Gaussian Mixture Model and EM Algorithm
COVID 19 Announcement
COVID 19 Announcement

• All classes at Cornell (and most universities) to go virtual
COVID 19 Announcement

• All classes at Cornell (and most universities) to go virtual

• We will continue with classes as usual, only online
COVID 19 Announcement

• All classes at Cornell (and most universities) to go virtual

• We will continue with classes as usual, only online

• Break up of grades remain the same
COVID 19 Announcement
COVID 19 Announcement

• From next lecture, Mar 17th, till end of semester, we will have virtual classes due to COVID 19
COVID 19 Announcement

• From next lecture, Mar 17th, till end of semester, we will have virtual classes due to COVID 19

• I am thinking zoom for now (lec. Can be recorded as well)
COVID 19 Announcement

• From next lecture, Mar 17th, till end of semester, we will have virtual classes due to COVID 19

• I am thinking zoom for now (lec. Can be recorded as well)

• Prelims postponed to 1 week after spring break (will be a virtual/online one as well)
COVID 19 Announcement

• From next lecture, Mar 17th, till end of semester, we will have virtual classes due to COVID 19

• I am thinking zoom for now (lec. Can be recorded as well)

• Prelims postponed to 1 week after spring break (will be a virtual/online one as well)

• Finals will be a virtual/online one as well
COVID 19 Announcement

• From next lecture, Mar 17th, till end of semester, we will have virtual classes due to COVID 19

• I am thinking zoom for now (lec. Can be recorded as well)

• Prelims postponed to 1 week after spring break (will be a virtual/online one as well)

• Finals will be a virtual/online one as well

• HWs and competition as planned
K-means Clustering

- For all $j \in [K]$, initialize cluster centroids \hat{r}_j^0 randomly and set $m = 1$
- Repeat until convergence (or until patience runs out)
 1. For each $t \in \{1, \ldots, n\}$, set cluster identity of the point
 \[
 \hat{c}^m(x_t) = \arg\min_{j \in [K]} \|x_t - \hat{r}_j^{m-1}\|
 \]
 2. For each $j \in [K]$, set new representative as
 \[
 \hat{r}_j^m = \frac{1}{|\hat{C}^m_j|} \sum_{x_t \in \hat{C}^m_j} x_t
 \]
 3. $m \leftarrow m + 1$
Variance and Radius
Variance and Radius
Variance and Radius
Variance and Radius
Distance to mean 1 should be smaller than distance to mean 2 as black dot is more likely in cluster 1 than 2.
Variance and Radius

Distance to mean 1 should be smaller than distance to mean 2 as black dot is more likely in cluster 1 than 2

\[d^2(x, C_j) = \frac{(x - \mu_j)^2}{\sigma_j^2} \]
General Ellipsoid
General Ellipsoid
General Ellipsoid
General Ellipsoid

\[\sum = \frac{1}{|C_j|} \sum_{t \in C_j} (x_t - r_j)(x_t - r_j)^\top \]

\[(x - r_j)^\top \Sigma^{-1}(x - r_j) \]
For all $j \in [K]$, initialize cluster centroids \hat{r}_j^0 and ellipsoids $\hat{\Sigma}_j^0$ randomly and set $m = 1$

Repeat until convergence (or until patience runs out)

1. For each $t \in \{1, \ldots, n\}$, set cluster identity of the point

 $$\hat{c}^m(x_t) = \arg\min_{j \in [K]} (x_t - \hat{r}_j^{m-1})^\top (\hat{\Sigma}_j^{m-1})^{-1} (x_t - \hat{r}_j^{m-1})$$

2. For each $j \in [K]$, set new representative as

 $$\hat{r}_j^m = \frac{1}{|\hat{C}_j^m|} \sum_{x_t \in \hat{C}_j^m} x_t$$
 $$\hat{\Sigma}_j^m = \frac{1}{|C_j|} \sum_{t \in C_j} (x_t - \hat{r}_j^m)(x_t - \hat{r}_j^m)^\top$$

3. $m \leftarrow m + 1$
Ellipsoidal Clustering

- For all $j \in [K]$, initialize cluster centroids \hat{r}_j^0 and ellipsoids $\hat{\Sigma}_j^0$ randomly and set $m = 1$

