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The standard approach
Single-precision floating point (FP32)

• 32-bit floating point numbers

• Usually, the represented value is

Lecture 23: Low-Precision Machine Learning

CS4787 — Principles of Large-Scale Machine Learning Systems

In this lecture, we’ll talk about the relatively recent trend of using number formats with a small number of
bits to reduce the computational cost of machine learning training. But first, we need to understand the
baseline: what do traditional machine learning applications do? Usually, we reason about machine learning
algorithms as if they were computing with infinite-precision real numbers, but of course this isn’t actually
the case. Traditional machine learning systems use 32-bit “single-precision” floating point numbers (or
occasionally 64-bit “double-precision” floating point numbers). How are these numbers represented?
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sign 8-bit exponent 23-bit mantissa

represented number = (�1)sign · 2exponent�127 · 1.b22b21b20 . . . b0
Note the implicit leading 1-bit before the mantissa. This is how floating point numbers are represented,
except for three special cases. The first special case occurs for the smallest representable numbers, when the
exponent = 0. In this case,

represented number = (�1)sign · 2�126 · 0.b22b21b20 . . . b0.

When the mantissa is also zero, this represents 0 (note the possibility of negative zero). When the mantissa
is non-zero, these are so-called denormal numbers. Denormal numbers can cause performance issues in
some code, since they require separate computational pathways. As a result, denormal numbers are often
flushed to zero—we just round them to zero when they occur. Typically this has minimal numerical impact
on machine learning code.

The second special case occurs wfor the largest exponent value, when exponent = 255 = 28 � 1. Here, there
are two possibilities. If the mantissa is zero, then the floating point value represents either positive infinity
(+1) or negative infinity (�1), depending on the sign bit. If the mantissa is nonzero, then the floating
point value represents something that is not a number, called a NaN value. This usually indicates some sort
of error. Here, the bits of the mantissa can contain a message that indicates how the error occurred.

Floating-point operations are usually equivalent to doing the following.

• Interpret the ordinary floating-point number inputs as real numbers.

• Perform the desired operation on those real numbers, producing a real-number result.

• Find the floating-point number that is closest to that result, and return that floating-point number.

In practice this is done with a circuit that is equivalent to this procedure, since obviously we can’t actually
compute with real numbers. This last rounding step has bounded relative error, such that for some constant
✏machine (called the machine epsilon)

|FloatingPointOp(x, y)� RealNumberOp(x, y)|  |RealNumberOp(x, y)| · ✏machine.
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Three special cases

• When the exponent is all 0s, and the mantissa is all 0s
• This represents the real number 0
• Note the possibility of  “negative 0”

• When the exponent is all 0s, and the mantissa is nonzero
• Called a “denormal number” — degrades precision gracefully as 0 approached
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Three special cases (continued)

• When the exponent is all 1s (255), and the mantissa is all 0s
• This represents infinity or negative infinity, depending on the sign
• Indicates overflow or division by 0 occurred at some point

• Note that these events usually do not cause an exception, but sometimes do!

• When the exponent is all 1s (255), but the mantissa is nonzero
• Represents something that is not a number, called a NaN value.
• This usually indicates some sort of  compounded error. 
• The bits of  the mantissa can be a message that indicates how the error occurred. 
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DEMO



Measuring Error in Floating Point Arithmetic

If x 2 R is a real number within the range of a float-

ing point representation, and x̃ is the closest representable

floating-point number to it, then

|x̃� x| = | round(x)� x|  |x| · "machine.

Here, "machine is called the machine epsilon and bounds

the relative error of the format.

<latexit sha1_base64="kHg8T0Z1m6scH+OTF1dqqFe5rpg="></latexit>



Error of  Floating-Point Computations

If x and y are real-numbers representable in a floating-
point format, � denotes an (infinite-precision) binary op-
eration (such as +, ·, etc.) and • denotes the floating-point
version of that operation, then

x•y = round(x�y) and |(x•y)�(x�y)|  |x�y|·"machine,

as long as the result is in range.

