
Distributed Machine Learning
and the Parameter Server

CS4787 Lecture 24 — Fall 2023

So far, we’ve been talking about ways to scale our machine
learning pipeline that focus on a single machine. But if we
really want to scale up to huge datasets and models,
eventually one machine won’t be enough.

This lecture will cover methods for using multiple
machines to do learning.

Distributed computing basics

• Distributed parallel computing involves two or more machines
collaborating on a single task by communicating over a network.
• Unlike parallel programming on a single machine, distributed computing requires

explicit (i.e. written in software) communication among the workers.

• There are a few basic patterns of communication that are used by
distributed programs.

Network
GPU

GPU

Basic patterns of communication
Push
• Machine A sends some data to machine B.

A B

Basic patterns of communication
Pull
• Machine B requests some data from machine B.

• This differs from push only in terms of who initiates the communication

A B

Basic patterns of communication
Broadcast
• Machine A sends data to many machines.

A

C1
C2
C3
C4

Basic patterns of communication
Reduce
• Compute some reduction (usually a sum) of data on multiple machines

C1, C2, …, Cn and materialize the result on one machine B.

C1
C2
C3
C4

B

Basic patterns of communication
All-Reduce
• Compute some reduction (usually a sum) of data on multiple machines

and materialize the result on all those machines.

C1
C2
C3
C4

C1
C2
C3
C4

Basic patterns of communication
Scatter-Reduce
• Compute some reduction of data on M machines and materialize 1/M of

the result on each machine (sharding the result).

C1
C2
C3
C4

C1
C2
C3
C4

Basic patterns of communication
Wait
• One machine pauses its computation and waits on a signal from another

machine

A B

⏸

Basic patterns of communication
Barrier
• Many machines wait until all those machines reach a point in their

execution, then continue from there

C1
C2
C3
C4

C1
C2
C3
C4

Patterns of Communication Summary

• Push/Pull. Machine A sends data to machine B, or B requests data from A.
• Broadcast. Machine A sends some data to many machines C1, C2, …, Cn.
• Reduce. Compute some reduction (usually a sum) of data on multiple

machines C1, C2, …, Cn and materialize the result on one machine B.
• All-reduce. Compute some reduction (usually a sum) of data on multiple

machines C1, C2, …, Cn and materialize the result on all those machines.
• Scatter-reduce. Compute some reduction (usually a sum) of data on multiple

machines C1, C2, …, Cn and materialize the result in a sharded fashion.
• Wait. One machine pauses its computation and waits for data to be received

from another machine.
• Barrier. Many machines wait until all other machines reach a point in their

code before proceeding.

Overlapping computation and communication

• Communicating over the network can have high latency
• we want to hide this latency

• An important principle of distributed computing is overlapping
computation and communication

• For the best performance, we want our workers to still be doing useful
work while communication is going on
• rather than having to stop and wait for the communication to finish
• sometimes called a stall

Running SGD with All-reduce

• All-reduce gives us a simple way of running learning algorithms such as
SGD in a distributed fashion with data parallelism.

• Simply put, the idea is to just parallelize the minibatch. We start with
an identical copy of the parameter on each worker.

• Recall that SGD update step looks like:

Lecture 22: Distributed Machine Learning and the

Parameter Server

CS4787 — Principles of Large-Scale Machine Learning Systems

So far we’ve been talking about ways to scale our machine learning pipeline that focus on a single machine.
But if we really want to scale up to huge datasets and models, eventually one machine won’t be enough. This
lecture will cover methods for using multiple machines to do learning.

Distributed computing basics. Distributed parallel computing involves two or more machines collab-
orating on a single task by communicating over a network. Unlike parallel programming on a single machine,
distributed computing requires explicit (i.e. written in software) communication among the workers. There
are a few basic patterns of communication that are used by distributed programs:

• Push. Machine A sends some data to machine B.

• Pull. Machine B requests some data from machine A. (This differs from push only in terms of who
initiates the communication.)

• Broadcast. Machine A sends some data to many machines C1, C2, . . . , Cn.

• Reduce. Compute some reduction (usually a sum) of data on multiple machines C1, C2, . . . , Cn and
materialize the result on one machine B.

• All-reduce. Compute some reduction (usually a sum) of data on multiple machines C1, C2, . . . , Cn and
materialize the result on all those machines C1, C2, . . . , Cn.

