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HMM Via Particle Filtering 
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General Bayesian Networks
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Who is more likely to win the game?
Compute sum of exact probabilities of all possible 
sequence of moves leading to Player 1’s victory
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Who is more likely to win the game?

Throw dice and simulate multiple games, see who wins more often



HIDDEN MARKOV MODEL (HMM)

Eg: say observations were 

Rejection sampling: Reject samples that don’t match observations

We can do this sequentially!



IMPORTANCE SAMPLING

We really want to draw from distribution P.
But we can only draw from distribution Q easily
Trick:

Draw x1, . . . ,xn ∼ Q
Re-weight each sample xt by P(X = xt)�Q(X = xt)



IMPORTANCE SAMPLING

We had the problem of too many rejections because probability of
getting our sample to match exactly the observation is very low!
How do we fix this?
Fix observations and sample only states from the markov chain!
Desired distribution P: P(S1, . . . ,SN�X1 = x1, . . . ,XN = xN)
Sampling distribution Q: P(S1, . . . ,SN)
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HIDDEN MARKOV MODEL (HMM)

Eg: say observations were 

Importance weighting:  weight samples

P(    | S3=9)    P(    | S1=13)    P(    | S2=8)    P(    | S7=14)    P(    | S6=19)    P(    | S5=24)    x x x x x
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HMM PARTICLE FILTER

Use multiple samples and track each ones weights.

P(    | S3)    P(    | S6)P(    | S5)    P(    | S4)    

• This is same as 6 separate samples

• Instead of tracking each sample’s weight, resample 
according to weights
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HMM PARTICLE FILTER

Use multiple samples and track each ones weights.

P(    | S3)    P(    | S6)P(    | S5)    P(    | S4)    

• This is same as 6 separate samples

• Instead of tracking each sample’s weight, resample 
according to weights

• Problem: Too many samples have negligible weight!
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HMM PARTICLE FILTER

Use multiple samples and track each ones weights.
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• On every round, transfer particles from previous states 
according to transition probability
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HMM PARTICLE FILTER

Use multiple samples and track each ones weights.

P(    | S3)    

• On every round, transfer particles from previous states 
according to transition probability

• Resample particles according to P(observation|state)
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Instead of tracking each one, resample!
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HMM PARTICLE FILTER

Use multiple samples and track each ones weights.

P(    | S3)    

• On every round, transfer particles from previous states 
according to transition probability

• Resample particles according to P(observation|state)

• Use new particles to proceed

P(    | S6)P(    | S5)    P(    | S4)    

Instead of tracking each one, resample!
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Particle Filtering
• Without resampling, we carry many particles with 

very small probabilities

• too many samples needed for a good estimate

• By resampling, we got rid of samples with very 
small probabilities

• Hence fewer samples suffice



• Inference time only depends on number of samples 

• Of course more the samples the better accuracy 

• Often we don’t need too many samples. Why ?

HMM PARTICLE FILTER

Use multiple samples and track each ones weights.
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Gibbs Sampling
• Repeat n times for, n samples,

• Start with arbitrary value for variables

• Replace each variable by new sample from 
P(Variable| all other variables)

• Go over all variables multiple times

• Return final sample of the N variables



EXAMPLE: CI AND MIGRAPHICAL MODELS

A graph whose nodes are variables X1, . . . ,XN

Graphs are an intuitive way of representing relationships between
large number of variables

Allows us to abstract out the parametric form that depends on ✓
and the basic relationship between the random variables.

• Variables     is written as            if      is observed 

• Variables     is written as             if      is latent 

• Parameters are often left out (its understood and 
not explicitly written out). If present they don’t have 
bounding objects 

• A directed edge        is drawn connecting every 
parent to its child (from parent to child)

XiXi Xi

XiXi Xi



EXAMPLE: CI AND MIGRAPHICAL MODELS

A graph whose nodes are variables X1, . . . ,XN

Graphs are an intuitive way of representing relationships between
large number of variables

Allows us to abstract out the parametric form that depends on ✓
and the basic relationship between the random variables.