- Repeat until convergence (or until patience runs out)
 - For each $t \in \{1, \ldots, n\}$, set cluster identity of the point
 \[
 \hat{c}^m(x_t) = \underset{j \in [K]}{\text{argmin}} \ (x_t - \hat{r}_j^{m-1})^\top (\hat{\Sigma}_j^{m-1})^{-1} (x_t - \hat{r}_j^{m-1})
 \]
 \[
 d(x_t, C_j)
 \]
 - For each $j \in [K]$, set new representative as
 \[
 \hat{r}_j^m = \frac{1}{|\hat{C}_j^m|} \sum_{x_t \in \hat{C}_j^m} x_t \\
 \hat{\Sigma}_j^m = \frac{1}{|C_j|} \sum_{t \in C_j} (x_t - \hat{r}_j^m)(x_t - \hat{r}_j^m)^\top
 \]
 - $m \leftarrow m + 1$
K-means: pitfalls

• Looks for spherical clusters
• Of same radius
• And with roughly equal number of points
K-means: pitfalls

- Looks for spherical clusters
- Of same radius
- And with roughly equal number of points
K-means: pitfalls

• Looks for spherical clusters ✓
• Of same radius ✓
• And with roughly equal number of points
K-means: pitfalls

• Looks for spherical clusters ✅
• Of same radius ✅
• And with roughly equal number of points ❌
Hard Gaussian Mixture Model

- For all $j \in [K]$, initialize cluster centroids \hat{r}_j^0, ellipsoids $\hat{\Sigma}_j^0$ and initial proportions π_j^0 randomly and set $m = 1$

- Repeat until convergence (or until patience runs out)
 1. For each $t \in \{1, \ldots, n\}$, set cluster identity of the point

 $$\hat{c}_m(x_t) = \arg\min_{j \in [K]} (x_t - \hat{r}_j^{m-1})^\top (\hat{\Sigma}_j^{m-1})^{-1} (x_t - \hat{r}_j^{m-1}) - \log(\pi_j^{m-1})$$

 Penalty for smaller clusters

 2. For each $j \in [K]$, set new representative as

 $$\hat{r}_j^m = \frac{1}{|\hat{C}_j^m|} \sum_{x_t \in \hat{C}_j^m} x_t$$
 $$\hat{\Sigma}_j^m = \frac{1}{|C_j|} \sum_{t \in C_j} (x_t - \hat{r}_j^m)(x_t - \hat{r}_j^m)^\top$$
 $$\pi_j^m = \frac{|C_j^m|}{n}$$

 3. $m \leftarrow m + 1$
Probabilistic Model
A Probabilistic Model

\[\pi_1 = 0.5 \]
\[\pi_2 = 0.25 \]
\[\pi_3 = 0.25 \]
Probabilistic Model

\[\pi_1 = 0.5 \]
\[\Sigma_1 \]

\[\pi_2 = 0.25 \]
\[\Sigma_2 \]

\[\pi_3 = 0.25 \]
\[\Sigma_3 \]
Data: x_1, \ldots, x_n
Data: x_1, \ldots, x_n

$\theta \in \Theta$

P_θ explains data
Probabilistic Models

- \(\Theta \) consists of set of possible parameters
- We have a distribution \(P_\theta \) over the data induced by each \(\theta \in \Theta \)
- Data is generated by one of the \(\theta \in \Theta \)
- Learning: Estimate value or distribution for \(\theta^* \in \Theta \) given data
Pick $\theta \in \Theta$ that maximizes probability of observation

$$\theta_{MLE} = \arg\max_{\theta \in \Theta} \log P_\theta(x_1, \ldots, x_n)$$
Each $\theta \in \Theta$ is a model.

- **Gaussian Mixture Model**
 - Each θ consists of mixture distribution $\pi = (\pi_1, \ldots, \pi_K)$, means $\mu_1, \ldots, \mu_K \in \mathbb{R}^d$ and covariance matrices $\Sigma_1, \ldots, \Sigma_K$
 - For each t, independently:

 $$c_t \sim \pi, \quad x_t \sim N(\mu_{c_t}, \Sigma_{c_t})$$
What is the likelihood for Gaussian Mixture Models?

