
Lecture 28: The future of ML? Alternatives to the
transformer. Open problems.

CS4787/5777 — Principles of Large-Scale Machine Learning Systems

Summary and open questions.

Scaling machine learning methods is increasingly important. In this course, we addressed the high-level
question: What principles underlie the methods that allow us to scale machine learning? To answer this
question, we used techniques from three broad areas: statistics, optimization, and systems. We articulated
three broad principles, one in each area.

• Statistics Principle: Make it easier to process a large dataset by processing a small random
subsample instead.

• Optimization Principle: Write your learning task as an optimization problem, and solve it via
fast general algorithms that update the model iteratively.

• Systems Principle: Use algorithms that fit your hardware, and use hardware that fits your algo-
rithms.

We covered many techniques in this class...but there are lots of open questions left!

▷ Open question: Is scaling really all we need for ML?

• Recent trend is to run bigger and bigger models!

• e.g. GPT-3 is a language model that has 175 billion parameters

• We can use these large models for zero-shot learning, and this often outperforms non-transfer-learning
approaches

• Performance of these models seems to improve further with size, following so-called “scaling laws”

• Is scaling up the size of modern transformers where we should expect to see the most gains? Should
we devote most of our resources to this?

• What is the right way to fine-tune foundation models for a target task?
– Fine-tune all the weights

– Fine-tune a prompt

– Fine-tune some smaller subset of the weights

– ...or learn a new network alongside the main one

• May be reaching the limits of scaling using language data, since an AI language model can only be as
”smart” as a distribution over token strings

▷ Open question: Can we find some new architecture to replace transformers?

• Recall: transformers scale quadratically with context length

• This is bad for performance as we generate longer texts

1



• Alternatives:
– State space models

xk = Axk−1 +Buk yk = Cxk.

– Mixer architectures (long convolutional layers)

– Models based on classes of matrices that admit fast matrix-vector multiply

▷ Open problem: reproducibility and debugging of machine learning systems.

• Most of the algorithms we discussed in class are randomized, and random algorithms are hard to
reproduce.

• Even when we don’t use explicitly randomized methods, floating point imprecision can still make
results difficult to reproduce exactly.

– For hardware efficiency, the compiler loves to reorder floating point operations (this is sometimes
called fast math mode) which can introduce slight differences in the output of an ML system.

– As a result, even running the same learning algorithm on the same data on different ML frame-
works can result in different learned models!

• Reproducibility is also made more challenging when hyperparameter optimization is used.
– Unless you have the random seed, it’s impossible to reproduce someone else’s random search.

– Hyperparameter optimization provides lots of opportunity for (possibly unintentional) cheating,
where the test set is used improperly.

• ML models are difficult to debug because they often learn around bugs.

▷ Open problem: more scalable distributed machine learning.

• Distributed machine learning has this fundamental tradeoff with the batch size.
– Larger batch size good for systems because there’s more parallelism.

– Smaller batch size good for statistics because we can make more “progress” per gradient sample.
(For the same reason that SGD is generally better than gradient descent.)

• Communication among workers outside a pod can have high latency in distributed learning.

• The datacenters of the future will likely have many heterogeneous workers available.
– How can we best distribute a learning workload across heterogeneous workers?

• When running many workers in parallel, the performance will start to be bound by stragglers, workers
that take longer to work than their counterparts. How can we deal with this while still retaining
performance guarantees?

▷ Open problem: robustness to adversarial examples.

• It’s easy to construct examples that fool a deep neural network.

• How can we make our scalable ML methods provably robust to these type of attacks?

Thank you, and please submit course evaluations!

2