Central 
System
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Fire in Garage

Call you

Garage 
System
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• Directed acyclic graph G = (V,E) 

• Edges going from parent nodes to child nodes 

• Direction indicates parent “generates” child

• Local Markov Property: Each node conditionally 
independent of its non-descendants given its 
parents

P (X1, . . . , XN ) =
NY

i=1

P (Xi|Parents(Xi))

Joint probability factorizes as:

(graph with no directed cycle)



BAYESIAN NETWORKS

Directed acyclic graph (DAG): G = (V,E)
Joint distribution P✓ over X1, . . . ,Xn that factorizes over G:

P✓(X1, . . . ,Xn) = N�
i=1

P✓(Xi�Parent(Xi))

Hence Bayesian Networks are specified by G along with CPD’s
over the variables (given their parents)
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EXAMPLE: CI AND MIGRAPHICAL MODELS

A graph whose nodes are variables X1, . . . ,XN

Graphs are an intuitive way of representing relationships between
large number of variables

Allows us to abstract out the parametric form that depends on ✓
and the basic relationship between the random variables.

Central 
System

Call Police

Fire in Garage

Call you

Garage 
System

Fire No Fire
0.05 0.95

GS On Off
Fire 0.9 0.1

No Fire 0.3 0.7

CS On Off
Fire 0.99 0.01

No Fire 0.1 0.9

Y Call no call
CS on GS on 0.95 0.05
CS off GS on 0.7 0.3
CS on GS off 0.9 0.1
CS off GS off 0.01 0.99

P Call no call
CS on 1 0
CS off 0.01 0.99

These tables are the parameters



Inference in BN



VARIABLE ELIMINATION: EXAMPLES

• Marginals are enough:

P (Xj = xj , Xk = xk|Xi = xi, Xh = xh) =
P (Xj = xj , Xk = xk, Xi = xi, Xh = xh)

P (Xi = xi, Xh = xh)



VARIABLE ELIMINATION: EXAMPLES

X1 X2

X3

X4

P(Given variables) = Sum over all other variables (P(All variables)) 
= Sum over all other variables (Product P(Xi|Parents(Xi)))
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P (X4) =
X

x1

X

x2

X
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P (X1 = x1, X2 = x2, X3 = x3, X4)
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X
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X
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VARIABLE ELIMINATION: BAYESIAN NETWORK

Initialize List with conditional probability distributions

Pick an order of elimination I for remaining variables

For each Xi ∈ I
Find distributions in List containing variable Xi and remove them

Define new distribution as the sum (over values of Xi) of the
product of these distributions

Place the new distribution on List

End

Return List
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X1

X2 X3 XnX3

List initialized to :  {P(X1), P(X2|X1), P(X3|X1),…,P(Xn|X1)}
Say I = (1,2,3,…,n-1)

Iteration 1: Eliminate X1

All terms in list involve X1 so remove all of them

Replace them by table: 
L1(x1, . . . , xn) =

X

x1

 
P (X1 = x1)

nY

t=2

P (Xt = xt|X1 = x1)

!
L2



VARIABLE ELIMINATION: ORDER MATTERS

X1

X2 X3 XnX3

List initialized to :  {P(X1), P(X2|X1), P(X3|X1),…,P(Xn|X1)}
Say I = (1,2,3,…,n-1)

Iteration 1: Eliminate X1

All terms in list involve X1 so remove all of them

Replace them by table: 

What is the size of table L1?

L1(x1, . . . , xn) =
X

x1

 
P (X1 = x1)

nY

t=2

P (Xt = xt|X1 = x1)

!
L2
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VARIABLE ELIMINATION: ORDER MATTERS

X1

X2 X3 XnX3

List initialized to :  {P(X1), P(X2|X1), P(X3|X1),…,P(Xn|X1)}
Say I = (n-1,n-2,…,1)



VARIABLE ELIMINATION: ORDER MATTERS

X1

X2 X3 XnX3

List initialized to :  {P(X1), P(X2|X1), P(X3|X1),…,P(Xn|X1)}
Say I = (n-1,n-2,…,1)

Iteration 1: Eliminate Xn-1



VARIABLE ELIMINATION: ORDER MATTERS

X1

X2 X3 XnX3

List initialized to :  {P(X1), P(X2|X1), P(X3|X1),…,P(Xn|X1)}
Say I = (n-1,n-2,…,1)

Iteration 1: Eliminate Xn-1

Remove P(Xn|X1) from List and replace by 
Ln�1(x1) =

X

xn�1

P (Xn�1|X1 = x1) = 1



VARIABLE ELIMINATION: ORDER MATTERS

X1

X2 X3 XnX3

List initialized to :  {P(X1), P(X2|X1), P(X3|X1),…,P(Xn|X1)}
Say I = (n-1,n-2,…,1)

