: This set is Π_{2}^{0}. You can characterize it by

$$
(\forall x)(\exists t)\left(M_{i}(x) \text { halts in } t \text { steps and } M_{j}(x) \text { does not }\right)
$$

showing that it is in Π_{2}^{0}. To show that it is properly in Π_{2}^{0}, observe you can reduce TOTAL (the set of total TM indices) to this language by letting M_{j} be a machine that loops on every input (and modifying M_{i} if necessary so it accepts if and only if it halts).

Answer d: By a similar argument, this language is Σ_{2}^{0}, As above, \prec is basically a single existential. Rewrite

$$
\left(\left(M_{i}(x) \prec M_{j}(x)\right) \Rightarrow(|x| \leq n)\right)
$$

as

$$
\left(\neg\left(M_{i}(x) \prec M_{j}(x)\right) \vee(|x| \leq n)\right)
$$

so the existential is inside a negation, and becomes a universal. Now the specification of L_{d} is

$$
(\exists n)(\forall x)(\forall t)(\ldots)
$$

We can combine the pair of adjacent universals so the specification becomes

$$
(\exists n)(\forall x, t)(\ldots)
$$

putting L_{d} in Σ_{2}^{0}; Again, as above, you can reduce FINITE (the set of indices of TM's that recognize finite languages) to this set by choosing M_{j} to be an everywhere-looping machine.
3. (20 points) Let

$$
F_{1}, F_{2}, F_{3}, \ldots
$$

be an effective enumeration of the primitive recursive function definitions. Using it, describe a total TM-computable function that is not primitive recursive. Justify your answer.

Answer: As the hint suggests, this is just a diagonalization. Invoke Church's Thesis to argue that a TM can simulate a primitive recursive function definition. That is, the function

$$
(i, n) \mapsto F_{i}(n)
$$

is a total TM-computable function. Now construct a machine M which, given input n, computes

$$
(n) \mapsto F_{n}(n)+1
$$

Clearly M is total, but the function it computes cannot be F_{i} for any i.
4. (25 points) Language L is said to be bounded if

$$
(\exists k)\left(\exists w_{1}, w_{2}, \ldots, w_{k}\right)\left(L \subseteq w_{1}^{*} w_{2}^{*} \ldots w_{k}^{*}\right)
$$

Define

$$
N(L, m)=\mid\{w \in L \mid \text { length }(w) \leq m\} \mid
$$

that is, $N(L, m)$ is the number of strings in L of length at most m.
(a) (8 points) Show that if L is bounded then there exists a polynomial $p(m)$ such that $N(L, m) \leq p(m)$ (that is, $N(L, m)$ is bounded by some polynomial in m).

Answer a: Suppose

$$
w=w_{1}^{i_{1}} w_{2}^{i_{2}} \ldots w_{k}^{i_{k}}
$$

We can assume without loss of generality that for all j the string w_{j} is not the empty string - otherwise we could just leave it out of the specification, and the language would remain bounded by the remaining $k-1$ strings. In that case, each of i_{1}, \ldots, i_{k} can be at most the length of w. Thus, there are fewer than $|w|^{k}$ possible choices for i_{1} thru i_{k}, so $N(L, m) \leq m^{k}$ as desired.
(b) (9 points) Give examples of languages that are
(1) Regular but not bounded.
(2) Bounded and context-free but not regular; and
(3) Bounded but not context-free.

Justify your answers.

Answer b: For part (1), we can simply use Σ^{*}, since

$$
N\left(\Sigma^{*}, m\right)=|\Sigma|^{m}
$$

which grows faster than any polynomial in m (provided Σ has at least two letters).

For part (2), our old friend

$$
\left\{0^{n} 10^{n} \mid n \geq 0\right\}
$$

is clearly bounded by $0^{*} 1^{*} 0^{*}$.
For part (3), we can choose a language over 0^{*} that is not ultimately periodic, and argue by Parikh's Theorem (I got the name right this time) that it cannot be context-free. Thus, a set like

$$
\left\{0^{p} \mid p \text { is prime }\right\}
$$

will do.
(c) (8 points) Given a TM description M, is it decidable whether $L(M)$ is bounded? Justify your answer.