• Wait. One machine pauses its computation and waits for data to be received from another machine.

Communicating over the network can have high latency, so an important principle of parallel computing
is overlapping computation and communication. For the best performance, we want our workers to
still be doing useful work while communication is going on (rather than having to stop and wait for the
communication to finish).

Running SGD with all-reduce. All-reduce gives us a simple way of running learning algorithms such
as SGD in a distributed fashion. Simply put, the idea is to just parallelize the minibatch. We start with an
identical copy of the parameter wt on each worker. If the SGD update step is

wt+1 = wt � ↵t ·
1

B

BX

b=1

rfib,t(wt),

and there are M worker machines such that B = M ·B0, then we can re-write this update step as

wt+1 = wt � ↵t ·
1

M

MX

m=1

1

B0

B0X

b=1

rfim,b,t(wt).

Now, we assign the computation of the sum when m = 1 to worker 1, the computation of the sum when
m = 2 to worker 2, et cetera. After all the gradients are computed, we can perform the outer sum with an

1

Running SGD with All-reduce (continued)

• If

• Now, we assign the computation of the sum when m = 1 to worker 1,
the computation of the sum when m = 2 to worker 2, et cetera.

• After all the gradients are computed, we can perform the outer sum with
an all-reduce operation.

Lecture 22: Distributed Machine Learning and the

Parameter Server

CS4787 — Principles of Large-Scale Machine Learning Systems

So far we’ve been talking about ways to scale our machine learning pipeline that focus on a single machine.
But if we really want to scale up to huge datasets and models, eventually one machine won’t be enough. This
lecture will cover methods for using multiple machines to do learning.

Distributed computing basics. Distributed parallel computing involves two or more machines collab-
orating on a single task by communicating over a network. Unlike parallel programming on a single machine,
distributed computing requires explicit (i.e. written in software) communication among the workers. There
are a few basic patterns of communication that are used by distributed programs:

• Push. Machine A sends some data to machine B.

• Pull. Machine B requests some data from machine A. (This differs from push only in terms of who
initiates the communication.)

• Broadcast. Machine A sends some data to many machines C1, C2, . . . , Cn.

• Reduce. Compute some reduction (usually a sum) of data on multiple machines C1, C2, . . . , Cn and
materialize the result on one machine B.

• All-reduce. Compute some reduction (usually a sum) of data on multiple machines C1, C2, . . . , Cn and
materialize the result on all those machines C1, C2, . . . , Cn.

• Wait. One machine pauses its computation and waits for data to be received from another machine.

Communicating over the network can have high latency, so an important principle of parallel computing
is overlapping computation and communication. For the best performance, we want our workers to
still be doing useful work while communication is going on (rather than having to stop and wait for the
communication to finish).

Running SGD with all-reduce. All-reduce gives us a simple way of running learning algorithms such
as SGD in a distributed fashion. Simply put, the idea is to just parallelize the minibatch. We start with an
identical copy of the parameter wt on each worker. If the SGD update step is

wt+1 = wt � ↵t ·
1

B

BX

b=1

rfib,t(wt),

and there are M worker machines such that B = M ·B0, then we can re-write this update step as

wt+1 = wt � ↵t ·
1

M

MX

m=1

1

B0

B0X

b=1

rfim,b,t(wt).

Now, we assign the computation of the sum when m = 1 to worker 1, the computation of the sum when
m = 2 to worker 2, et cetera. After all the gradients are computed, we can perform the outer sum with an

1

Lecture 22: Distributed Machine Learning and the

Parameter Server

CS4787 — Principles of Large-Scale Machine Learning Systems

So far we’ve been talking about ways to scale our machine learning pipeline that focus on a single machine.
But if we really want to scale up to huge datasets and models, eventually one machine won’t be enough. This
lecture will cover methods for using multiple machines to do learning.

Distributed computing basics. Distributed parallel computing involves two or more machines collab-
orating on a single task by communicating over a network. Unlike parallel programming on a single machine,
distributed computing requires explicit (i.e. written in software) communication among the workers. There
are a few basic patterns of communication that are used by distributed programs:

• Push. Machine A sends some data to machine B.

• Pull. Machine B requests some data from machine A. (This differs from push only in terms of who
initiates the communication.)