Iteration 1: Eliminate Xn-1

Remove P(Xn|X1) from List and replace by 
Ln�1(x1) =

X

xn�1

P (Xn�1|X1 = x1) = 1

All the way up to X2 we replace by all ones message 
In then end we only have P(X1),P(Xn|X1)



VARIABLE ELIMINATION: ORDER MATTERS

X1

X2 X3 XnX3

Right order: O(n) 

Wrong order: O(2 )n
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BELIEF PROPAGATION

Think of variables as nodes in a network, each node is allowed to
chat with its neighbors

Adjacent nodes receive messages from neighbors telling the node
how to update its belief

Each node in turn sends messages to its neighbors:
based on observation, previous received messages, marginal and
conditional distributions telling the other how to update beliefs

(Hopefully) All the nodes converge on their beliefs

Fire in Garage

REJECTION SAMPLING

Example:

What about �P̂(Xv = 1�observation) − P(Xv = 1�observation)� ?

Garage 
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BELIEF PROPAGATION

Think of variables as nodes in a network, each node is allowed to
chat with its neighbors

Adjacent nodes receive messages from neighbors telling the node
how to update its belief

Each node in turn sends messages to its neighbors:
based on observation, previous received messages, marginal and
conditional distributions telling the other how to update beliefs

(Hopefully) All the nodes converge on their beliefs
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REJECTION SAMPLING

Example:

What about �P̂(Xv = 1�observation) − P(Xv = 1�observation)� ?
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System
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11 0 0 1 0 0
12 0 0 1 0 1
13 0 0 1 0 1
14 0 0 0 0 0
15 0 0 0 0 0
16 0 0 1 0 0
17 0 0 0 0 0
18 0 0 0 0 0
19 0 0 0 0 0
20 0 0 0 0 0
21 0 0 0 0 0
22 0 0 0 0 0
23 0 0 0 0 0
24 0 0 0 0 0
25 0 0 1 0 1

Central 
System1=



REJECTION SAMPLING

Example:

What about �P̂(Xv = 1�observation) − P(Xv = 1�observation)� ?

Central 
System

Call Police

Fire in Garage

Call you

Garage 
System

Fire No Fire
0.05 0.95

GS On Off
Fire 0.9 0.1

No Fire 0.3 0.7

CS On Off
Fire 0.99 0.01

No Fire 0.1 0.9

P Call no call
CS on 1 0
CS off 0.01 0.99

Y Call no call
CS on GS on 0.95 0.05
CS off GS on 0.7 0.3
CS on GS off 0.9 0.1
CS off GS off 0.01 0.99

F CS GS P Y
1 0 0 1 0 1
2 0 1 0 1 0
3 1 1 1 1 1
4 0 0 0 0 0
5 0 0 1 0 0
6 0 0 1 0 1
7 0 0 0 0 0
8 0 0 1 0 1
9 0 0 0 0 0
10 0 0 1 0 1
11 0 0 1 0 0
12 0 0 1 0 1
13 0 0 1 0 1
14 0 0 0 0 0
15 0 0 0 0 0
16 0 0 1 0 0
17 0 0 0 0 0
18 0 0 0 0 0
19 0 0 0 0 0
20 0 0 0 0 0
21 0 0 0 0 0
22 0 0 0 0 0
23 0 0 0 0 0
24 0 0 0 0 0
25 0 0 1 0 1

Central 
System1=

CS



REJECTION SAMPLING

Example:

What about �P̂(Xv = 1�observation) − P(Xv = 1�observation)� ?

Central 
System

Call Police

Fire in Garage

Call you

Garage 
System

Fire No Fire
0.05 0.95

GS On Off
Fire 0.9 0.1

No Fire 0.3 0.7

CS On Off
Fire 0.99 0.01

No Fire 0.1 0.9

P Call no call
CS on 1 0
CS off 0.01 0.99

Y Call no call
CS on GS on 0.95 0.05
CS off GS on 0.7 0.3
CS on GS off 0.9 0.1
CS off GS off 0.01 0.99

