Hidden Markov Models
Probabilistic Model

X_1, \ldots, X_N

Latent Variables

Observed variables

$\theta \in \Theta$

P_θ explains data
Abstract away the parameterization specifics

Focus on relationship between random variables
Let $X = (X_1, \ldots, X_N)$ be the random variables of our model (both latent and observed)

- Joint probability distribution over variable can be complex esp. if we have many complexly related variables
- Can we represent relation between variables in conceptually simpler fashion?
- We often have prior knowledge about the dependencies (or conditional (in)dependencies) between variables
Graphical Models

- A graph whose nodes are variables X_1, \ldots, X_N
- Graphs are an intuitive way of representing relationships between large number of variables
- Allows us to abstract out the parametric form that depends on θ and the basic relationship between the random variables.

Draw a picture for the generative story that explains what generates what.
Graphical Models

- Variables X_i is written as $\bigcirc X_i$ if X_i is observed.
- Variables X_i is written as $\bigotimes X_i$ if X_i is latent.
- Parameters are often left out (it's understood and not explicitly written out). If present they don't have bounding objects.
- An directed edge \rightarrow is drawn connecting every parent to its child (from parent to child).
Example: Sum of Coin Flips

$S_1 \rightarrow S_2 \rightarrow S_3$

$X_1 \rightarrow X_2 \rightarrow X_3$
Eg. Spam classification
Example: Hidden Markov Model
Hidden Markov Model (HMM)

- Speech recognition
- Natural language processing models
- Robot localization
- User attention modeling
- Medical monitoring

Time! ... sequence of observations
• Each node is identically distributed given its predecessor (stationary)

• The values the nodes take are called states

• Parameters?

 • $P(S_1)$ the initial probability table

 • $P(S_t|S_{t-1})$ the transition probabilities
Bot tends to follow outlined path, but with some probability jumps to arbitrary neighbor

- Number of states: 25 (one for each location)
- For white boxes probability of jumping to any of the 4 neighbors is same 1/4
- For Blue boxes, probability of following path is 0.9 and jumping to some other neighbor is 0.0333333
• If we observe the bot long enough, we get an estimate of its behavior (the transition table of jumping from state to state)

• If we observe enough number of times, we can also estimate initial distribution over states
• Inference question: what is probability that we will be in state k at time t? $P(S_t = k)$?

Answer:

$$P(S_t = k) = \sum_{s_1=1}^{K} \ldots \sum_{s_{t-1}=1}^{K} P(S_1 = s_1, \ldots, S_{t-1} = s_{t-1}, S_t = k)$$

$$= \sum_{s_1=1}^{K} \ldots \sum_{s_{t-1}=1}^{K} \prod_{i=1}^{t-1} (P(S_i = s_i|S_{i-1} = s_{i-1}) \times P(S_t = k|S_{t-1} = s_{t-1}))$$

For every t we can repeat the above or…

$$P(S_t = k) = \sum_{s_{t-1}=1}^{K} P(S_t = k|S_{t-1} = s_{t-1}) P(S_{t-1} = s_{t-1})$$

recursively compute probability of previous state.
Markov Model

- As time goes by, $P(S_t = k)$ approaches a fixed distribution called stationary distribution.

- Without any further observations, you are unlikely to find the bot on a new run (only by luck).
Hidden Markov Model (HMM)

Same example:

But you don’t observe location (dark room)

You hear how close the bot is!

\(X_t \)'s are loudness of what you hear
• Both during the initial training/estimation phase, you never see the bot you only hear it

• But you hear it at any point in time

• We will come back to learning next class.

• What is probability that bot will be in state k at time t given the entire sequence of observations?

$$P(S_t = k | X_1, \ldots, X_N)?$$
Same example:

But you don’t observe location (dark room)

You hear how close the bot is!

What you hear:

Can you catch the Bot?
Hidden Markov Model (HMM)

X_t’s are what you hear (observation)

S_t’s are the unseen locations (states)

Eg: for $n \times n$ grid we have, $K = n^2$ states

Number of alphabets = 5
(colors you can observe)
What are the parameters?
• What is probability that bot will be in location k at time t given the entire sequence of observations?

\[P(S_t = k | X_1, \ldots, X_N) \]
Inference in HMM

\[P(S_t = k|X_1, \ldots, X_N) \]
\[\propto P(X_{t+1}, \ldots, X_N|S_t = k, X_1, \ldots, X_t)P(S_t = k|X_1, \ldots, X_t) \]
\[\propto P(X_{t+1}, \ldots, X_N|S_t = k, X_1, \ldots, X_t)P(S_t = k, X_1, \ldots, X_t) \]
\[\propto P(X_{t+1}, \ldots, X_N|S_t = k, X_1, \ldots, X_t)P(X_t|S_t = k, X_1, \ldots, X_{t-1})P(S_t = k, X_1, \ldots, X_{t-1}) \]
\[\propto P(X_{t+1}, \ldots, X_N|S_t = k)P(X_t|S_t = k)P(S_t = k, X_1, \ldots, X_{t-1}) \]

We know \(P(X_t|S_t = k) \)'s and \(P(S_t|S_{t-1}) \)

Compute \(P(X_{t+1}, \ldots, X_N) \) and \(P(S_t = k, X_1, \ldots, X_{t-1}) \) recursively.
Inference in HMM

message_{S_{t-1} \rightarrow S_t}(k) = P(S_t = k, X_1, \ldots, X_{t-1})

message_{S_{t+1} \rightarrow S_t}(k) = P(X_n, \ldots, X_{t+1} | S_t = k)

P(S_t = k | X_1, \ldots, X_n) \propto message_{S_{t-1} \rightarrow S_t}(k) \times message_{S_{t+1} \rightarrow S_t}(k) \times P(X_t | S_t = k)
Inference in HMM

\[
\begin{align*}
\text{message}_{S_{t-1} \rightarrow S_t}(k) &= P(S_t = k, X_1, \ldots, X_{t-1}) \\
\text{message}_{S_{t+1} \rightarrow S_t}(k) &= P(X_n, \ldots, X_{t+1} | S_t = k)
\end{align*}
\]
Inference in HMM

message_{S_{t-1} \rightarrow S_t}(k) = P(S_t = k, X_1, \ldots, X_{t-1})

message_{S_{t+1} \rightarrow S_t}(k) = P(X_n, \ldots, X_{t+1} | S_t = k)
Learning Parameters for HMM

- Now that we have algorithm for inference, what about learning?
- Given observations, how do we estimate parameters for HMM? Three guesses …