Low-Precision Arithmetic

CS4787 Lecture 22 — Spring 2021

The standard approach
Single-precision tloating point (FP32)

* 32-bit floating point numbers

31(30(29|28|27|26(25|24(2322(21|20(19|18|17|16|15|14|13|12(11|10(9 |8 | 7|6 |5 |4 |3 |2 1|0

sign 8-bit exponent 23-bit mantissa

* Usually, the represented value is

represented number = (—1)51&" . gexponent—I27 1 g bo1bag . . . bo

Three special cases

311302928 |27(26(25|24|2322|21(20|19|18|17|16|15(14|13|12|11[10| 9 [8| 7|6 |5 |4 | 3 | 2

sign 8-bit exponent 23-bit mantissa

* When the exponent 1s all Os, and the mantissa is all Os
* This represents the real number 0

* Note the possibility of “negative 0”

* When the exponent 1s all Os, and the mantissa 1s nonzero

* Called a “denormal number” — degrades precision gracetully as 0 approached

represented number = (—1)%8" . 27126 . (. boyby1byg . . . by.

Three special cases (continued)

31130(29|28|27|26(25|24(2322(21|20(19|18|17|16(15|14(13|12(11|10(9 |8 |7 |6 |5 |4 |3 |2 (1

sign 8-bit exponent 23-bit mantissa

* When the exponent 1s all 1s (255), and the mantissa is all Os
* This represents infinity or negative infinity, depending on the sign

* Indicates overflow or division by 0 occurred at some point

* Note that these events usually do not cause an exception, but sometimes do!

* When the exponent 1s all 1s (255), but the mantissa is nonzero
* Represents something that is not a numbert, called a NalN value.
* This usually indicates some sort of compounded error.

* The bits of the mantissa can be a message that indicates how the error occurred.

DEMO

Measuring Error in Floating Point Arithmetic

If x+ € R is a real number within the range of a float-
ing point representation, and x is the closest representable
floating-point number to it, then

1z — x| = |round(x) — z| < || - €machine-

Here, €achine 18 called the machine epsilon and bounds
the relative error of the format.

FError ot Floating-Point Computations

If x and y are real-numbers representable in a floating-
point format, o denotes an (infinite-precision) binary op-
eration (such as +, -, etc.) and e denotes the floating-point
version of that operation, then

rey = round(xoy) and |(zxey)—(xoy)| < |roy|-Emachine,

as long as the result is in range.

Exceptions to this error model

* If the exact result is larger than the largest representable value
* The floating-point result is infinity (or minus infinity)
* This is called overflow

* It the exact result falls in the range of denormal numbers, there may be
more error than the model predicts

* It there 1s an invalid computation

* e.g. the square root of a negative number, or infinity + (-infinity)
* the result is NalN

How can we use this info to make
our ML systems more scalable?

Low-precision compute

* Idea: replace the 32-bit or 64-bit floating point numbers traditionally
used for ML with smaller numbers

* For example, 16-bit floats or 8-bit integers

* New specialized chips for accelerating ML training.

* Many of these chips leverage low-precision compute.

Google’s TPU NVIDIA’s GPUs Intel’s NNP

A low—precision alternative

FP16/Half-precision floating point

* 16-bit floating point numbers

15114113 |12|11|{10|9 |8 | 7 |6 [5[4 (3|2 |1]|0

sign 5-bit exp 10-bit mantissa

* Usually, the represented value is

T — (_1)Slgn bit Qexponent—15 . 1.Signiﬁcand2

Benetits of Low-Precision: Compute

* Use SIMD /vector instructions to run more computations at once

SIMD Precision SIMD Parallelism

-bit fl T
64-bit float vector 4 multlphes /CYCIC
I [[il o
2-bit fl T
32-bit float vector g multlphes /CYC]C
. (vmulps instruction)

. (vpmaddwd instruction)
§_bit int vector 32 multiplies/cycle
i

Benetits ot LLow Precision: Memory

* Puts less pressure on memory and caches

Precision in DRAM Memory Throughput

64-bit float vector
5 numbers/ns

32-bit float vector

. 10 numbers /ns

16-bit int vector

- NNNRRNERARN - 20 numbers /ns

40 numbers /ns

(assuming ~40 GB/sec memory bandwidth)

Benefits of L.ow Precision: Communication

* Uses less network bandwidth in distributed applications

Precision in DRAM Memory Throughput

32-bit float vector

. 10 numbers /ns

16-bit int vector

- NNNRRNERARN - 20 numbers /ns

8-bit int vector
- NNOTRARRATNTRANDINTY - 40 numbers /ns
Specialized lossy compression
>40 numbers /ns

(assuming ~40 GB/sec network bandwidth)

Benefits of L.ow Precision: Power

* Low-precision computation can even have a super-linear etfect on energy

intl6
o 0=

" m
mul

%
float32

multiplier

* Memory energy can also have quadratic dependence on precision

-
N
memory

Ettects ot Low-Precision Computation

* Pros
* it more numbers (and therefore more training examples) in memory
* Store more numbers (and therefore larger models) in the cache
* Transmit more numbers per second
* Compute faster by extracting more parallelism

* Use less energy

e Cons
* Limits the numbers we can represent

* Introduces quantization error when we store a full-precision number in a low-
precision representation

Numeric properties of 16-bit floats

* A larger machine epsilon (larger rounding errors) of €machine ~ 9.8 X 10~
* Compare 32-bit floats which had € chine = 1.2 X 1077,

* A smaller overflow threshold (easier to overflow) at about 6.5 x 104
* Compare 32-bit floats where it’s 3.4 x 10%®

* A larger underflow threshold (easier to underflow) at about 6.0 x 1075.
* Compare 32-bit floats where it’s 1.4 X 1045

With all these drawbacks, does anyone use this?