F CS GS P Y
1 0 0 1 0 1
2 0 1 0 1 0
3 1 1 1 1 1
4 0 0 0 0 0
5 0 0 1 0 0
6 0 0 1 0 1
7 0 0 0 0 0
8 0 0 1 0 1
9 0 0 0 0 0
10 0 0 1 0 1
11 0 0 1 0 0
12 0 0 1 0 1
13 0 0 1 0 1
14 0 0 0 0 0
15 0 0 0 0 0
16 0 0 1 0 0
17 0 0 0 0 0
18 0 0 0 0 0
19 0 0 0 0 0
20 0 0 0 0 0
21 0 0 0 0 0
22 0 0 0 0 0
23 0 0 0 0 0
24 0 0 0 0 0
25 0 0 1 0 1

=# calls
# samples

1
2

Central 
System1=

CS



REJECTION SAMPLING

Example:

What about �P̂(Xv = 1�observation) − P(Xv = 1�observation)� ?

Central 
System

Call Police

Fire in Garage

Call you

Garage 
System

Fire No Fire
0.05 0.95

GS On Off
Fire 0.9 0.1

No Fire 0.3 0.7

CS On Off
Fire 0.99 0.01

No Fire 0.1 0.9

P Call no call
CS on 1 0
CS off 0.01 0.99

Y Call no call
CS on GS on 0.95 0.05
CS off GS on 0.7 0.3
CS on GS off 0.9 0.1
CS off GS off 0.01 0.99

F CS GS P Y
1 0 0 1 0 1
2 0 1 0 1 0
3 1 1 1 1 1
4 0 0 0 0 0
5 0 0 1 0 0
6 0 0 1 0 1
7 0 0 0 0 0
8 0 0 1 0 1
9 0 0 0 0 0
10 0 0 1 0 1
11 0 0 1 0 0
12 0 0 1 0 1
13 0 0 1 0 1
14 0 0 0 0 0
15 0 0 0 0 0
16 0 0 1 0 0
17 0 0 0 0 0
18 0 0 0 0 0
19 0 0 0 0 0
20 0 0 0 0 0
21 0 0 0 0 0
22 0 0 0 0 0
23 0 0 0 0 0
24 0 0 0 0 0
25 0 0 1 0 1

=# calls
# samples

1
2

Central 
System1=

CS

???!!!



REJECTION SAMPLING

Example:

What about �P̂(Xv = 1�observation) − P(Xv = 1�observation)� ?

Central 
System

Call Police

Fire in Garage

Call you

Garage 
System

Fire No Fire
0.05 0.95

GS On Off
Fire 0.9 0.1

No Fire 0.3 0.7

CS On Off
Fire 0.99 0.01

No Fire 0.1 0.9

P Call no call
CS on 1 0
CS off 0.01 0.99

Y Call no call
CS on GS on 0.95 0.05
CS off GS on 0.7 0.3
CS on GS off 0.9 0.1
CS off GS off 0.01 0.99

F CS GS P Y
1 0 0 1 0 1
2 0 1 0 1 0
3 1 1 1 1 1
4 0 0 0 0 0
5 0 0 1 0 0
6 0 0 1 0 1
7 0 0 0 0 0
8 0 0 1 0 1
9 0 0 0 0 0
10 0 0 1 0 1
11 0 0 1 0 0
12 0 0 1 0 1
13 0 0 1 0 1
14 0 0 0 0 0
15 0 0 0 0 0
16 0 0 1 0 0
17 0 0 0 0 0
18 0 0 0 0 0
19 0 0 0 0 0
20 0 0 0 0 0
21 0 0 0 0 0
22 0 0 0 0 0
23 0 0 0 0 0
24 0 0 0 0 0
25 0 0 1 0 1

=# calls
# samples

1
2

Central 
System1=

CS

???!!!Too many rejections :(



REJECTION SAMPLING

Example:

What about �P̂(Xv = 1�observation) − P(Xv = 1�observation)� ?

Central 
System

Call Police

Fire in Garage

Call you

Garage 
System

IMPORTANCE SAMPLING

More generally importance sampling is given by:
Draw x1, . . . ,xn ∼ Q
Notice that

EX∼P[f (X)] = EX∼Q � P(X)
Q(X) f (X)�

Hence,

P̂(X = x) ≈ 1
n

n�
t=1

1{xt = x} P(X = x)
Q(X = x)

Idea draw samples from Q but re-weight them

Fire No Fire
0.05 0.95

GS On Off
Fire 0.9 0.1

No Fire 0.3 0.7

CS On Off
Fire 0.99 0.01

No Fire 0.1 0.9

P Call no call
CS on 1 0
CS off 0.01 0.99

Y Call no call
CS on GS on 0.95 0.05
CS off GS on 0.7 0.3
CS on GS off 0.9 0.1
CS off GS off 0.01 0.99

Central 
System1=



REJECTION SAMPLING

Example:

What about �P̂(Xv = 1�observation) − P(Xv = 1�observation)� ?