• Broadcast. Machine A sends some data to many machines C1, C2, . . . , Cn.

• Reduce. Compute some reduction (usually a sum) of data on multiple machines C1, C2, . . . , Cn and
materialize the result on one machine B.

• All-reduce. Compute some reduction (usually a sum) of data on multiple machines C1, C2, . . . , Cn and
materialize the result on all those machines C1, C2, . . . , Cn.

• Wait. One machine pauses its computation and waits for data to be received from another machine.

Communicating over the network can have high latency, so an important principle of parallel computing
is overlapping computation and communication. For the best performance, we want our workers to
still be doing useful work while communication is going on (rather than having to stop and wait for the
communication to finish).

Running SGD with all-reduce. All-reduce gives us a simple way of running learning algorithms such
as SGD in a distributed fashion. Simply put, the idea is to just parallelize the minibatch. We start with an
identical copy of the parameter wt on each worker. If the SGD update step is

wt+1 = wt � ↵t ·
1

B

BX

b=1

rfib,t(wt),

and there are M worker machines such that B = M ·B0, then we can re-write this update step as

wt+1 = wt � ↵t ·
1

M

MX

m=1

1

B0

B0X

b=1

rfim,b,t(wt).

Now, we assign the computation of the sum when m = 1 to worker 1, the computation of the sum when
m = 2 to worker 2, et cetera. After all the gradients are computed, we can perform the outer sum with an

1

Running SGD with All-reduce (continued)

• After this all-reduce, the whole sum (which is essentially the minibatch
gradient) will be present on all the machines
• so each machine can now update its copy of the parameters

• Since sum is same on all machines, the parameters will update in lockstep

• Statistically equivalent to sequential SGD!

all-reduce operation, after which the full sum

MX

m=1

1

B0

B0X

b=1

rfim,b,t(wt)

will be present on all the worker machines. From here, each worker can individually compute the new value
of wt+1 and update its own parameter vector; after this update, the values of the parameters on each worker
will be the same. This corresponds to the following algorithm.

Algorithm 1 Distributed SGD with All-Reduce
input: loss function examples f1, f2, . . ., number of machines M , per-machine minibatch size B0

input: learning rate schedule ↵t, initial parameters w0, number of iterations T
for m = 1 to M run in parallel on machine m

load w0 from algorithm inputs
for t = 1 to T do

select a minibatch im,1,t, im,2,t, . . . , im,B0,t of size B0

compute gm,t
1

B0

B0X

b=1

rfim,b,t(wt�1)

all-reduce across all workers to compute Gt =
MX

m=1

gm,t

update model wt wt�1 �
↵t

M
·Gt

end for

end parallel for

return wT (from any machine)

It is straightforward to see how one could use the same all-reduce pattern to run variants of SGD such as
Adam and SGD+Momentum.

Benefits of distributed SGD with all-reduce:

• It’s easy to reason about, since it’s statistically equivalent to minibatch SGD.

• It’s easy to implement, since all the worker machines have the same role and it runs on top of standard
distributed computing primitives.

Downsides of distributed SGD with all-reduce:

• While the communication for the all-reduce is happening, the workers are (for the most part) idle.
We’re not overlapping computation and communication.

• The effective minibatch size is growing with the number of machines, and for cases where we don’t
want to run with a large minibatch size for statistical reasons, this can prevent us from scaling to large
numbers of machines using this method.

Where do we get the training examples from? There are two general options for distributed learning:

• Have one or more non-worker servers dedicated to storing the training examples (e.g. a distributed
in-memory filesystem), and have the worker machines load training examples from those servers.

• Partition the training examples among the workers themselves and store them locally in memory on
the workers.

2

Same approach can be used for momentum, Adam, etc.

What are the benefits of
distributing SGD with all-reduce?
What are the drawbacks?

Benefits of distributed SGD with All-reduce

• The algorithm is easy to reason about, since it’s statistically equivalent to
minibatch SGD.
• And we can use the same hyperparameters for the most part.

• The algorithm is easy to implement
• since all the worker machines have the same role and it runs on top of standard

distributed computing primitives.

Drawbacks of distributed SGD with all-reduce

• While the communication for the all-reduce is happening, the workers are (for
the most part) idle.