What is the likelihood for one point x under model?
Example: Gaussian Mixture Model

MLE: \(\theta = (\mu_1, \ldots, \mu_K), \pi, \Sigma \)

\[
P_\theta(x_1, \ldots, x_n) = \prod_{t=1}^{n} \left(\sum_{i=1}^{K} \pi_i \frac{1}{\sqrt{(2 \times 3.1415)^2|\Sigma_i|}} \exp \left(-(x_t - \mu_i)^\top \Sigma_i (x_t - \mu_i) \right) \right)
\]

Find \(\theta \) that maximizes \(\log P_\theta(x_1, \ldots, x_n) \)
Directly optimizing is hard!
Say by some magic you knew cluster assignments, then

How would you compute parameters?
Say we knew model parameters, how do we assign clusters?
Say we knew model parameters, how do we assign clusters?

\[\pi_1 = 0.5 \]

\[\Sigma_1 \]

\[\pi_2 = 0.25 \]

\[\Sigma_2 \]

\[\pi_3 = 0.25 \]

\[\Sigma_3 \]
For all $j \in [K]$, initialize cluster centroids \hat{r}_j^0, ellipsoids $\hat{\Sigma}_j^0$ and initial proportions π_j^0 randomly and set $m = 1$

Repeat until convergence (or until patience runs out)

1. For each $t \in \{1, \ldots, n\}$, set cluster identity of the point

$$
\hat{c}^m(x_t) = \arg \max_{j \in [K]} p(x_t, \hat{r}_j^{m-1}, \hat{\Sigma}_j^{m-1}) \times \pi^m(j)
$$

2. For each $j \in [K]$, set new representative as

$$
\hat{r}_j^m = \frac{1}{|\hat{C}_j^m|} \sum_{x_t \in \hat{C}_j^m} x_t \\
\hat{\Sigma}_j^m = \frac{1}{|C_j|} \sum_{t \in C_j} (x_t - \hat{r}_j^m)(x_t - \hat{r}_j^m)^\top \\
\pi_j^m = \frac{|C_j^m|}{n}
$$

3. $m \leftarrow m + 1$
Pitfall of Hard Assignment
Pitfall of Hard Assignment
Pitfall of Hard Assignment
Pitfall of Hard Assignment
MLE for GMM

Say we knew model parameters, how do we assign clusters?

Given probability of each point belonging to each of the clusters, how do we compute model parameters?
Say we knew model parameters, how do we assign clusters?

what are the probabilities of points falling in each of the clusters?

Given probability of each point belonging to each of the clusters, how do we compute model parameters?
(Soft) Gaussian Mixture Model

- For all \(j \in [K] \), initialize cluster centroids \(\hat{r}_j^0 \) and ellipsoids \(\hat{\Sigma}_j^0 \) randomly and set \(m = 1 \)
- Repeat until convergence (or until patience runs out)
 1. For each \(t \in \{1, \ldots, n\} \), set cluster identity of the point
 \[
 Q_t^m(j) = p(x_t, \hat{r}_j^{m-1}, \hat{\Sigma}_j^{m-1}) \times \pi^m(j)
 \]
 2. For each \(j \in [K] \), set new representative as
 \[
 \hat{r}_j^m = \frac{\sum_{t=1}^{n} Q_t(j)x_t}{\sum_{t=1}^{n} Q_t(j)} \quad \hat{\Sigma}_j^m = \frac{\sum_{t=1}^{n} Q_t(j)(x_t - \hat{r}_j^m)(x_t - \hat{r}_j^m)^\top}{\sum_{t=1}^{n} Q_t(j)}
 \]
 \[
 \pi^m_j = \frac{\sum_{t=1}^{n} Q_t(j)}{n}
 \]
 3. \(m \leftarrow m + 1 \)
Expectation Maximization Algorithm

- For demonstration we shall consider the problem of finding MLE (MAP version is very similar)
- Initialize $\theta^{(0)}$ arbitrarily, repeat unit convergence:

