Clustering + Linkage Clustering

Clustering + Linkage Clustering
What are the clusters?
Clustering

Grouping sets of data points s.t.

- points in same group are similar
- points in different groups are dissimilar

A form of unsupervised classification where there are no predefined labels
Some Notations

- Kary clustering is a partition of x_1, \ldots, x_n into K groups.
- For now assume the magical K is given to use.
- Clustering given by C_1, \ldots, C_K, the partition of data points.
- Given a clustering, we shall use $c(x_t)$ to denote the cluster identity of point x_t according to the clustering.
- Let n_j denote $|C_j|$, clearly $\sum_{j=1}^{K} n_j = n$.
How do we formalize a good clustering objective?
How do we formalize?

Say \(\text{dissimilarity}(x_t, x_s) \) measures dissimilarity between \(x_t \) & \(x_s \)

Given two clustering \(\{C_1, \ldots, C_K\} \) (or \(c \)) and \(\{C'_1, \ldots, C'_K\} \) (or \(c' \))

How do we decide which is better?
How do we formalize?

Say dissimilarity \((x_t, x_s)\) measures dissimilarity between \(x_t\) & \(x_s\)

Given two clustering \(\{C_1, \ldots, C_K\}\) (or \(c\)) and \(\{C'_1, \ldots, C'_K\}\) (or \(c'\))

How do we decide which is better?

- points in same cluster are not dissimilar
- points in different clusters are dissimilar
Clustering Criterion

- Minimize total within-cluster dissimilarity
Minimize total within-cluster dissimilarity

\[M_1 = \sum_{j=1}^{K} \sum_{s,t \in C_j} \text{dissimilarity}(x_t, x_s) \]
Clustering Criterion

- Minimize total within-cluster dissimilarity
 \[M_1 = \sum_{j=1}^{K} \sum_{s, t \in C_j} \text{dissimilarity}(x_t, x_s) \]

- Maximize between-cluster dissimilarity
 \[M_2 = \sum_{x_s, x_t : c(x_s) \neq c(x_t)} \text{dissimilarity}(x_t, x_s) \]
Clustering Criterion

- Minimize total within-cluster dissimilarity
 \[M_1 = \sum_{j=1}^{K} \sum_{s,t \in C_j} \text{dissimilarity}(x_t, x_s) \]

- Maximize between-cluster dissimilarity
 \[M_2 = \sum_{x_s, x_t : c(x_s) \neq c(x_t)} \text{dissimilarity}(x_t, x_s) \]

- Maximize smallest between-cluster dissimilarity
 \[M_3 = \min_{x_s, x_t : c(x_s) \neq c(x_t)} \text{dissimilarity}(x_t, x_s) \]
Clustering Criterion

- Minimize total within-cluster dissimilarity
 \[M_1 = \sum_{j=1}^{K} \sum_{s,t \in C_j} \text{dissimilarity}(x_t, x_s) \]

- Maximize between-cluster dissimilarity
 \[M_2 = \sum_{x_s, x_t : c(x_s) \neq c(x_t)} \text{dissimilarity}(x_t, x_s) \]

- Maximize smallest between-cluster dissimilarity
 \[M_3 = \min_{x_s, x_t : c(x_s) \neq c(x_t)} \text{dissimilarity}(x_t, x_s) \]

- Minimize largest within-cluster dissimilarity
 \[M_4 = \max_{j \in [K]} \max_{s,t \in C_j} \text{dissimilarity}(x_t, x_s) \]
Clustering Criterion

- Minimize total within-cluster dissimilarity
 \[M_1 = \sum_{j=1}^{K} \sum_{s,t \in C_j} \text{dissimilarity}(x_t, x_s) \]

- Maximize between-cluster dissimilarity
 \[M_2 = \sum_{x_s, x_t: c(x_s) \neq c(x_t)} \text{dissimilarity}(x_t, x_s) \]

- Maximize smallest between-cluster dissimilarity
 \[M_3 = \min_{x_s, x_t: c(x_s) \neq c(x_t)} \text{dissimilarity}(x_t, x_s) \]

- Minimize largest within-cluster dissimilarity
 \[M_4 = \max_{j \in [K]} \max_{s,t \in C_j} \text{dissimilarity}(x_t, x_s) \]
Minimize average dissimilarity within cluster

\[M_6 = \sum_{j=1}^{K} \frac{1}{|C_j|} \sum_{s \in C_j} \text{dissimilarity}(x_s, C_j) \]
Minimize average dissimilarity within cluster

\[M_6 = \sum_{j=1}^{K} \frac{1}{|C_j|} \sum_{s \in C_j} \text{dissimilarity} \left(x_s, C_j \right) \]

\[= \sum_{j=1}^{K} \frac{1}{|C_j|} \sum_{s \in C_j} \left(\sum_{t \in C_j, t \neq s} \text{dissimilarity} \left(x_s, x_t \right) \right) \]
Clustering Criterion

