Inference, Deployment, and Compression

CS4787/5777 Lecture 27 — Fall 2022
Review: Inference

• Suppose that our training loss function looks like

\[f(w) = \frac{1}{n} \sum_{i=1}^{n} \ell(h_w(x_i); y_i) \]

• Inference is the problem of computing the prediction

\[h_w(x_i) \]
Why should we care about inference?

• **Train once, infer many times**
 • Many production machine learning systems just do inference

• Often want to run inference on **low-power edge devices**
 • Such as cell phones, security cameras
 • **Limited memory** on these devices to store models

• Need to get **responses to users quickly**
 • On the web, users won’t wait more than a second
Metrics for Inference

- Important metric: **accuracy**
 - Inference accuracy can be **close to test accuracy** — if data from same distribution

- Important metric: **throughput**
 - **How many examples** can we classify in some amount of time

- Important metric: **latency**
 - **How long** does it take to get a prediction for a single example

- Important metric: **model size**
 - **How much memory** do we need to store/transmit the model for prediction

- Important metric: **energy use**
 - **How much energy** do we use to produce each prediction

- Important metric: **cost**
 - How much money will all this cost us
Tradeoffs

• When designing an ML system for inference, there are **trade-offs** among all these metrics!
 • Most “techniques” do not give free improvements, but have some trade-off where some metrics get better and others get worst

• There is **no one-size-fits-all “best” way to do ML inference.**

• We need to decide **which metric we value the most**
 • Then keep that in mind as we design the system
Improving the performance of inference

What tools do we have in our toolbox?
Choosing our hardware: CPU vs GPU

• For training, people generally use GPUs for their high throughput

• But for inference, the right choice is less clear

• For small networks, CPUs can have the edge on latency
 • And CPUs are generally cheaper...lower cost

• CPU-like architectures are often a good choice for low-power systems, since it’s easier to put a low-power CPU on a mobile device
 • Many mobile chips are now CPU/GPU hybrids, so line is blurred here
Altering the batch size

• Just like with learning, we can **make predictions in batches**

• Increasing the batch size helps **improve parallelism**
 • Provides more work to parallelize and an additional dimension for parallelization
 • This improves **throughput**

• But increasing the batch size can make us do more work before we can return an answer for any individual example
 • Can **negatively affect latency**
Demo

Latency vs Throughput
Inference on neural networks

• Just need to run the forward pass of the network.
 • A bunch of matrix multiplies and non-linear units.

• Unlike backpropagation for learning, here we do not need to keep the activations around for later processing.

• This makes inference a much simpler task than learning.
 • Although it can still be costly — it’s a lot of linear algebra to do.
Neural Network Compression

• Find an *easier-to-compute network* with similar accuracy
 • Or find a network with *smaller model size*, depending on the goal

• Most compression methods are *lossy*, meaning that the compressed network may sometimes predict differently

• **Many techniques** for doing this
 • We’ll see some in the following slides
Simple Technique: “Old-School” Compression

• Just apply a standard lossless compression technique to the weights of your neural network.
 • Huffman coding works here, for example.
 • Even something very general like gzip can be beneficial.

• This lowers the stored model size without affecting accuracy

• But this does mean we need to decompress eventually, so it comes at the cost of some compute & can affect start-up latency.
Low-precision arithmetic for inference

• Very simple technique: just use low-precision arithmetic in inference

• Can make any signals in the model low-precision

• Simple **heuristic for compression**: keep lowering the precision of signals until the accuracy decreases
 • Can often get down below 16 bit numbers with this method alone

• **Binarization/ternarization** is low-precision arithmetic in the extreme
Pruning

- **Remove activations** that are usually zero
 - Or that don’t seem to be contributing much to the model
 - Good heuristic: remove the smallest X% of weights

- Effectively creates **a smaller model**
 - This makes it easy to retrain, since we’re just training a smaller network

- There’s always the question of whether training a smaller model in the first place would have been as good or better.
 - But usually pruning is observed to produce benefits.
Fine-Tuning

- Powerful idea: apply a lossy compression operation, then **retrain the model** to improve accuracy.

- A general way of “getting back” accuracy lost due to lossy compression.
Knowledge distillation

- Idea: take a large/complex model and train a smaller network to match its output.
 - E.g. Hinton et. al. “Distilling the Knowledge in a Neural Network.”

- Often used for distilling ensemble models into a single network.
 - Ensemble models average predictions from multiple independently-trained models into a single better prediction.
 - Ensembles often win Kaggle competitions.

- Can also improve the accuracy in some cases.
Efficient architectures

• Some neural network architectures are designed to be efficient at inference time
 • Examples: MobileNet, ShuffleNet, SqueezeNet

• These networks are often based on sparsely connected neurons
 • This limits the number of weights which makes models smaller and easier to run inference on

• To be efficient, we can just train one of these networks in the first place for our application.
Re-use of computation

• For video and time-series data, there is a lot of redundant information from one frame to the next.

• We can try to re-use some of the computation from previous frames.
 • This is less popular than some of the other approaches here, because it is not really general.
The last resort for speeding up DNN inference

• **Train another, faster type of model** that is not a deep neural network
 • For some real-time applications, you can’t always use a DNN

• If you can get away with a **linear model**, it’s almost always much faster.

• Also, **decision trees** tend to be quite fast for inference.

• ...but with how technology is developing, we’re **seeing more and more support for fast DNN inference**, so this will become less necessary.
Where do we run inference?
Inference in the cloud

• Most inference today is run on cloud platforms

• The cloud supports large amounts of compute
 • And makes it easy to access it and make it reliable

• This is a good place to put AI that needs to think about data

• For interactive models, latency is critical
Inference on edge devices

• Inference can run on your laptop or smartphone
 • Here, the size of the model becomes more of an issue
 • Limited smartphone memory

• This is good for user privacy and security
 • But not as good for companies that want to keep their models private

• Also can be used to deploy personalized models
Inference on sensors

• Sometimes we want inference right at the source
 • On the sensor where data is collected

• Example: a surveillance camera taking video
 • Don’t want to stream the video to the cloud, especially if most of it is not interesting.

• Energy use is very important here.