<latexit sha1_base64="RA8adcVwj6evcJ2Lniqp6Hjeql0="></latexit>



Exceptions to this error model

• If  the exact result is larger than the largest representable value
• The floating-point result is infinity (or minus infinity)
• This is called overflow

• If  the exact result falls in the range of  denormal numbers, there may be 
more error than the model predicts

• If  there is an invalid computation
• e.g. the square root of  a negative number, or infinity + (-infinity)
• the result is NaN



How can we use this info to make 
our ML systems more scalable?



Low-precision compute

• Idea: replace the 32-bit or 64-bit floating point numbers traditionally 
used for ML with smaller numbers
• For example, 16-bit floats or 8-bit integers

• New specialized chips for accelerating ML training.
• Many of  these chips leverage low-precision compute.

Google’s TPU NVIDIA’s GPUs Intel’s NNP



A low-precision alternative
FP16/Half-precision floating point
• 16-bit floating point numbers

• Usually, the represented value is

x = (�1)sign bit · 2exponent�15 · 1.significand2

The machine epsilon ✏machine measures the numerical error caused by the floating point format. For single-
precision floats, ✏machine ⇡ 1.2⇥ 10�7.

There are a few special cases here as well.

• If the real-number result of the operation is larger in magnitude than the largest non-infinite rep-
resentable floating point number (about ±3.4 ⇥ 1038 for single-precision floats), then the operation
returns positive or negative infinity, as appropriate. This is called overflow.

• If the real-number result of the operation is smaller in magnitude than 1/2 the smallest non-zero
representable floating point number (about 1.4⇥10�45 for single-precision floats, assuming subnormal
numbers are not flushed) then the result of the operation is zero. This is called underflow.

• If the operation does not make sense, such as division by zero or something like (+1) � (+1), then
the result is NaN.

What is the cost of 32-bit floating-point computation?

• Need to store 32 bits in memory for each number used in the algorithm.

• Need to have specialized hardware to support the 32-bit FP computation (this is almost always the
case, but may not hold for some embedded devices).

How can we reduce this cost? Reduce the number of bits!

Motivation: machine learning computations are already noisy due both to random sampling of examples in
SGD and measurement imprecision when gathering data from the real world. As long as the numerical error
from a reduced-bit-count representation is small compared with the noise already observable in SGD, we can
expect that the performance won’t be impacted much.

Half-precision floating point numbers. 16-bit “half-precision” floating-point numbers have recently
become popular for machine learning tasks, particularly for deep learning. These numbers are represented
much like single-precision floats, except with fewer bits.

0123456789101112131415

sign 5-bit exp 10-bit mantissa

In comparison to single-precision floating point numbers, half-precision floats have:

• a larger machine epsilon (meaning more numerical errors due to rounding), ✏machine ⇡ 9.8⇥ 104

• a smaller overflow threshold (meaning more overflow could happen) of about 6.5⇥ 104

• a larger underflow threshold of about 6.0⇥ 10�8.

As long as the numbers we compute in the course of a learning algorithm stay far away from these thresholds,
half-precision floating point numbers can do a pretty good job of approximating real numbers.

What benefits can we expect to get from computing in lower precision?
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Benefits of  Low-Precision: Compute

• Use SIMD/vector instructions to run more computations at once

SIMD Precision

32-bit float vector
F32 F32 F32 F32 F32 F32 F32 F32

16-bit int vector

8-bit int vector

SIMD Parallelism

8 multiplies/cycle
(vmulps instruction)

16 multiplies/cycle
(vpmaddwd instruction)

32 multiplies/cycle
(vpmaddubsw instruction)

64-bit float vector
F64 F64 F64 F64

4 multiplies/cycle
(vmulpd instruction)



Benefits of  Low Precision: Memory

• Puts less pressure on memory and caches

Precision in DRAM

32-bit float vector
F32 F32 F32 F32 F32 F32

16-bit int vector

8-bit int vector

Memory Throughput

10 numbers /ns

20 numbers /ns

40 numbers /ns

64-bit float vector
F64 F64 F64 5 numbers/ns

(assuming ~40 GB/sec memory bandwidth)