Central 
System

Call Police

Fire in Garage

Call you

Garage 
System

IMPORTANCE SAMPLING

More generally importance sampling is given by:
Draw x1, . . . ,xn ∼ Q
Notice that

EX∼P[f (X)] = EX∼Q � P(X)
Q(X) f (X)�

Hence,

P̂(X = x) ≈ 1
n

n�
t=1

1{xt = x} P(X = x)
Q(X = x)

Idea draw samples from Q but re-weight them

Fire No Fire
0.05 0.95

GS On Off
Fire 0.9 0.1

No Fire 0.3 0.7

CS On Off
Fire 0.99 0.01

No Fire 0.1 0.9

P Call no call
CS on 1 0
CS off 0.01 0.99

Y Call no call
CS on GS on 0.95 0.05
CS off GS on 0.7 0.3
CS on GS off 0.9 0.1
CS off GS off 0.01 0.99

Central 
System1=

If we could sample directly from distribution 
conditioned on CS = 1 it would be great!!!



REJECTION SAMPLING

Example:

What about �P̂(Xv = 1�observation) − P(Xv = 1�observation)� ?

Central 
System

Call Police

Fire in Garage

Call you

Garage 
System

IMPORTANCE SAMPLING

More generally importance sampling is given by:
Draw x1, . . . ,xn ∼ Q
Notice that

EX∼P[f (X)] = EX∼Q � P(X)
Q(X) f (X)�

Hence,

P̂(X = x) ≈ 1
n

n�
t=1

1{xt = x} P(X = x)
Q(X = x)

Idea draw samples from Q but re-weight them

Fire No Fire
0.05 0.95

GS On Off
Fire 0.9 0.1

No Fire 0.3 0.7

CS On Off
Fire 0.99 0.01

No Fire 0.1 0.9

P Call no call
CS on 1 0
CS off 0.01 0.99

Y Call no call
CS on GS on 0.95 0.05
CS off GS on 0.7 0.3
CS on GS off 0.9 0.1
CS off GS off 0.01 0.99

Central 
System1=

F CS GS P Y
1 0 0 1 0 1
2 0 1 0 1 0
3 1 1 1 1 1
4 0 0 0 0 0
5 0 0 1 0 0
6 0 0 1 0 1
7 0 0 0 0 0
8 0 0 1 0 1
9 0 0 0 0 0
10 0 0 1 0 1
11 0 0 1 0 0
12 0 0 1 0 1
13 0 0 1 0 1
14 0 0 0 0 0
15 0 0 0 0 0
16 0 0 1 0 0
17 0 0 0 0 0
18 0 0 0 0 0
19 0 0 0 0 0
20 0 0 0 0 0
21 0 0 0 0 0
22 0 0 0 0 0
23 0 0 0 0 0
24 0 0 0 0 0
25 0 0 1 0 1

CS



Central 
System

Call youCall Police

BELIEF PROPAGATION

Think of variables as nodes in a network, each node is allowed to
chat with its neighbors

Adjacent nodes receive messages from neighbors telling the node
how to update its belief

Each node in turn sends messages to its neighbors:
based on observation, previous received messages, marginal and
conditional distributions telling the other how to update beliefs

(Hopefully) All the nodes converge on their beliefs

Fire in Garage

Call you

REJECTION SAMPLING

Example:

What about �P̂(Xv = 1�observation) − P(Xv = 1�observation)� ?