E step For every t, define distribution Q_t over the latent variable c_t as:

$$Q_t^{(i)}(c_t) = P(c_t|x_t, \theta^{(i-1)})$$

M step

$$\theta^{(i)} = \arg\max_{\theta \in \Theta} \sum_{t=1}^{n} \sum_{c_t} Q_t^{(i)}(c_t) \log P(x_t, c_t|\theta)$$
Example: EM for GMM

- **E step:** For every $k \in [K],$

\[
Q^{(i)}_t(c_t = k) = P(c_t = k|x_t, \theta^{(i-1)}) = P(x_t|c_t = k, \theta^{(i-1)}) \times P(c_t = k|\theta^{(i-1)}) \\
\propto \phi(x_t; \mu_k^{(i-1)}, \Sigma_k^{(i-1)}) \times \pi^{(i-1)}_k
\]

\[\text{gaussian p.d.f.} \]
Example: EM for GMM

- **E step:** For every $k \in [K]$,

 \[
 Q_t^{(i)}(c_t = k) = P(c_t = k|x_t, \theta^{(i-1)}) = P(x_t|c_t = k, \theta^{(i-1)}) \times P(c_t = k|\theta^{(i-1)}) \\
 \propto \phi \left(x_t; \mu_{k}^{(i-1)}, \Sigma_{k}^{(i-1)} \right) \times \pi_{k}^{(i-1)}
 \]

 gaussian p.d.f.

- **M step:** Given Q_1, \ldots, Q_n, we need to find

 \[
 \theta^{(i)} = \arg\max_{\theta \in \Theta} \sum_{t=1}^{n} \sum_{k=1}^{K} Q_t^{(i)}(k) \log P(x_t, c_t = k|\theta) \\
 = \arg\max_{\theta} \sum_{t=1}^{n} \sum_{k=1}^{K} Q_t^{(i)}(k) \left(\log P(x_t|c_t = k, \theta) + \log P(c_t = k|\theta) \right) \\
 = \arg\max_{\pi, \mu_1, \ldots, K, \Sigma_1, \ldots, K} \sum_{t=1}^{n} \sum_{c_t=1}^{K} Q_t^{(i)}(k) \left(\log \phi(x_t; \mu_k, \Sigma_k) + \log \pi_k \right)
 \]
For every $k \in [K]$, the maximization step yields,

$$
\mu_k^{(i)} = \frac{\sum_{t=1}^{n} Q_t^{(i)}(k)x_t}{\sum_{t=1}^{n} Q_t(k)} ,
\Sigma_k^{(i)} = \frac{\sum_{t=1}^{n} Q_t^{(i)}(k)(x_t - \mu_k^{(i)})(x_t - \mu_k^{(i)})^\top}{\sum_{t=1}^{n} Q_t(k)}
$$

$$
\pi_k^{(i)} = \frac{\sum_{t=1}^{n} Q_t^{(i)}(k)}{n}
$$
WHY SHOULD EM WORK?

A very high level view:
- Performing E-step will never decrease log-likelihood (or log a posteriori)
Why should EM work?

A very high level view:

- Performing E-step will never decrease log-likelihood (or log a posteriori)

- Performing M-step will never decrease log-likelihood (or log a posteriori)
Steps to show that $\log \text{Lik}(\theta^{(i)}) \geq \log \text{Lik}(\theta^{(i-1)})$:

$$\log P_{\theta^{(i)}}(x_1, \ldots, x_n)$$
Why should EM work?

Steps to show that $\log \text{Lik}(\theta^{(i)}) \geq \log \text{Lik}(\theta^{(i-1)})$:

$$\log P_{\theta^{(i)}}(x_1, \ldots, x_n) = \sum_{t=1}^{n} \log P_{\theta^{(i)}}(x_t)$$
Why should EM work?