… …

… …

… …

… …



Benefits of  Low Precision: Communication

• Uses less network bandwidth in distributed applications

Precision in DRAM
32-bit float vector

F32 F32 F32 F32 F32 F32

16-bit int vector

8-bit int vector

Memory Throughput

10 numbers /ns

20 numbers /ns

40 numbers /ns

(assuming ~40 GB/sec network bandwidth)

… …

… …

… …

Specialized lossy compression
>40 numbers /ns… …



Benefits of  Low Precision: Power

• Low-precision computation can even have a super-linear effect on energy

float32
multiplier

float32
flo

at
32 int16

mul

int16

in
t1

6

• Memory energy can also have quadratic dependence on precision

float32
memory

algorithm runtime

flo
at

32



Effects of  Low-Precision Computation

• Pros
• Fit more numbers (and therefore more training examples) in memory
• Store more numbers (and therefore larger models) in the cache
• Transmit more numbers per second
• Compute faster by extracting more parallelism
• Use less energy

• Cons
• Limits the numbers we can represent
• Introduces quantization error when we store a full-precision number in a low-

precision representation



Numeric properties of  16-bit floats

• A larger machine epsilon (larger rounding errors) of
• Compare 32-bit floats which had  

• A smaller overflow threshold  (easier to overflow) at about 
• Compare 32-bit floats where it’s 

• A larger underflow threshold (easier to underflow) at about
• Compare 32-bit floats where it’s 

The machine epsilon ✏machine measures the numerical error caused by the floating point format. For single-
precision floats, ✏machine ⇡ 1.2⇥ 10�7.
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representable floating point number (about 1.4⇥10�45 for single-precision floats, assuming subnormal
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What benefits can we expect to get from computing in lower precision?
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The machine epsilon ✏machine measures the numerical error caused by the floating point format. For single-
precision floats, ✏machine ⇡ 1.2⇥ 10�7.

There are a few special cases here as well.

• If the real-number result of the operation is larger in magnitude than the largest non-infinite rep-
resentable floating point number (about ±3.4 ⇥ 1038 for single-precision floats), then the operation
returns positive or negative infinity, as appropriate. This is called overflow.

• If the real-number result of the operation is smaller in magnitude than 1/2 the smallest non-zero
representable floating point number (about 1.4⇥10�45 for single-precision floats, assuming subnormal
numbers are not flushed) then the result of the operation is zero. This is called underflow.

• If the operation does not make sense, such as division by zero or something like (+1) � (+1), then
the result is NaN.

What is the cost of 32-bit floating-point computation?

• Need to store 32 bits in memory for each number used in the algorithm.

• Need to have specialized hardware to support the 32-bit FP computation (this is almost always the
case, but may not hold for some embedded devices).

How can we reduce this cost? Reduce the number of bits!

Motivation: machine learning computations are already noisy due both to random sampling of examples in
SGD and measurement imprecision when gathering data from the real world. As long as the numerical error
from a reduced-bit-count representation is small compared with the noise already observable in SGD, we can
expect that the performance won’t be impacted much.

Half-precision floating point numbers. 16-bit “half-precision” floating-point numbers have recently
become popular for machine learning tasks, particularly for deep learning. These numbers are represented
much like single-precision floats, except with fewer bits.
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With all these drawbacks, does anyone use this?
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precision floats, ✏machine ⇡ 1.2⇥ 10�7.
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In comparison to single-precision floating point numbers, half-precision floats have:

• a larger machine epsilon (meaning more numerical errors due to rounding), ✏machine ⇡ 9.8⇥ 10�4

• a smaller overflow threshold (meaning more overflow could happen) of about 6.5⇥ 104

• a larger underflow threshold of about 6.0⇥ 10�8.

As long as the numbers we compute in the course of a learning algorithm stay far away from these thresholds,
half-precision floating point numbers can do a pretty good job of approximating real numbers.

What benefits can we expect to get from computing in lower precision?
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Half-precision floating point support

• Supported on most modern machine-learning-targeted GPUs
• Including efficient implementation on NVIDIA Pascal GPUs

• Good empirical results for deep learning
Micikevicius et al. “Mixed Precision Training.” on arxiv, 2017.



