Lecture 14: Transformers

CS4787/5777 — Principles of Large-Scale ML Systems

Last time, we talked about a bunch of variants of neural networks.

- Residual neural networks include feedback connections in which the outputs of the model are fed back into itself.
- Convolutional neural networks restrict some of the linear transformations W_{l} to be members of some subset of linear transformations, typically convolutions with some filter.
- Recurrent neural networks (RNN) repeat the same layers to process a sequence.

For sequence modeling, the classic way to do it was with RNNs.
Warmup: up to a big- \mathcal{O} analysis, how many flops are needed for this simple MLP-based RNN?

Problems with RNN:

- vanishing gradient
- exploding gradient
- long range dependencies
- difficult to compose with parallelism

A dumb fix.

- For each input token i, embed it to a vector x_{i}
- by looking up in an embedding matrix
- how large does this embedding matrix need to be?
- Pass x_{i} into a multi-layer perceptron (MLP) yielding $y_{i}=\operatorname{MLP}\left(x_{i} ; \mathcal{W}\right)$, where \mathcal{W} denotes all the weights of the MLP.
- Somehow aggregate all the outputs y_{i}, e.g. by averaging them $\bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i}$
- Then pass the result \bar{y} into some linear model, e.g. multinomial logistic regression

Up to a big- \mathcal{O} analysis, how many flops are needed for this simple MLP-based model?

Does this approach "fix" the problems with RNN? What is the problem with this approach?

Transformers. Designed to process sequential data, but can generalize to any sort of structured data. Fixes the "problems" with RNNs by no longer unrolling the sequence length as depth of the network.

Represents an example as a matrix in $\mathbb{R}^{n \times d}$ where n is the sequence length (a.k.a. n "tokens") and d is the representation dimension. Most characteristic layer: attention layer (more formally, "Scaled Dot-Product Attention"). Given input activation matrices $Q \in \mathbb{R}^{n \times d_{k}}$ (the "query" matrix), $K \in \mathbb{R}^{n \times d_{k}}$ (the "key" matrix), and $V \in \mathbb{R}^{n \times d_{v}}$ (the "value" matrix), the attention layer outputs

$$
\operatorname{Attention}(Q, K, V)=\operatorname{softmax}\left(\frac{Q K^{T}}{\sqrt{d_{k}}}\right) V,
$$

where this softmax applies along the rows of the matrix (i.e. each row of softmax (•) sums to 1). You can think of this as a "soft" or "weighted" lookup. This formulation lets every token (every sequence element) look up into every other one: if we want to restrict this, we can use an attention mask $M \in \mathbb{R}^{n \times n}$, usually with elements in $\{-\infty, 0\}$, and set

$$
\operatorname{MaskedAttention}(Q, K, V)=\operatorname{softmax}\left(\frac{Q K^{T}}{\sqrt{d_{k}}}+M\right) V \text {. }
$$

This "zeros out" the entries of softmax (•) for which $M_{i j}=-\infty$.

Multiple attention layers are combined together to form a multi-head attention layer. Such a layer with h "heads" takes as input tensors $Q \in \mathbb{R}^{n \times h \times d_{k}}, K \in \mathbb{R}^{n \times h \times d_{k}}$, and $V \in \mathbb{R}^{n \times h \times d_{v}}$, and outputs a tensor of size ($n \times h \times d_{v}$) such that

$$
\operatorname{MultiHeadAttention}(Q, K, V)_{:, i,:}=\operatorname{MaskedAttention}\left(Q_{: i, i,:}, K_{:, i,:}, V_{:, i,:}\right) ;
$$

that is, it's just h attention layers running in parallel along the head dimension.

A typical multi-head attention block with representation dimension d and number of heads h (where h evenly divides d) has $d_{k}=d_{v}=d / h$ and is parameterized by four matrices: $W_{K} \in \mathbb{R}^{d \times d}, W_{Q} \in \mathbb{R}^{d \times d}, W_{V} \in \mathbb{R}^{d \times d}$ and $W_{O} \in \mathbb{R}^{d \times d}$. Given input $X \in \mathbb{R}^{n \times d}$, it outputs

$$
\text { MultiHeadAttention }\left(X W_{Q}^{T}, X W_{K}^{T}, X W_{V}^{T}\right) W_{O}^{T}
$$

where here we reshape MultiHeadAttention to operate on matrices like $Q \in \mathbb{R}^{n \times h d_{k}}$ rather than on tensors.
Let's draw a diagram of a transformer block. Up to a big-O analysis, how many flops are needed?

How does this cost compare to the RNN?

DEMO.