Steps to show that $\log \text{Lik}(\theta^{(i)}) \geq \log \text{Lik}(\theta^{(i-1)})$:

$$
\log P_{\theta^{(i)}}(x_1, \ldots, x_n) = \sum_{t=1}^{n} \log P_{\theta^{(i)}}(x_t) \\
= \sum_{t=1}^{n} \log \left(\sum_{c_t=1}^{K} P_{\theta^{(i)}}(x_t, c_t) \right)
$$
Steps to show that $\log \text{Lik}(\theta^{(i)}) \geq \log \text{Lik}(\theta^{(i-1)})$:

$$
\log P_{\theta^{(i)}}(x_1, \ldots, x_n) = \sum_{t=1}^{n} \log P_{\theta^{(i)}}(x_t)
$$

$$
= \sum_{t=1}^{n} \log \left(\sum_{c_t=1}^{K} P_{\theta^{(i)}}(x_t, c_t) \right)
$$

$$
= \sum_{t=1}^{n} \log \left(\sum_{c_t=1}^{K} Q^{(i)}(c_t) \left(\frac{P_{\theta^{(i)}}(x_t, c_t)}{Q^{(i)}(c_t)} \right) \right)
$$
Why should EM work?

Steps to show that \(\log \text{Lik}(\theta^{(i)}) \geq \log \text{Lik}(\theta^{(i-1)}) \):

\[
\log P_{\theta^{(i)}}(x_1, \ldots, x_n) = \sum_{t=1}^{n} \log P_{\theta^{(i)}}(x_t)
\]

\[
= \sum_{t=1}^{n} \log \left(\sum_{c_t=1}^{K} P_{\theta^{(i)}}(x_t, c_t) \right)
\]

\[
= \sum_{t=1}^{n} \log \left(\sum_{c_t=1}^{K} Q^{(i)}(c_t) \left(\frac{P_{\theta^{(i)}}(x_t, c_t)}{Q^{(i)}(c_t)} \right) \right)
\]

\[
\geq \sum_{t=1}^{n} \sum_{c_t=1}^{K} Q^{(i)}(c_t) \log \left(\frac{P_{\theta^{(i)}}(x_t, c_t)}{Q^{(i)}(c_t)} \right)
\]
Steps to show that $\log \text{Lik}(\theta^{(i)}) \geq \log \text{Lik}(\theta^{(i-1)})$:

$$
\log P_{\theta^{(i)}}(x_1, \ldots, x_n) = \sum_{t=1}^{n} \log P_{\theta^{(i)}}(x_t)
$$

$$
= \sum_{t=1}^{n} \log \left(\sum_{c_t=1}^{K} P_{\theta^{(i)}}(x_t, c_t) \right)
$$

$$
= \sum_{t=1}^{n} \log \left(\sum_{c_t=1}^{K} Q^{(i)}(c_t) \left(\frac{P_{\theta^{(i)}}(x_t, c_t)}{Q^{(i)}(c_t)} \right) \right)
$$

$$
\geq \sum_{t=1}^{n} \sum_{c_t=1}^{K} Q^{(i)}(c_t) \log \left(\frac{P_{\theta^{(i)}}(x_t, c_t)}{Q^{(i)}(c_t)} \right)
$$

Log(average) > average of Log
Steps to show that $\log \text{Lik}(\theta^{(i)}) \geq \log \text{Lik}(\theta^{(i-1)})$:

$$
\log P_{\theta^{(i)}} (x_1, \ldots, x_n) \geq \sum_{t=1}^{n} \sum_{c_t=1}^{K} Q^{(i)}(c_t) \log \left(\frac{P_{\theta^{(i)}} (x_t, c_t)}{Q^{(i)}(c_t)} \right)
$$
Why should EM work?

Steps to show that $\log \text{Lik}(\theta^{(i)}) \geq \log \text{Lik}(\theta^{(i-1)})$:

$$
\log P_{\theta^{(i)}}(x_1, \ldots, x_n) \geq \sum_{t=1}^{n} \sum_{c_t=1}^{K} Q^{(i)}(c_t) \log \left(\frac{P_{\theta^{(i)}}(x_t, c_t)}{Q^{(i)}(c_t)} \right)
$$

$$
\geq \sum_{t=1}^{n} \sum_{c_t=1}^{K} Q^{(i)}(c_t) \log \left(\frac{P_{\theta^{(i-1)}}(x_t, c_t)}{Q^{(i)}(c_t)} \right)
$$

M-step
Why should EM work?