Framework Support

• In TensorFlow, can convert precision of  types explicitly
• tensorflow.cast(x, 'float16’)
• Can also set the data type for neural networks

• PyTorch also has similar half-precision support



One way to address limited range: more exponent bits
Bfloat16 — “brain floating point”
• Another 16-bit floating point number

Q: What can we say about the range of  bfloat16 numbers as 
compared with IEEE half-precision floats and single-precision 
floats? How does their machine epsilon compare? 

Pros of low-precision computing.

• Can fit more numbers (and therefore more training examples, activations, etc.) in memory

• Can store more numbers (and therefore larger models) in the cache

• Can transmit more numbers per second

• Can compute faster by extracting more parallelism in a fixed-width SIMD register

• Uses less energy

Cons of low-precision computing.

• Limits the range of numbers we can represent (the range between the overflow and underflow thresh-
olds)

• Need specialized support from the hardware

• Introduces quantization error when we store a full-precision number in a low-precision representation

Let’s try to address these cons.

One way to address limited range: use more exponent bits. Nothing (apart from the IEEE standard)
forces us to size the exponent and mantissa of our 16-bit floating-point numbers as a 5-bit exponent and 10-
bit mantissa. One popular alternate format (used in many ML processors including the TPU) is the bfloat16
format. This splits the exponent and mantissa into 8/7 as follows
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What can we say about the range of bfloat16 numbers as compared with IEEE half-precision floats
and single-precision floats? How does their machine epsilon compare?

One way to address the need for hardware support: use fixed-point arithmetic instead. Fixed-point
arithmetic represents a number as an integer times a fixed exponent. That is, we have something like this:
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and the number that it represents is

represented number = 2fixed exponent�127 · (number as signed integer) .
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Bfloat16 (continued)

• Main benefit: numeric range is now the same as single-precision float
• Since it looks like a truncated 32-bit float
• This is useful because ML applications are more tolerant to quantization error 

than they are to overflow

• Also supported on specialized hardware



An alternative to low-precision floating point
Fixed point numbers
• p + q + 1 –bit fixed point number

• The represented number is

x = (�1)sign bit
�
integer part + 2�q · fractional part

�

= 2�q · whole thing as signed integer

Pros of low-precision computing.

• Can fit more numbers (and therefore more training examples, activations, etc.) in memory

• Can store more numbers (and therefore larger models) in the cache

• Can transmit more numbers per second

• Can compute faster by extracting more parallelism in a fixed-width SIMD register

• Uses less energy

Cons of low-precision computing.

• Limits the range of numbers we can represent (the range between the overflow and underflow thresh-
olds)

• Need specialized support from the hardware

• Introduces quantization error when we store a full-precision number in a low-precision representation

Let’s try to address these cons.

One way to address limited range: use more exponent bits. Nothing (apart from the IEEE standard)
forces us to size the exponent and mantissa of our 16-bit floating-point numbers as a 5-bit exponent and 10-
bit mantissa. One popular alternate format (used in many ML processors including the TPU) is the bfloat16
format. This splits the exponent and mantissa into 8/7 as follows
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Arithmetic on fixed point numbers

• Simple and efficient
• Can just use preexisting integer processing units
• Lower power than floating point operations with the same number of  bits

• Mostly exact
• Underflow impossible
• Overflow can happen, but is easy to understand
• Can always convert to a higher-precision representation to avoid overflow

• Can represent a much narrower range of  numbers than float



Support for fixed-point arithmetic

• Anywhere integer arithmetic is supported
• CPUs, GPUs
• Although not all GPUs support 8-bit integer arithmetic
• And AVX2 does not have all the 8-bit arithmetic instructions we’d like

• Particularly effective on FPGAs and ASICs
• Where floating point units are costly

• Sadly, very little support for other precisions
• 4-bit operations would be particularly useful



Breakout Questions

•Q: What are the upsides/downsides of  using fixed-point 
numbers for ML?
• Compared to floating-point?

•Q: Can you think of  a place where you’ve already used 
something like fixed-point numbers in a programming 
assignment? 