Garage 
System

IMPORTANCE SAMPLING

More generally importance sampling is given by:
Draw x1, . . . ,xn ∼ Q
Notice that

EX∼P[f (X)] = EX∼Q � P(X)
Q(X) f (X)�

Hence,

P̂(X = x) ≈ 1
n

n�
t=1

1{xt = x} P(X = x)
Q(X = x)

Idea draw samples from Q but re-weight them

Fire No Fire
0.05 0.95

GS On Off
Fire 0.9 0.1

No Fire 0.3 0.7

CS On Off
Fire 0.99 0.01

No Fire 0.1 0.9

P Call no call
CS on 1 0
CS off 0.01 0.99

Y Call no call
CS on GS on 0.95 0.05
CS off GS on 0.7 0.3
CS on GS off 0.9 0.1
CS off GS off 0.01 0.99

Central 
System =1



Central 
System

Call youCall Police

BELIEF PROPAGATION

Think of variables as nodes in a network, each node is allowed to
chat with its neighbors

Adjacent nodes receive messages from neighbors telling the node
how to update its belief

Each node in turn sends messages to its neighbors:
based on observation, previous received messages, marginal and
conditional distributions telling the other how to update beliefs

(Hopefully) All the nodes converge on their beliefs

Fire in Garage

Call you

REJECTION SAMPLING

Example:

What about �P̂(Xv = 1�observation) − P(Xv = 1�observation)� ?

Garage 
System

IMPORTANCE SAMPLING

More generally importance sampling is given by:
Draw x1, . . . ,xn ∼ Q
Notice that

EX∼P[f (X)] = EX∼Q � P(X)
Q(X) f (X)�

Hence,

P̂(X = x) ≈ 1
n

n�
t=1

1{xt = x} P(X = x)
Q(X = x)

Idea draw samples from Q but re-weight them

Fire No Fire
0.05 0.95

GS On Off
Fire 0.9 0.1

No Fire 0.3 0.7

CS On Off
Fire 0.99 0.01

No Fire 0.1 0.9

P Call no call
CS on 1 0
CS off 0.01 0.99

F CS GS P Y
1

Y Call no call
CS on GS on 0.95 0.05
CS off GS on 0.7 0.3
CS on GS off 0.9 0.1
CS off GS off 0.01 0.99

Central 
System =1



Central 
System

Call youCall Police

BELIEF PROPAGATION

Think of variables as nodes in a network, each node is allowed to
chat with its neighbors

Adjacent nodes receive messages from neighbors telling the node
how to update its belief

Each node in turn sends messages to its neighbors:
based on observation, previous received messages, marginal and
conditional distributions telling the other how to update beliefs

(Hopefully) All the nodes converge on their beliefs

Fire in Garage

Call you

REJECTION SAMPLING

Example:

What about �P̂(Xv = 1�observation) − P(Xv = 1�observation)� ?

Garage 
System

IMPORTANCE SAMPLING

More generally importance sampling is given by:
Draw x1, . . . ,xn ∼ Q
Notice that

EX∼P[f (X)] = EX∼Q � P(X)
Q(X) f (X)�

Hence,

P̂(X = x) ≈ 1
n

n�
t=1

1{xt = x} P(X = x)
Q(X = x)

Idea draw samples from Q but re-weight them

Fire No Fire
0.05 0.95

GS On Off
Fire 0.9 0.1

No Fire 0.3 0.7

CS On Off
Fire 0.99 0.01

No Fire 0.1 0.9

P Call no call
CS on 1 0
CS off 0.01 0.99

F CS GS P Y
1 0

Y Call no call
CS on GS on 0.95 0.05
CS off GS on 0.7 0.3
CS on GS off 0.9 0.1
CS off GS off 0.01 0.99

Central 
System =1



Central 
System

Call youCall Police

BELIEF PROPAGATION

Think of variables as nodes in a network, each node is allowed to
chat with its neighbors

Adjacent nodes receive messages from neighbors telling the node
how to update its belief

Each node in turn sends messages to its neighbors:
based on observation, previous received messages, marginal and
conditional distributions telling the other how to update beliefs

(Hopefully) All the nodes converge on their beliefs

Fire in Garage

Call you

REJECTION SAMPLING

Example:

What about �P̂(Xv = 1�observation) − P(Xv = 1�observation)� ?