- Minimize average dissimilarity within cluster

\[
M_6 = \sum_{j=1}^{K} \frac{1}{|C_j|} \sum_{s \in C_j} \text{dissimilarity} \left(x_s, C_j \right)
\]

\[
= \sum_{j=1}^{K} \frac{1}{|C_j|} \sum_{s \in C_j} \left(\sum_{t \in C_j, t \neq s} \text{dissimilarity} \left(x_s, x_t \right) \right)
\]

\[
= \sum_{j=1}^{K} \frac{1}{|C_j|} \sum_{s \in C_j} \left(\sum_{t \in C_j, t \neq s} \| x_s - x_t \|^2 \right)
\]
Clustering Criterion

- **Minimize average dissimilarity within cluster**

\[
M_6 = \sum_{j=1}^{K} \frac{1}{|C_j|} \sum_{s \in C_j} \text{dissimilarity} \left(x_s, C_j \right)
\]

\[
= \sum_{j=1}^{K} \frac{1}{|C_j|} \sum_{s \in C_j} \left(\sum_{t \in C_j, t \neq s} \text{dissimilarity} \left(x_s, x_t \right) \right)
\]

\[
= \sum_{j=1}^{K} \frac{1}{|C_j|} \sum_{s \in C_j} \left(\sum_{t \in C_j, t \neq s} \| x_s - x_t \|_2^2 \right)
\]

- **Minimize within-cluster variance:**

\[
r_j = \frac{1}{n_j} \sum_{x \in C_j} x
\]

\[
M_5 = \sum_{j=1}^{K} \sum_{t \in C_j} \| x_t - r_j \|_2^2
\]
How different are these criteria?
minimizing $M_1 \equiv$ maximizing M_2
Clustering

- Multiple clustering criteria all equally valid
- Different criteria lead to different algorithms/solutions
- Which notion of distances or costs we use matter
Lets Build an Algorithm

\[M_3 = \min_{x_s, x_t: c(x_s) \neq c(x_t)} \text{dissimilarity}(x_t, x_s) \]
Let's Build an Algorithm

\[M_3 = \min_{x_s, x_t: c(x_s) \neq c(x_t)} \text{dissimilarity}(x_t, x_s) \]
Let's Build an Algorithm

\[M_3 = \min_{x_s, x_t: c(x_s) \neq c(x_t)} \text{dissimilarity}(x_t, x_s) \]
Lets Build an Algorithm

\[M_3 = \min_{x_s, x_t : c(x_s) \neq c(x_t)} \text{dissimilarity}(x_t, x_s) \]
Lets Build an Algorithm

\[M_3 = \min_{x_s, x_t: c(x_s) \neq c(x_t)} \text{dissimilarity}(x_t, x_s) \]
Let's Build an Algorithm

\[M_3 = \min_{x_s, x_t : c(x_s) \neq c(x_t)} \text{dissimilarity}(x_t, x_s) \]
Let's Build an Algorithm

\[M_3 = \min_{x_s, x_t: c(x_s) \neq c(x_t)} \text{dissimilarity}(x_t, x_s) \]
Single Link Clustering

- Initialize n clusters with each point x_t to its own cluster

- Until there are only K clusters, do

 1. Find closest two clusters and merge them into one cluster
Single Link Clustering

- Initialize n clusters with each point x_t to its own cluster

- Until there are only K clusters, do
 1. Find closest two clusters and merge them into one cluster

\[
\text{dissimilarity}(C_i, C_j) = \min_{t \in C_i, s \in C_j} \text{dissimilarity}(x_t, x_s)
\]
Demo

[Diagram with colored circles and an oval highlighting a specific area]
Demo
Demo
Demo
Demo
Demo
Objective for single-link:

\[M_3 = \min_{x_s, x_t: c(x_s) \neq c(x_t)} \text{dissimilarity}(x_t, x_s) \]

Single link clustering is optimal for above objective!
Proof:

Say c is solution produced by single-link clustering
Single Link Objective

Proof:

Say c is solution produced by single-link clustering

Key observation:

$$\min_{t,s:c(x_t)\neq c(x_s)} \text{dissimilarity}(x_t, x_s) > \text{Distance of points merged (on the tree)}$$
Single Link Objective

Proof:

Say \(c \) is solution produced by single-link clustering

Key observation:

\[
\min_{t,s : c(x_t) \neq c(x_s)} \text{dissimilarity}(x_t, x_s) > \text{Distance of points merged (on the tree)}
\]

Say \(c' \neq c \) then,

\[\exists t, s \text{ s.t. } c'(x_t) \neq c'(x_s) \text{ but } c(x_t) = c(x_s)\]
Single Link Objective

Proof:

Say c is solution produced by single-link clustering

Key observation:

$$\min_{t,s: c(x_t) \neq c(x_s)} \text{dissimilarity}(x_i, x_j) > \text{Distance of points merged (on the tree)}$$

Say $c' \neq c$ then,

$$\exists \ t, s \ s.t. \ c'(x_t) \neq c'(x_s) \text{ but } c(x_t) = c(x_s)$$
Single Link Objective

Proof:

Say c is solution produced by single-link clustering.