A powerful hybrid approach
Block Floating Point
• Motivation: when storing a vector of  numbers, often these numbers all 

lie in the same range.
• So they will have the same or similar exponent, if  stored as floating point.

• Block floating point shares a single exponent among multiple numbers.

8-bit shared 
exponent



A more specialized approach
Custom Quantization Points
• Even more generally, we can just have a list of  2b numbers and say that 

these are the numbers a particular low-precision string represents
• We can think of  the bit string as indexing a number in a dictionary

• Gives us total freedom as to range and scaling
• But computation can be tricky

• Some recent research into using this with hardware support
• “The ZipML Framework for Training Models with End-to-End Low Precision: The Cans, 

the Cannots, and a Little Bit of  Deep Learning” (Zhang et al 2017)



How is precision used for DNN training

• Signals flow through network in backpropagation
• Generally, we assign a precision to each of  the types 

of  signals, and different types of  signals can have 
different precisions
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Weight 
gradient

Weight 
accumulator

Types of  signals in backpropagation:

• Training dataset
• Vectors that store 

weights/parameters
• Gradients
• Communication 

among parallel workers
• Activations
• Backward pass signals
• Weight accumulators
• Momentum/ADAM 

vectors



Mixed-Precision training

• Use low precision for some numbers and higher precision for others

1. Accumulate weights in single-precision.
2. Scale the loss to prevent underflow.
3. Use fused mixed-precision multiply-adds

FP16

FP16

x FP32
ACC+ 32-to-16

FP16 FP32



Low-precision formats in general

• These are some of  the most common formats used in ML
• …but we’re not limited to using only these formats!

• There are many other things we could try
• For example, floating point numbers with different exponent/mantissa sizes
• Block floating point numbers with different block sizes/layouts
• Fixed point numbers with nonstandard widths

• Problem: there’s no hardware support for these other things yet, so it’s 
hard to get a sense of  how they would perform.



Theoretical Guarantees for Low Precision

• Reducing precision adds noise in the form of  round-off  error.

• Two approaches to rounding:
• biased rounding – round to nearest number
• unbiased rounding – round randomly: 𝑬 𝑄 𝑥 = 𝑥

Using this, we can prove guarantees
that SGD works with a low precision 

model…since a low-precision 
gradient is an unbiased estimator.

2.0 3.02.7

30% 70%



Why unbiased rounding?

• Imagine running SGD with a low-precision model with update rule

• Here, Q is an unbiased quantization function

• In expectation, this is just gradient descent

wt+1 = Q̃ (wt � ↵trf(wt;xt, yt))

E[wt+1|wt] = E
h
Q̃ (wt � ↵trf(wt;xt, yt))

���wt

i

= E [wt � ↵trf(wt;xt, yt)|wt]

= wt � ↵trf(wt)



Implementing unbiased rounding

• To implement an unbiased to-integer quantizer:

• Why is this unbiased?

sample u ⇠ Unif[0, 1], then set Q(x) = bx+ uc
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E[Q(x)] = bxc ·P(Q(x) = bxc) + (bxc+ 1) ·P(Q(x) = bxc+ 1)

= bxc+P(Q(x) = bxc+ 1) = bxc+P(bx+ uc = bxc+ 1)

= bxc+P(x+ u � bxc+ 1) = bxc+P(u � bxc+ 1� x)

= bxc+ 1 + (bxc+ 1� x) = x.
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Doing unbiased rounding efficiently

• We still need an efficient way to do unbiased rounding

• Pseudorandom number generation can be expensive
• E.G. doing C++ rand or using Mersenne twister takes many clock cycles

• Empirically, we can use very cheap pseudorandom number generators
• And still get good statistical results
• For example, we can use XORSHIFT which is just a cyclic permutation



Benefits of  Low-Precision Computation

From https://devblogs.nvidia.com/parallelforall/mixed-precision-programming-cuda-8/



Conclusion and Drawbacks of  low-precision

• The draw back of  low-precision arithmetic is the low precision!

• Low-precision computation means we accumulate more rounding error 
in our computations

• These rounding errors can add up throughout the learning process, 
resulting in less accurate learned systems

• The trade-off  of  low-precision: throughput/memory vs. accuracy