Garage 
System

IMPORTANCE SAMPLING

More generally importance sampling is given by:
Draw x1, . . . ,xn ∼ Q
Notice that

EX∼P[f (X)] = EX∼Q � P(X)
Q(X) f (X)�

Hence,

P̂(X = x) ≈ 1
n

n�
t=1

1{xt = x} P(X = x)
Q(X = x)

Idea draw samples from Q but re-weight them

Fire No Fire
0.05 0.95

GS On Off
Fire 0.9 0.1

No Fire 0.3 0.7

CS On Off
Fire 0.99 0.01

No Fire 0.1 0.9

P Call no call
CS on 1 0
CS off 0.01 0.99

F CS GS P Y
1 0 1

Y Call no call
CS on GS on 0.95 0.05
CS off GS on 0.7 0.3
CS on GS off 0.9 0.1
CS off GS off 0.01 0.99

Central 
System =1



Central 
System

Call youCall Police

BELIEF PROPAGATION

Think of variables as nodes in a network, each node is allowed to
chat with its neighbors

Adjacent nodes receive messages from neighbors telling the node
how to update its belief

Each node in turn sends messages to its neighbors:
based on observation, previous received messages, marginal and
conditional distributions telling the other how to update beliefs

(Hopefully) All the nodes converge on their beliefs

Fire in Garage

Call you

REJECTION SAMPLING

Example:

What about �P̂(Xv = 1�observation) − P(Xv = 1�observation)� ?

Garage 
System

IMPORTANCE SAMPLING

More generally importance sampling is given by:
Draw x1, . . . ,xn ∼ Q
Notice that

EX∼P[f (X)] = EX∼Q � P(X)
Q(X) f (X)�

Hence,

P̂(X = x) ≈ 1
n

n�
t=1

1{xt = x} P(X = x)
Q(X = x)

Idea draw samples from Q but re-weight them

Fire No Fire
0.05 0.95

GS On Off
Fire 0.9 0.1

No Fire 0.3 0.7

CS On Off
Fire 0.99 0.01

No Fire 0.1 0.9

P Call no call
CS on 1 0
CS off 0.01 0.99

F CS GS P Y
1 0 1 0

Y Call no call
CS on GS on 0.95 0.05
CS off GS on 0.7 0.3
CS on GS off 0.9 0.1
CS off GS off 0.01 0.99

Central 
System =1



Central 
System

Call youCall Police

BELIEF PROPAGATION

Think of variables as nodes in a network, each node is allowed to
chat with its neighbors

Adjacent nodes receive messages from neighbors telling the node
how to update its belief

Each node in turn sends messages to its neighbors:
based on observation, previous received messages, marginal and
conditional distributions telling the other how to update beliefs

(Hopefully) All the nodes converge on their beliefs

Fire in Garage

Call you

REJECTION SAMPLING

Example:

What about �P̂(Xv = 1�observation) − P(Xv = 1�observation)� ?

Garage 
System

IMPORTANCE SAMPLING

More generally importance sampling is given by:
Draw x1, . . . ,xn ∼ Q
Notice that

EX∼P[f (X)] = EX∼Q � P(X)
Q(X) f (X)�

Hence,

P̂(X = x) ≈ 1
n

n�
t=1

1{xt = x} P(X = x)
Q(X = x)

Idea draw samples from Q but re-weight them

Fire No Fire
0.05 0.95

GS On Off
Fire 0.9 0.1

No Fire 0.3 0.7

CS On Off
Fire 0.99 0.01

No Fire 0.1 0.9

P Call no call
CS on 1 0
CS off 0.01 0.99

F CS GS P Y
1 0 1 0 1

Y Call no call
CS on GS on 0.95 0.05
CS off GS on 0.7 0.3
CS on GS off 0.9 0.1
CS off GS off 0.01 0.99

Central 
System =1



Central 
System

Call youCall Police

BELIEF PROPAGATION

Think of variables as nodes in a network, each node is allowed to
chat with its neighbors

Adjacent nodes receive messages from neighbors telling the node
how to update its belief

Each node in turn sends messages to its neighbors:
based on observation, previous received messages, marginal and
conditional distributions telling the other how to update beliefs

(Hopefully) All the nodes converge on their beliefs

Fire in Garage

Call you

REJECTION SAMPLING

Example:

What about �P̂(Xv = 1�observation) − P(Xv = 1�observation)� ?