Key observation:

$$\min_{t,s: c(x_t) \neq c(x_s)} \text{dissimilarity}(x_t, x_s) > \text{Distance of points merged (on the tree)}$$

Say $c' \neq c$ then,

$$\exists t, s \text{ s.t. } c'(x_t) \neq c'(x_s) \text{ but } c(x_t) = c(x_s)$$
Single Link Objective

Proof:

Say c is solution produced by single-link clustering

Key observation:

$$\min_{t,s: c(x_t) \neq c(x_s)} \text{dissimilarity}(x_i, x_j) > \text{Distance of points merged (on the tree)}$$

Say $c' \neq c$ then,

$$\exists \ t, s \text{ s.t. } c'(x_t) \neq c'(x_s) \text{ but } c(x_t) = c(x_s)$$

Distance of points merged (on the tree)
Single Link Objective

Proof:

Say c is solution produced by single-link clustering

Key observation:

$$\min_{t,s: c(x_i) \neq c(x_j)} \text{dissimilarity}(x_i, x_j) > \text{Distance of points merged (on the tree)}$$

Say $c' \neq c$ then,

$$\exists t, s \text{ s.t. } c'(x_t) \neq c'(x_s) \text{ but } c(x_t) = c(x_s)$$
Linkage Clustering
Linkage Clustering

• Start with each point being its own cluster
Linkage Clustering

• Start with each point being its own cluster

• Merge the closest two clusters
Linkage Clustering

• Start with each point being its own cluster

• Merge the closest two clusters

 • Changing the meaning of what makes two cluster closest yield different linkage algorithms
Linkage Clustering

• Start with each point being its own cluster

• Merge the closest two clusters
 • Changing the meaning of what makes two cluster closest yield different linkage algorithms

• Single link is the only one provable optimal
Linkage Clustering

- Start with each point being its own cluster
- Merge the closest two clusters
 - Changing the meaning of what makes two clusters closest yield different linkage algorithms
- Single link is the only one provable optimal
- Linking based on average distance works best in practice
Demo
Clustering Criterion

- Minimize average dissimilarity within cluster

\[
M_6 = \frac{1}{K} \sum_{j=1}^{K} \frac{1}{|C_j|} \sum_{s \in C_j} \text{dissimilarity}(x_s, C_j)
\]
Minimize average dissimilarity within cluster

\[M_6 = \frac{1}{|C_j|} \sum_{s \in C_j} \text{dissimilarity}(x_s, C_j) \]

\[= \frac{1}{|C_j|} \sum_{s \in C_j} \left(\sum_{t \in C_j, t \neq s} \text{dissimilarity}(x_s, x_t) \right) \]
Clustering Criterion

- Minimize average dissimilarity within cluster

\[
M_6 = \sum_{j=1}^{K} \frac{1}{|C_j|} \sum_{s \in C_j} \text{dissimilarity}(x_s, C_j)
\]

\[
= \sum_{j=1}^{K} \frac{1}{|C_j|} \sum_{s \in C_j} \left(\sum_{t \in C_j, t \neq s} \text{dissimilarity}(x_s, x_t) \right)
\]

\[
= \sum_{j=1}^{K} \frac{1}{|C_j|} \sum_{s \in C_j} \left(\sum_{t \in C_j, t \neq s} \|x_s - x_t\|_2^2 \right)
\]
Clustering Criterion

- Minimize average dissimilarity within cluster

\[M_6 = \sum_{j=1}^{K} \frac{1}{|C_j|} \sum_{s \in C_j} \text{dissimilarity}(x_s, C_j) \]

\[= \sum_{j=1}^{K} \frac{1}{|C_j|} \sum_{s \in C_j} \left(\sum_{t \in C_j, t \neq s} \text{dissimilarity}(x_s, x_t) \right) \]

\[= \sum_{j=1}^{K} \frac{1}{|C_j|} \sum_{s \in C_j} \left(\sum_{t \in C_j, t \neq s} \|x_s - x_t\|_2^2 \right) \]

- Minimize within-cluster variance: \(r_j = \frac{1}{n_j} \sum_{x \in C_j} x \)

\[M_5 = \sum_{j=1}^{K} \sum_{t \in C_j} \|x_t - r_j\|_2^2 \]
minimizing $M_5 \equiv$ minimizing M_6
What is the Algorithm for this?