Steps to show that $\log \text{Lik}(\theta^{(i)}) \geq \log \text{Lik}(\theta^{(i-1)})$:

$$
\log P_{\theta^{(i)}}(x_1, \ldots, x_n) \geq \sum_{t=1}^{n} \sum_{c_t=1}^{K} Q^{(i)}(c_t) \log \left(\frac{P_{\theta^{(i)}}(x_t, c_t)}{Q^{(i)}(c_t)} \right)
$$

$$
\geq \sum_{t=1}^{n} \sum_{c_t=1}^{K} Q^{(i)}(c_t) \log \left(\frac{P_{\theta^{(i-1)}}(x_t, c_t)}{Q^{(i)}(c_t)} \right)
$$

$$
= \sum_{t=1}^{n} \sum_{c_t=1}^{K} Q^{(i)}(c_t) \log \left(\frac{P_{\theta^{(i-1)}}(x_t, c_t)}{P_{\theta^{(i-1)}}(c_t|x_t)} \right)
$$

M-step

E-step
Why should EM work?

Steps to show that $\log \text{Lik}(\theta^{(i)}) \geq \log \text{Lik}(\theta^{(i-1)})$:

$$
\log P_{\theta^{(i)}}(x_1, \ldots, x_n) \geq \sum_{t=1}^{n} \sum_{c_t=1}^{K} Q^{(i)}(c_t) \log \left(\frac{P_{\theta^{(i)}}(x_t, c_t)}{Q^{(i)}(c_t)} \right)
$$

$$
\geq \sum_{t=1}^{n} \sum_{c_t=1}^{K} Q^{(i)}(c_t) \log \left(\frac{P_{\theta^{(i-1)}}(x_t, c_t)}{Q^{(i)}(c_t)} \right) \quad \text{M-step}
$$

$$
= \sum_{t=1}^{n} \sum_{c_t=1}^{K} Q^{(i)}(c_t) \log \left(\frac{P_{\theta^{(i-1)}}(x_t, c_t)}{P_{\theta^{(i-1)}}(c_t|x_t)} \right) \quad \text{E-step}
$$

$$
= \sum_{t=1}^{n} \sum_{c_t=1}^{K} Q^{(i)}(c_t) \log P_{\theta^{(i)}}(x_t)
$$
Why should EM work?

Steps to show that $\log \text{Lik}(\theta^{(i)}) \geq \log \text{Lik}(\theta^{(i-1)})$:

\[
\log P_{\theta^{(i)}}(x_1, \ldots, x_n) \geq \sum_{t=1}^{n} \sum_{c_t=1}^{K} Q^{(i)}(c_t) \log \left(\frac{P_{\theta^{(i)}}(x_t, c_t)}{Q^{(i)}(c_t)} \right)
\]

\[
\geq \sum_{t=1}^{n} \sum_{c_t=1}^{K} Q^{(i)}(c_t) \log \left(\frac{P_{\theta^{(i-1)}}(x_t, c_t)}{Q^{(i)}(c_t)} \right)
\]

\[
= \sum_{t=1}^{n} \sum_{c_t=1}^{K} Q^{(i)}(c_t) \log \left(\frac{P_{\theta^{(i-1)}}(x_t, c_t)}{P_{\theta^{(i-1)}}(c_t|x_t)} \right)
\]

\[
= \sum_{t=1}^{n} \sum_{c_t=1}^{K} Q^{(i)}(c_t) \log P_{\theta^{(i)}}(x_t)
\]

\[
= \sum_{t=1}^{n} \log P_{\theta^{(i)}}(x_t)
\]

M-step

E-step
Why should EM work?

- Likelihood never decreases
- So whenever we converge we converge to a local optima
- However problem is non-convex and can have many local optimal
- In general no guarantee on rate of convergence
- In practice, do multiple random initializations and pick the best one!
EM Algorithm Generally

• More generally, EM can be used to learn any probabilistic model with some Latent (unseen) variables and some observed variables whenever

 • It is easy to find parameters given distribution/observation for all variables

 • Given all parameters finding distribution for latent variables is easy
How to choose K

• Elbow method:
 • plot Objective versus K, typically it monotonically decreases.
 • Pick point where there is a kink
 • Intuition: look at rate of change
 • Add to objective penalty (+ pen(K)) and minimize, pen increases with K
 • intuition we prefer smaller number of clusters
 • Use prior knowledge to pick \(p \)
 • (AIC, BIC etc can been seen to be specific cases)