Half-precision tloating point support

* Supported on most modern machine-learning-targeted GPUs
* Including efficient implementation on NVIDIA Pascal GPUs

Pascal Hardware Numerical Throughput

T
GP100 (Tesla P100 NVLink) NA NA

GP102 (Tesla P40) 43.9 23.5

GP104 (Tesla P4) 21.8 10.9

Table 1: Pascal-based Tesla GPU peak arithmetic throughput for half-, single-, and double-precision fused multiply-
add instructions, and for 8- and 16-bit vector dot product instructions. (Boost clock rates are used in calculating

peak throughputs. TFLOP/s: Tera Floating-point Operations per Second. TIOP/s: Tera Integer Operations per
Second. https://devblogs.nvidia.com/parallelforall/mixed-precision-programming-cuda-8/

* Good empirical results for deep learning

Micikevicius et al. “Mixed Precision Training.” on arxiv, 2017.

Framework Support

* In TensorFlow, can convert precision of types explicitly
« tensorflow.cast(x, 'floatl6’)

e Can also set the data type for neural networks

* PyTorch also has similar half-precision support

half(memory_format=torch.preserve_format) — Tensor

self.half() is equivalent to self.to(torch.float16) .See to().

One way to address limited range: more exponent bits
Bfloat16 — “brain floating point”

* Another 16-bit tloating point number

15114 113|12|11|110|9 | 8| 7|6 |5 |4 |32 |1]0

sign 8-bit exp 7-bit mantissa

Q: What can we say about the range of bfloatl6 numbers as
compared with IEEE half-precision floats and single-precision
floats? How does their machine epsilon compare?

Btloatl6 (continued)

* Main benefit: numeric range is now the same as single-precision float
* Since 1t looks like a truncated 32-bit float

e This is useful because MIL. applications are more tolerant to quantization error
than they are to overflow

* Also supported on specialized hardware

Al & MACHINE LEARNING

BFloat16: The secret to high performance
on Cloud TPUs

Shibo Wang Machine learning workloads are computationally intensive and often run for hours or

Software Engineer, TPU days. To help organizations significantly improve the running time of these workloads,

Pankaj Kanwar Google developed custom processors called Tensor Processing Units, or TPUs, which
Technical Program Manager, make it possible to train and run cutting-edge deep neural networks at higher
TPU

performance and lower cost.

August 23,2019
The second- and third-generation TPU chips are available to Google Cloud customers as

Clanid TPl le Thev deliver 11n to 420 teraflaone ner Cloinid TP device and more than 100

An alternative to low-precision tloating point
Fixed point numbers

* p + q +1-bit fixed point number

15114131211 (10{ 9 |8 | 7|6 |5 |43

sign fixed-point number

* The represented number is

r = (—1)%en b (integer part +27 7.

= 279 . whole thing as signed integer

Arithmetic on fixed point numbers

* Simple and efficient
* Can just use preexisting integer processing units

* Lower power than floating point operations with the same number of bits

* Mostly exact
* Underflow impossible
* Overtlow can happen, but 1s easy to understand

* Can always convert to a higher-precision representation to avoid overflow

* Can represent a much narrower range of numbers than float

Support for fixed-point arithmetic

* Anywhere integer arithmetic is supported
* CPUs, GPUs
* Although not all GPUs support 8-bit integer arithmetic
* And AVX2 does not have all the 8-bit arithmetic instructions we’d like

* Particularly etfective on FPGAs and ASICs

* Where tloating point units are costly

* Sadly, very little support for other precisions
* 4-bit operations would be particularly useful

Breakout Questions

* Q: What are the upsides/downsides of using fixed-point
numbers for ML?

* Compared to floating-point?

* Q: Can you think of a place where you’ve already used
something like fixed-point nhumbers in a programming
assighment?

A powerful hybrid approach
Block Floating Point

* Motivation: when storing a vector of numbers, often these numbers all
lie in the same range.

* So they will have the same or similar exponent, if stored as floating point.

* Block floating point shares a single exponent among multiple numbers.

