Lecture 13: Neural Networks and Transformers

CS4787/5777 — Principles of Large-Scale ML Systems

Review: Linear models and neural networks. From the homeworks and projects you should all be familiar with the notion of a linear model hypothesis class. For example, for multinomial logistic regression, we had the hypothesis class

$$h_W(x) = \operatorname{softmax}(Wx).$$

This is a specific example of a more general linear model of the form

$$h_W(x) = \sigma(Wx)$$

for some inputs $x \in \mathbb{R}^d$, matrix $W \in \mathbb{R}^{D \times d}$, and function $\sigma : \mathbb{R}^D \to \mathbb{R}^D$. Many important methods in machine learning use linear model hypothesis classes, including linear regression, logistic regression, and SVM.

One naive way that we can combine two hypothesis classes is by *stacking* or *layering* them. If I have one class of hypotheses $h_{W_1}^{(1)}$ that maps from \mathbb{R}^{d_0} to \mathbb{R}^{d_1} and a second class of hypotheses $h_{W_2}^{(2)}$ that maps from \mathbb{R}^{d_1} to \mathbb{R}^{d_2} , then I can form the layered hypothesis class

$$h_{W_1,W_2}(x) = h_{W_2}^{(2)}(h_{W_1}^{(1)}(x))$$

that results from first applying $h^{(1)}$ and then applying $h^{(2)}$. Intutively, we're first having $h^{(1)}$ make a prediction and then using the result of that prediction as an input to $h^{(2)}$ to make our final prediction. If both our consituent hypothesis classes are linear models, we can write this out more explicitly as

$$h_{W_1,W_2}(x) = \sigma_2(W_2 \cdot \sigma_1(W_1x)).$$

Of course, we don't need to limit ourselves to layering just two linear classifiers. We could layer as many as we want. For example, if we had $\mathcal L$ total layers, then our hypothesis would look like

$$h_{W_1,W_2,...,W_l}(x) = \sigma_l(W_l \cdot \sigma_{l-1}(W_{l-1} \cdot \cdots \sigma_2(W_2 \cdot \sigma_1(W_1x)) \cdot \cdots)).$$

We can write this out more generally and explicitly in terms of a recurrence relation.

$$o_0=x$$
 Typical runtime cost:
$$\forall l \in \{1,\dots,\mathcal{L}\}, \quad a_l=W_l \cdot o_{l-1}+b_l$$

$$\forall l \in \{1,\dots,\mathcal{L}\}, \quad o_l=\sigma_l(a_l)$$

$$h_{W_1,b_1,W_2,b_2,\dots,W_l,b_l}(x)=o_{\mathcal{L}}.$$

where $a_l, o_l \in \mathbb{R}^{d_l}$, and here we've also added an explicit bias parameter $b_l \in \mathbb{R}^{d_l}$ to each layer. This type of model is called a multilayer perceptron (MLP), artificial neural network (ANN), or deep neural network (DNN). (Specifically, it's a type of deep neural network called a feedforward neural network.) Here, the functions σ_l are called the activation functions and are almost always chosen to **operate independently along each dimension**; that is (with abuse of notation)

$$(\sigma_l(x))_i = \sigma_l(x_i).$$

Note that this is not true for the softmax, but it's true about pretty much every other major activation function.

Variants of neural networks:

- Residual neural networks include feedback connections in which the outputs of the model are fed back into itself.
- Convolutional neural networks restrict some of the linear transformations W_l to be members of some subset of linear transformations, typically convolutions with some filter.
- Recurrent neural networks repeat the same layers to process a sequence.
- *Transformers* use attention blocks to process sequences and spatially/temporally structured data in a unified way.

Transformers. Designed to process sequential data, but can generalize to any sort of structured data.

Represents an example as a matrix in $\mathbb{R}^{n\times d}$ where n is the sequence length (a.k.a. n "tokens") and d is the representation dimension. Most characteristic layer: attention layer (more formally, "Scaled Dot-Product Attention"). Given input activation matrices $Q\in\mathbb{R}^{n\times d_k}$ (the "query" matrix), $K\in\mathbb{R}^{n\times d_k}$ (the "key" matrix), and $V\in\mathbb{R}^{n\times d_v}$ (the "value" matrix), the attention layer outputs

Attention
$$(Q, K, V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V,$$

where this softmax applies along the rows of the matrix (i.e. each row of $\operatorname{softmax}(\cdot)$ sums to 1). You can think of this as a "soft" or "weighted" lookup. This formulation lets every token (every sequence element) look up into every other one: if we want to restrict this, we can use an *attention mask* $M \in \mathbb{R}^{n \times n}$, usually with elements in $\{-\infty, 0\}$, and set

$$\operatorname{MaskedAttention}(Q,K,V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d_k}} + M\right)V.$$

This "zeros out" the entries of softmax(·) for which $M_{ij} = -\infty$.

Multiple attention layers are combined together to form a multi-head attention layer. Such a layer with h "heads" takes as input tensors $Q \in \mathbb{R}^{n \times h \times d_k}$, $K \in \mathbb{R}^{n \times h \times d_k}$, and $V \in \mathbb{R}^{n \times h \times d_v}$, and outputs a tensor of size $(n \times h \times d_v)$ such that

$$\label{eq:MultiHeadAttention} \\ \text{MultiHeadAttention}(Q, K, V)_{:,i,:} = \\ \text{MaskedAttention}(Q_{:,i,:}, K_{:,i,:}, V_{:,i,:});$$

that is, it's just h attention layers running in parallel along the head dimension.

A typical multi-head attention block with representation dimension d and number of heads h (where h evenly divides d) has $d_k = d_v = d/h$ and is parameterized by four matrices: $W_K \in \mathbb{R}^{d \times d}$, $W_Q \in \mathbb{R}^{d \times d}$, $W_V \in \mathbb{R}^{d \times d}$ and $W_O \in \mathbb{R}^{d \times d}$. Given input $X \in \mathbb{R}^{n \times d}$, it outputs

$$\label{eq:MultiHeadAttention} \\ \text{MultiHeadAttention}(XW_Q^T, XW_K^T, XW_V^T)W_O^T$$

where here we reshape MultiHeadAttention to operate on matrices like $Q \in \mathbb{R}^{n \times hd_k}$ rather than on tensors.

Let's draw a block diagram of a transformer block.