
Lecture 10: Accelerating SGD with preconditioning and
adaptive learning rates.

CS4787/5777 — Principles of Large-Scale Machine Learning Systems

Recall: Optimization problems can be poorly conditioned when the condition number κ is large. We said
last time that intuitively, we’d like to set the step size larger for directions with less curvature, and smaller for
directions with more curvature. But we couldn’t do this with plain GD or SGD, because there is only one step-
size parameter. Last time, we talked about momentum which addresses this problem by using a momentum
term that amplifies the gradient in directions that are consistently the same sign and dampens the gradient
in directions that are reversing sign. Today we’ll talk about two other methods for addressing the issue of
conditioning: preconditioning, and adaptive learning rates.

Preconditioning. Motivation: one way to think of a large condition number is in terms of how it affects
the level sets of the optimization problem. For example, if we look at our poorly conditioned optimization
problem example from last time, the two-dimensional quadratic
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Here, the level sets of f are the sets on which f(w) = C for some constant C, which take the form

2C = Lw2
1 + µw2

2;

these are just ellipses. When the problem is poorly conditioned, these ellipses are highly distorted (very far
away from being circles). On the other hand, when κ = 1, the level sets are exactly circles.
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Main idea of preconditioning: rescale the underlying space we’re optimizing over to make the level sets more
like circles. To do this for an objective function f , let’s imagine solving the modified optimization problem
where we minimize g(u) = f(Ru) for some fixed matrix R. Gradient descent for this task looks like

ut+1 = ut − α∇g(ut) = ut − αRT∇f(Rut).
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If we multiply both sides by R, and let wt = Rut, we get

wt+1 = Rut+1 = Rut − αRRT∇f(Rut) = wt − αRRT∇f(wt).

Effectively, we’re just running gradient descent with gradients scaled by some positive semidefinite matrix
P = RRT (why is it positive semidefinite?). This method is called preconditioned gradient descent, and we
can apply the same idea to precondition SGD.

Activity: What would be the best preconditioner P to choose for our two-dimensional quadratic ex-
ample of f above? Is the best preconditioner unique?

How to make preconditioning efficient. In general, a preconditioning matrix P over models of dimension
d will take d2 memory to store, and it will take O(d2) time to compute the matrix-vector product needed to
run preconditioned gradient descent. This can add up to be very expensive, especially when the model size
is large. One common way to address this is to use a diagonal preconditioner: we restrict P to be a diagonal
matrix.

How much memory is needed now to store P? How much time is needed to multiply by P in the
preconditioned GD update step?

How to choose the preconditioner. This is all very interesting, but it requires us to pull a matrix P from
somewhere. How do we pick a useful P?

• One way: use your intuition about the problem. You may know from the formula for the loss that
some dimensions are more curved than others (e.g. the two-dimensional quadratic example above).
Downside: doesn’t scale.

• Another way: use statistics from the dataset. For example, for a linear model you could precondition
based on the variance of the features in your dataset.

• Another way: use information from the matrix of second-partial derivatives. For example, you could
use a preconditioning matrix that is a diagonal approximation of the Newton’s method update at some
point. These methods are sometimes called Newton Sketch methods.
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Adaptive Learning Rates. Idea: adjust the learning rate per-component dynamically at each timestep
based on observed statistics of the gradients. Explicitly,

wj,t+1 = wj,t − αj,t

(
∇fĩt(wt)

)
j

where wj,t denotes the ith entry of the model at time t, and the learning rate αj,t is now (1) allowed to be
different per-parameter, and (2) allowed to vary as a function of the previously observed gradient samples.
There are many different schemes for adaptive learning rates.

AdaGrad. AdaGrad sets the step size for each parameter to be inversely proportional to the square root of
the sum of all observed squared values of that component of the gradient.

Algorithm 1 AdaGrad
input: learning rate factor α, initial parameters w.
initialize r ← 0
loop

sample a stochastic gradient g ← ∇fĩt(w)
accumulate second moment estimate rj ← rj + g2j for all j ∈ {1, . . . , d}
update model wj → wj − α√

rj
· gj

end loop

(Typically we also need to add some small correction factor to avoid dividing by zero in this expression if
rj is zero.) The motivation behind AdaGrad: think about the “optimal” step size rule we derived for convex
SGD earlier, where we added a constant amount to the inverse of the step size at each step. (This gave
us a 1/t step size scheme.) Here, we are also adding a roughly-constant amount to the inverse of the step
size at each step, except it’s proportional to the magnitude of the gradient sample in that direction. This
causes our step sizes to be larger in directions in which the gradient tends to be smaller and vice versa. One
problem with AdaGrad: it does not necessarily work well in the non-convex setting, because the learning
rate is dependent on the whole history of the algorithm, and for non-convex optimization the trajectory may
have passed through regions of very different curvature. This could lead to a step size that is very small in
some directions in which we don’t want the step size to be small.

RMSProp. A modification to AdaGrad that uses an exponential moving average instead of a sum. This can
be more effective for non-convex optimization problems such as neural networks. One potential downside:
the step size generally does not go to zero with RMSProp, so we could converge to a noise ball.

Algorithm 2 RMSProp
input: learning rate factor α, decay rate ρ, initial parameters w.
initialize r ← 0
loop

sample a stochastic gradient g ← ∇fĩt(w)
accumulate second moment estimate rj ← ρrj + (1− ρ)g2j for all j ∈ {1, . . . , d}
update model wj → wj − α√

rj
· gj

end loop
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Adam. Modified RMSProp to (1) use momentum with exponential weighting, and (2) correct for bias to
estimate the first-order and second-order moments of the gradients. A very popular learning algorithm
with over 67,000 citations!

Algorithm 3 Adam
input: learning rate factor α, decay rates ρ1 and ρ2, initial parameters w.
initialize r ← 0
initialize timestep t← 0
loop

t← t+ 1
sample a stochastic gradient g ← ∇fĩt(w)
accumulate first moment estimate sj ← ρ1sj + (1− ρ1)gj for all j ∈ {1, . . . , d}
accumulate second moment estimate rj ← ρ2rj + (1− ρ2)g

2
j for all j ∈ {1, . . . , d}

correct first moment bias ŝ← s
1−ρt

1

correct second moment bias r̂ ← r
1−ρt

2

update model wj → wj − α√
r̂j
· ŝj

end loop

Why does Adam’s bias correction work?

How can we think of these methods as relating to diagonal preconditioning?
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