8-bit shared l lllllll
exponent l lllllll

A more specialized approach
Custom QQuantization Points

* Even more generally, we can just have a list of 2P numbers and say that
these are the numbers a particular low-precision string represents

* We can think of the bit string as indexing a number in a dictionary

* Gives us total freedom as to range and scaling
* But computation can be tricky

* Some recent research into using this with hardware support

* “The ZipMI. Framework for Training Models with End-to-End Iow Precision: The Cans,
the Cannots, and a 1ittle Bit of Deep Learning’ (Zhang et al 2017)

How 1s precision used for DNN training

* Signals flow through network in backpropagation

* Generally, we assign a precision to each of the types
of signals, and different types of signals can have

different precisions

storage

activationsp ey ; activations
Weights
t
Weight
accumulator
backward Weight b aJCkVVardmext
gradient

Types of signals in backpropagation:
* Training dataset

* Vectors that store
weights/parameters

* Gradients

* Communication
among parallel workers

* Activations

* Backward pass signals

* Weight accumulators

e Momentum/ADAM

vectors

Mixed-Precision training

* Use low precision for some numbers and higher precision for others

1. Accumulate weights in single-precision.

2. Scale the loss to prevent underflow.

3. Use fused mixed-precision multiply-adds

FP16

FP32

ACC

FP16 FP16 FP32

~EX)—

MIXED PRECISION TRAINING

Sharan Narang*, Gregory Diamos, Erich Elsen’
Baidu Research

{sharan, gdiamos}@baidu.com

Paulius Micikevicius*, Jonah Alben, David Garcia, Boris Ginsburg, Michael Houston,
Oleksii Kuchaiev, Ganesh Venkatesh, Hao Wu
NVIDIA
{pauliusm, alben, dagarcia, bginsburg, mhouston,
okuchaiev, gavenkatesh, skyw}@nvidia.com

ABSTRACT

Increasing the size of a neural network typically improves accuracy but also in-
creases the memory and compute requirements for training the model. We intro-
duce methodology for training deep neural networks using half-precision float-
ing point numbers, without losing model accuracy or having to modify hyper-
parameters. This nearly halves memory requirements and, on recent GPUs,
speeds up arithmetic. Weights, activations, and gradients are stored in IEEE half-
precision format. Since this format has a narrower range than single-precision we
propose three techniques for preventing the loss of critical information. Firstly,
we recommend maintaining a single-precision copy of weights that accumulates
the gradients after each optimizer step (this copy is rounded to half-precision for
the forward- and back-propagation). Secondly, we propose loss-scaling to pre-
serve gradient values with small magnitudes. Thirdly, we use half-precision arith-
metic that accumulates into single-precision outputs, which are converted to half-
precision before storing to memory. We demonstrate that the proposed methodol-
ogy works across a wide variety of tasks and modern large scale (exceeding 100
million parameters) model architectures, trained on large datasets.

Low-precision formats in general

e These are some of the most common formats used in ML

* ...but we’re not limited to using only these formats!

* There are many other things we could try
* For example, floating point numbers with different exponent/mantissa sizes
* Block floating point numbers with different block sizes/layouts
* Fixed point numbers with nonstandard widths

* Problem: there’s no hardware support for these other things yet, so it’s
hard to get a sense of how they would perform.

Theoretical Guarantees for L.ow Precision

: Using this, we can prove guarantees
* Reducing precision adds noise in the fof S b & .
that SGD works with a low precision

model...since a low-precision

* Two approaches to rounding: gradient is an unbiased estimator.

* biased rounding — round to nearest number
* unbiased rounding — round randomly: E[Q(x)] = x

30% 70%0

o Uy

2.0 2.7 3.0

Why unbiased rounding?

* Imagine running SGD with a low-precision model with update rule

Wi4+1 = Q (wt — othf(wt; Lt, yt))

* Here, Q 1s an unbiased quantization function

* In expectation, this 1s just gradient descent

~

Elw1|w] = E [Q (wg — ¢V f(wy; oy, yt))’wt}

=2 [wt — atvf(wt; Lt , yt)‘wt]
= wy — oV f(wy)

Implementing unbiased rounding

* To implement an unbiased to-integer quantizer:

sample u ~ Unif|0, 1], then set Q(z) = |x

* Why is this unbiased?

E[Q(z)] = [=]-

|
2 8 8 8
|

|-U

P

3
Q\/

+ u |

DEMO

Doing unbiased rounding etficiently

* We still need an efficient way to do unbiased rounding

* Pseudorandom number generation can be expensive

* E.G. doing C++ rand or using Mersenne twister takes many clock cycles

* Empirically, we can use very cheap pseudorandom number generators
* And still get good statistical results

* For example, we can use XORSHIFT which is just a cyclic permutation

Benetits of Low-Precision Computation

300

250

200
e
()
2

~ 150
w
o
o
O

100

50

) — - -
M2090 K40 Kepler P40 Pascal P40 Pascal P40 Pascal
Fermi (fp32) (fp32) Maxwell (fp32) (int8) (int8 + clock
(fp32) capping)

From https://devblogs.nvidia.com/parallelforall/ mixed-precision-programming-cuda-8/

Conclusion and Drawbacks of low-precision

* The draw back of low-precision arithmetic is the low precision!

* Low-precision computation means we accumulate more rounding error
in our computations

* These rounding errors can add up throughout the learning process,
resulting in less accurate learned systems

* The trade-off of low-precision: throughput/memory vs. accuracy