• We’re not overlapping computation and communication.
• At least by default
• We can overlap communication with preprocessing/data augmentation

• The effective minibatch size is growing with the number of machines,
and for cases where we don’t want to run with a large minibatch size for
statistical reasons, this can prevent us from scaling to large numbers of
machines using this method.

Where do we get the training examples from?

• There are two general options for distributed learning.

• Training data servers
• Have one or more non-worker servers dedicated to storing the training examples

(e.g. a distributed in-memory filesystem)
• The worker machines load training examples from those servers.
• These servers can handle preprocessing and data augmentation (but usually don’t)

• Partitioned dataset
• Partition the training examples among the workers themselves and store them

locally in memory on the workers.

The Parameter Server Model

The Basic Idea

• Recall from the early lectures in this course that a lot of our theory talked
about the convergence of optimization algorithms.
• This convergence was measured by some function over the parameters at time t

(e.g. the objective function or the norm of its gradient) that is decreasing with t,
which shows that the algorithm is making progress.

• For this to even make sense, though, we need to be able to talk about the
value of the parameters at time t as the algorithm runs.
• E.g. in SGD, we had

The parameter server model. Recall from the early lectures in this course that a lot of our theory
talked about the convergence of optimization algorithms. This convergence was measured by some function
over the parameters at time t (e.g. the objective function or the norm of its gradient) that is decreasing with
t, which shows that the algorithm is making progress. For this to even make sense, though, we need to be
able to talk about the value of the parameters at time t as the algorithm runs. E.g. in SGD, we had

wt+1 = wt � ↵trfit(wt)

and here wt is the value of the parameters after t timesteps of the algorithm.

For a program running on a single machine, the meaning of this is usually trivial: the value of the parameters
at time t is just the value of some array in the memory hierarchy (backed by DRAM) at that time. But in a
distributed setting, there is no shared memory, and communication must be done explicitly. Each machine
will usually have one or more copies of the parameters live at any given time, some of which may have been
updates less recently than others, especially if we want to do something more complicated than all-reduce.
This raises the question: when reasoning about a distributed algorithm, what we should consider to be the value
of the parameters a given time?

For SGD with all-reduce, we can answer this question easily, since the value of the parameters is the same
on all workers (it’s guaranteed to be the same by the all-reduce operation). We just appoint this identical
shared value to be the value of the parameters at any given time.

The parameter server model answers this question differently by appointing a single machine, the parameter
server, the explicit responsibility of maintaining the current value of the parameters. The most up-to-date
gold-standard parameters are the ones stored in memory on the parameter server. The parameter server
updates its parameters by using gradients that are computed by the other machines, known as workers, and
pushed to the parameter server. Periodically, the parameter server broadcasts its updated parameters to all
the other worker machines, so that they can use the updated parameters to compute gradients.

Here is a simple diagram of the parameter server architecture.

parameter server

worker
1

worker
2

worker
3

· · · worker
M

training data

workers send
gradients to

parameter server

parameter server
sends new parameters

to workers

There are many ways to learn using a parameter server model, but one of the most common is asynchronous

distributed training. This corresponds to the following algorithm.

3

Parameter Server Basics Continued

• For a program running on a single machine, the value of the parameters at
time t is just the value of some array in the memory hierarchy (backed by
DRAM) at that time.

• But in a distributed setting, there is no shared memory, and communication
must be done explicitly.
• Each machine will usually have one or more copies of the parameters live at any given

time, some of which may have been updates less recently than others, especially if we
want to do something more complicated than all-reduce.

• This raises the question: when reasoning about a distributed algorithm,
what we should consider to be the value of the parameters a given time?

For SGD with all-reduce, we can answer this
question easily, since the value of the parameters is
the same on all workers (it’s guaranteed to be the
same by the all-reduce operation). We just appoint
this identical shared value to be the value of the
parameters at any given time.

The Parameter Server Model

• The parameter server model answers this question differently by appointing a
single machine, the parameter server, the explicit responsibility of
maintaining the current value of the parameters.
• The most up-to-date gold-standard parameters are the ones stored in memory on the

parameter server.

• The parameter server updates its parameters by using gradients that are
computed by the other machines, known as workers, and pushed to the
parameter server.

• Periodically, the parameter server broadcasts its updated parameters to all
the other worker machines, so that they can use the updated parameters to
compute gradients.

