
Inference, Deployment, and 
Compression

CS4787/5777 Lecture 26 — Fall 2023



Review: Inference

• Suppose that our training loss function looks like

• Inference is the problem of computing the prediction
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Why should we care about inference?

• Train once, infer many times
• Many production machine learning systems just do inference

• Often want to run inference on low-power edge 
devices
• Such as cell phones, security cameras
• Limited memory on these devices to store models

• Need to get responses to users quickly
• On the web, users won’t wait more than a second



Metrics for Inference
• Important metric: accuracy

• Inference accuracy can be close to test accuracy — if data from same 
distribution

• Important metric: throughput
• How many examples can we classify in some amount of time

• Important metric: latency
• How long does it take to get a prediction for a single example

• Important metric: model size
• How much memory do we need to store/transmit the model for 

prediction
• Important metric: energy use

• How much energy do we use to produce each prediction
• Important metric: cost

• How much money will all this cost us 



Tradeoffs

• When designing an ML system for inference, there are 
trade-offs among all these metrics!
• Most “techniques” do not give free improvements, but have 

some trade-off where some metrics get better and others get 
worst

• There is no one-size-fits-all “best” way to do ML 
inference.

• We need to decide which metric we value the most
• Then keep that in mind as we design the system



Improving the performance of 
inference
What tools do we have in our toolbox?



Choosing our hardware: CPU vs GPU

• For training, people generally use GPUs for their high 
throughput

• But for inference, the right choice is less clear

• For small networks, CPUs can have the edge on latency
• And CPUs are generally cheaper…lower cost

• CPU-like architectures are often a good choice for low-power 
systems, since it’s easier to put a low-power CPU on a mobile 
device
• Many mobile chips are now CPU/GPU hybrids, so line is blurred here



Altering the batch size

• Just like with learning, we can make predictions in batches

• Increasing the batch size helps improve parallelism
• Provides more work to parallelize and an additional dimension for 

parallelization
• This improves throughput

• But increasing the batch size can make us do more work 
before we can return an answer for any individual example
• Can negatively affect latency



Demo
Latency vs Throughput



Inference on neural networks

• Just need to run the forward pass of the network.
• A bunch of matrix multiplies and non-linear units.

• Unlike backpropagation for learning, here we do not 
need to keep the activations around for later processing.

• This makes inference a much simpler task than learning.
• Although it can still be costly — it’s a lot of linear algebra to do.



Neural Network Compression

• Find an easier-to-compute network with similar 
accuracy
• Or find a network with smaller model size, depending on the 

goal

• Most compression methods are lossy, meaning that the 
compressed network may sometimes predict differently

• Many techniques for doing this
• We’ll see some in the following slides



Simple Technique: “Old-School” Compression

• Just apply a standard lossless compression technique to 
the weights of your neural network.
• Huffman coding works here, for example.
• Even something very general like gzip can be beneficial.

• This lowers the stored model size without affecting 
accuracy

• But this does mean we need to decompress 
eventually, so it comes at the cost of some compute & 
can affect start-up latency.



Low-precision arithmetic for inference

• Very simple technique: just use low-precision arithmetic in 
inference

• Can make any signals in the model low-precision

• Simple heuristic for compression: keep lowering the 
precision of signals until the accuracy decreases
• Can often get down below 16 bit numbers with this method alone

• Binarization/ternarization is low-precision arithmetic in the 
extreme



Pruning

• Remove activations that are usually zero
• Or that don’t seem to be contributing much 

to the model
• Good heuristic: remove the smallest X% of weights

• Effectively creates a smaller model
• This makes it easy to retrain, since we’re just training a smaller 

network

• There’s always the question of whether training a smaller 
model in the first place would have been as good or better.
• But usually pruning is observed to produce benefits.



Fine-Tuning

• Powerful idea: apply a lossy compression operation, then 
retrain the model to improve accuracy

• A general way of “getting back” accuracy lost due to 
lossy compression.
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Knowledge distillation

• Idea: take a large/complex model and train a
smaller network to match its output
• E.g. Hinton et. al. “Distilling the Knowledge in a 

Neural Network.”

• Often used for distilling ensemble models into a single 
network
• Ensemble models average predictions from multiple 

independently-trained models into a single better prediction
• Ensembles often win Kaggle competitions

• Can also improve the accuracy in some cases.



Efficient architectures

• Some neural network architectures are designed to be 
efficient at inference time
• Examples: MobileNet, ShuffleNet, SqueezeNet

• These networks are often based on sparsely connected 
neurons
• This limits the number of weights which makes models 

smaller and easier to run inference on

• To be efficient, we can just train one of these networks 
in the first place for our application.



Re-use of computation

• For video and time-series data, there is a lot of 
redundant information from one frame to the next.

• We can try to re-use some of the computation from 
previous frames.
• This is less popular than some of the other approaches here, 

because it is not really general.



The last resort for speeding up DNN inference
• Train another, faster type of model that is not a deep 

neural network
• For some real-time applications, you can’t always use a DNN

• If you can get away with a linear model, it’s almost always 
much faster.

• Also, decision trees tend to be quite fast for inference.

• …but with how technology is developing, we’re seeing more 
and more support for fast DNN inference, so this will 
become less necessary.



Where do we run inference?



Inference in the cloud

•Most inference today is run on cloud platforms

• The cloud supports large amounts of compute
• And makes it easy to access it and make it reliable

• This is a good place to put AI that needs to think 
about data

• For interactive models, latency is critical



Inference on edge devices

• Inference can run on your laptop or smartphone
• Here, the size of the model becomes more of an issue
• Limited smartphone memory

• This is good for user privacy and security
• But not as good for companies that want to keep 

their models private

•Also can be used to deploy personalized models



Inference on sensors

• Sometimes we want inference right at the 
source
• On the sensor where data is collected

• Example: a surveillance camera taking video
• Don’t want to stream the video to the cloud, 

especially if most of it is not interesting.

• Energy use is very important here.