Answer c: We have given examples above of r.e. sets that are bounded, and of r.e. sets that are not bounded. Thus, "boundedness" is a nontrivial property of the r.e. sets, so the result is immediate by Rice's Theorem.
(d) (20 points extra credit) (This is not easy - don't tackle it unless you have time left at the end!) Given a right-linear grammar R, is it decidable whether $L(R)$ is bounded? Justify.

Answer d: Assume wlog that the grammar has no useless nonterminals every nonterminal is reachable from the start symbol and generates at least one terminal string. Also we'll assume the alphabet is $\{0,1\}$.

Suppose there exists a nonterminal A and a pair of strings w and x such that

$$
A \rightarrow^{*} 0 w A \quad \text { and } \quad A \rightarrow^{*} 1 x A
$$

In this case, by part (a), L(R) cannot be bounded, since

$$
N(L(R), m) \geq 2^{q} \quad q=m /(1+\max (|w|,|x|))
$$

which grows faster than any polynomial in m.

Suppose a pair of derivations like the above cannot exist. Then for any A and any pair of strings u and v,

$$
\left(A \rightarrow^{*} u A \wedge A \rightarrow^{*} v A\right) \Rightarrow(u \prec v)
$$

where we use \prec to mean "is a prefix of" and we assume wlog that u is shorter than v.

Now choose any nonterminal A and let

$$
g=\operatorname{gcd}\left(\left\{\operatorname{length}(z) \mid A \rightarrow^{*} z A\right\}\right)
$$

Let

$$
u_{A}=\text { the first } g \text { symbols of } z \quad \text { where } A \rightarrow^{*} z A
$$

This is well-defined, since for any two such z one must be a prefix of the other. You can show that

$$
\left(A \rightarrow^{*} z A\right) \Rightarrow z \in u_{A}^{*}
$$

There is such a u_{A} for each nonterminal A.
Now, consider any derivation in R. It starts with S. It generates a string in u_{S}^{*} up to the last use of S in the derivation. It then generates either a 0 or a 1 , and a new nonterminal A. It then generates a string in u_{A}^{*} until the last use of A. The derivation continues in this fashion, possibly for every nonterminal in the grammar. But no nonterminal is used more than once in this way. Eventually the derivation ends with a use of a rule of the form

$$
B \rightarrow 0 \quad \text { or } \quad B \rightarrow 1
$$

Suppose the nonterminals are A, B, \ldots, Z. The above argument shows the language must be bounded by

$$
\left(u_{A}^{*} u_{B}^{*} \ldots u_{Z}^{*} 0^{*} 1^{*}\right)^{n}
$$

where n is the number of nonterminals in the grammar. Note most of the uses of * are expanded 0 times.

To test whether $L(R)$ is bounded, it suffices to test the condition given above, that is, whether there is a nonterminal A and strings w and x such that

$$
A \rightarrow^{*} 0 w A \quad \text { and } \quad A \rightarrow^{*} 1 x A
$$

Since w and x can always be chosen to be no longer than the number of nonterminals, this property is decidable.
5. (54 points - each part 2 points for answer, 4 points for justification) For this question, we use the notation

$$
\begin{array}{ll}
A, A_{1}, \ldots & \text { regular sets } \\
L, L_{1}, \ldots & \text { context-free languages } \\
D, D_{1}, \ldots & \text { deterministic CFLs } \\
M, \ldots & \text { Turing Machine descriptions }
\end{array}
$$

We use the symbol " \sharp " as a separator symbol not otherwise in any of the languages.

For each of the following sets, tell whether it is necessarily
(1) regular,
(2) a deterministic CFL,
(3) a CFL,
(4) co-CFL, the complement of a CFL,
(5) recursive,
(6) r.e. (i.e. Σ_{1}^{0}), or
(7) co-r.e (i.e. Π_{1}^{0}).