The parameter server model. Recall from the early lectures in this course that a lot of our theory
talked about the convergence of optimization algorithms. This convergence was measured by some function
over the parameters at time t (e.g. the objective function or the norm of its gradient) that is decreasing with
t, which shows that the algorithm is making progress. For this to even make sense, though, we need to be
able to talk about the value of the parameters at time t as the algorithm runs. E.g. in SGD, we had

wt+1 = wt � ↵trfit(wt)

and here wt is the value of the parameters after t timesteps of the algorithm.

For a program running on a single machine, the meaning of this is usually trivial: the value of the parameters
at time t is just the value of some array in the memory hierarchy (backed by DRAM) at that time. But in a
distributed setting, there is no shared memory, and communication must be done explicitly. Each machine
will usually have one or more copies of the parameters live at any given time, some of which may have been
updates less recently than others, especially if we want to do something more complicated than all-reduce.
This raises the question: when reasoning about a distributed algorithm, what we should consider to be the value
of the parameters a given time?

For SGD with all-reduce, we can answer this question easily, since the value of the parameters is the same
on all workers (it’s guaranteed to be the same by the all-reduce operation). We just appoint this identical
shared value to be the value of the parameters at any given time.

The parameter server model answers this question differently by appointing a single machine, the parameter
server, the explicit responsibility of maintaining the current value of the parameters. The most up-to-date
gold-standard parameters are the ones stored in memory on the parameter server. The parameter server
updates its parameters by using gradients that are computed by the other machines, known as workers, and
pushed to the parameter server. Periodically, the parameter server broadcasts its updated parameters to all
the other worker machines, so that they can use the updated parameters to compute gradients.

Here is a simple diagram of the parameter server architecture.

parameter server

worker
1

worker
2

worker
3

· · · worker
M

training data

workers send
gradients to

parameter server

parameter server
sends new parameters

to workers

There are many ways to learn using a parameter server model, but one of the most common is asynchronous

distributed training. This corresponds to the following algorithm.

3

Learning with the parameter server

• Many ways to learn with a parameter server

• Synchronous distributed training
• Similar to all-reduce, but with gradients summed on a central parameter server

• Asynchronous distributed training
• Compute and send gradients and add them to the model as soon as possible
• Broadcast updates whenever they are available

Multiple parameter servers

• If the parameters are too numerous for a single parameter server to
handle, we can use multiple parameter server machines.

• We partition the parameters among the multiple parameter servers
• Each server is only responsible for maintaining the parameters in its partition.
• When a worker wants to send a gradient, it will partition that gradient vector and

send each chunk to the corresponding parameter server; later, it will receive the
corresponding chunk of the updated model from that parameter server machine.

• This lets us scale up to very large models!

Other Ways To Distribute
The methods we discussed so far distributed across the minibatch (for all-reduce SGD)
and across iterations of SGD (for asynchronous parameter-server SGD).
But there are other ways to distribute that are used in practice too.

Distribution for hyperparameter optimization

• This is something we’ve already talked about.

• Many commonly used hyperparameter optimization algorithms, such as
grid search and random search, are very simple to distribute.
• They can easily be run on many parallel workers to get results faster.

Model Parallelism

• Main idea: partition the layers of a neural network among different worker
machines.

• This makes each worker responsible for a subset of the parameters.

• Forward and backward signals running through the neural network during
backpropagation now also run across the computer network between the
different parallel machines.
• Particularly useful if the parameters won’t fit in memory on a single machine.
• This is very important when we move to specialized machine learning accelerator

hardware, where we’re running on chips that typically have limited memory and
communication bandwidth.

A Diagram of Model Parallelism

• From “PipeDream: Fast and Efficient Pipeline Parallel DNN Training.”

Pipeline Parallelism

• A variant of model parallelism that tries to improve throughput by
overlapping minibatch computation.
• From “GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism”

Fully Sharded Data
Parallel
• A hybrid of data parallelism

and sharded parameter server
strategies.

• Splits the weights for each
layer among all machines, then
uses a broadcast to get them
whenever they’re needed.

Conclusion and Summary

•Distributed computing is a powerful tool for scaling machine
learning

•We talked about a few methods for distributed training:
• Minibatch SGD with All-reduce
• The parameter server approach
• Model parallelism

• And distribution can be beneficial for many other tasks too!