The sets are
(a) $A A=\{x y \mid x \in A \wedge y \in A\}$
(b) $\{x \sharp x \mid x \in A\}$
(c) $\left\{x \mid x^{r} x x^{r} \in A\right\}$
(d) $\quad\{x \mid(\exists y)(x y \in A \wedge y \in L)\}$
(e) $\{x \mid(\exists y)(x \in A \wedge x y \in L)\}$
(f) $D_{1} \cap D_{2}$
(g) $L_{1} \cap L_{2}$
(h) ValComps $_{M, x}$
(i) $\operatorname{ValComps}_{M}=\bigcup_{x} \operatorname{ValComps}_{M, x}$

Justify your answers briefly.

Answers:

(a) - regular (1)
(b) - co-CFL (4)
(c) - regular (1)
(d) - regular (1)
(e) - CFL (3)
(f) - co-CFL (4)
(g) - recursive (5)
(h) - regular (1)
(i) - co-CFL (4)

Justifications: (a) From lecture, regular sets are closed under concatenation.
(b) We showed in lecture that

$$
D=\left\{w \sharp w \mid w \in \Sigma^{*}\right\}
$$

is co-CFL. Then the language L_{b} is simply

$$
L_{b}=D \cap(A \cdot\{\sharp\} \cdot A)
$$

so

$$
\overline{L_{b}}=\overline{D \cap(A \cdot\{\sharp\} \cdot A)}=\bar{D} \cup \overline{(A \cdot\{\sharp\} \cdot A)}
$$

This is the union of a CFL and a regular set, and thus is a CFL.
(c) A slick proof that this language is regular uses a 2 -way DFA - remember those? We proved they recognize only regular languages. A 2-way DFA can recognize

$$
\left\{x \mid x^{r} x x^{r} \in A\right\}
$$

by first moving its head to the right end of the input, then doing three scans of the input tape: right-to-left, then left-to-right, then right-to-left again, while simulating a DFA that recognizes A.
(d) We proved this in a homework for the case where L is an arbitrary set.
(e) The specified language L_{c} is context-free: it is the set of prefixes of the intersection of a CFL with a regular set, and both these operations preserve CFLs. To show that L_{c} is not in general regular or a DCFL, it is sufficient to let A be Σ^{*} and L be some prefix-closed CFL that is not a DCFL; the set

$$
L=\left\{0^{i} 1^{j} 2^{k} \mid i, j, k \geq 0 \wedge(i \geq j \vee i g e q k)\right\}
$$

is sufficient.
(f) Since DCFLs are closed under complement, we get

$$
D_{1} \cap D_{2}=\overline{\overline{D_{1}} \cup \overline{\overline{D_{2}}}}
$$

Since the union of two DCFLs is in general a (nondeterministic) CFL, the result follows.
(g) We know it is undecidable whether the intersection of two CFLs is empty, but that does not tell us much about the complexity of the intersection - consider parts (h) and (i). Obviously a CFL is recursive, and the recursive sets are closed under intersection, so L_{g} is recursive. To show it is not a CFL, we can easily choose L_{1} and L_{2} so their intersection is

$$
L_{1} \cap L_{2}=\left\{a^{i} b^{i} c^{i} \mid i \geq 0\right\}
$$

which is not a CFL. To show L_{g} is not co-CFL, let L_{1} be Σ^{*} and L_{2} be a CFL whose complement is not a CFL (for example, $\{w \sharp x \mid w \neq x\}$).
(h) Since ValComps $_{M, x}$ is either empty (if M does not accept x) or a single string (representing the accepting computation if M does accept x), it is always regular. It's just undecidable what regular set it is ...
(i) In lecture (and in the text) we proved $\operatorname{ValComps} s_{M, x}$ is co-CFL. The proof goes over almost completely unchanged for $\mathrm{ValComps}_{M}$. For the version in the text, we replace condition (3) on p. 252 by " α_{0} represents some start configuration of M."