Garage 
System

IMPORTANCE SAMPLING

More generally importance sampling is given by:
Draw x1, . . . ,xn ∼ Q
Notice that

EX∼P[f (X)] = EX∼Q � P(X)
Q(X) f (X)�

Hence,

P̂(X = x) ≈ 1
n

n�
t=1

1{xt = x} P(X = x)
Q(X = x)

Idea draw samples from Q but re-weight them

Fire No Fire
0.05 0.95

GS On Off
Fire 0.9 0.1

No Fire 0.3 0.7

CS On Off
Fire 0.99 0.01

No Fire 0.1 0.9

P Call no call
CS on 1 0
CS off 0.01 0.99

F CS GS P Y
1 0 1 0 1 0

Y Call no call
CS on GS on 0.95 0.05
CS off GS on 0.7 0.3
CS on GS off 0.9 0.1
CS off GS off 0.01 0.99

Central 
System =1



Central 
System

Call youCall Police

BELIEF PROPAGATION

Think of variables as nodes in a network, each node is allowed to
chat with its neighbors

Adjacent nodes receive messages from neighbors telling the node
how to update its belief

Each node in turn sends messages to its neighbors:
based on observation, previous received messages, marginal and
conditional distributions telling the other how to update beliefs

(Hopefully) All the nodes converge on their beliefs

Fire in Garage

Call you

REJECTION SAMPLING

Example:

What about �P̂(Xv = 1�observation) − P(Xv = 1�observation)� ?

Garage 
System

IMPORTANCE SAMPLING

More generally importance sampling is given by:
Draw x1, . . . ,xn ∼ Q
Notice that

EX∼P[f (X)] = EX∼Q � P(X)
Q(X) f (X)�

Hence,

P̂(X = x) ≈ 1
n

n�
t=1

1{xt = x} P(X = x)
Q(X = x)

Idea draw samples from Q but re-weight them

Fire No Fire
0.05 0.95

GS On Off
Fire 0.9 0.1

No Fire 0.3 0.7

CS On Off
Fire 0.99 0.01

No Fire 0.1 0.9

P Call no call
CS on 1 0
CS off 0.01 0.99

F CS GS P Y
1 0 1 0 1 0
2 0 1 1 1 1
3 1 1 1 1 1
4 0 1 0 1 1
5 0 1 0 1 1
6 0 1 0 1 1
7 0 1 1 1 1
8 0 1 0 1 0
9 0 1 0 1 1
10 0 1 1 1 1
11 0 1 0 1 1
12 0 1 1 1 0
13 0 1 0 1 1
14 0 1 1 1 1
15 0 1 0 1 1
16 0 1 0 1 1
17 0 1 0 1 1
18 0 1 0 1 1
19 0 1 1 1 1
20 0 1 0 1 1
21 0 1 0 1 1
22 0 1 0 1 1
23 0 1 1 1 1
24 0 1 0 1 1
25 0 1 1 1 1

Y Call no call
CS on GS on 0.95 0.05
CS off GS on 0.7 0.3
CS on GS off 0.9 0.1
CS off GS off 0.01 0.99

Central 
System =1



Central 
System

Call youCall Police

BELIEF PROPAGATION

Think of variables as nodes in a network, each node is allowed to
chat with its neighbors

Adjacent nodes receive messages from neighbors telling the node
how to update its belief

Each node in turn sends messages to its neighbors:
based on observation, previous received messages, marginal and
conditional distributions telling the other how to update beliefs

(Hopefully) All the nodes converge on their beliefs

Fire in Garage

Call you

REJECTION SAMPLING

Example:

What about �P̂(Xv = 1�observation) − P(Xv = 1�observation)� ?

Garage 
System

IMPORTANCE SAMPLING

More generally importance sampling is given by:
Draw x1, . . . ,xn ∼ Q
Notice that

EX∼P[f (X)] = EX∼Q � P(X)
Q(X) f (X)�

Hence,

P̂(X = x) ≈ 1
n

n�
t=1

1{xt = x} P(X = x)
Q(X = x)

Idea draw samples from Q but re-weight them

Fire No Fire
0.05 0.95

GS On Off
Fire 0.9 0.1

No Fire 0.3 0.7
CS On Off
Fire 0.99 0.01

No Fire 0.1 0.9

P Call no call
CS on 1 0
CS off 0.01 0.99

F CS GS P Y
1 0 1 0 1 0
2 0 1 1 1 1
3 1 1 1 1 1
4 0 1 0 1 1
5 0 1 0 1 1
6 0 1 0 1 1
7 0 1 1 1 1
8 0 1 0 1 0
9 0 1 0 1 1

10 0 1 1 1 1
11 0 1 0 1 1
12 0 1 1 1 0
13 0 1 0 1 1
14 0 1 1 1 1
15 0 1 0 1 1
16 0 1 0 1 1
17 0 1 0 1 1
18 0 1 0 1 1
19 0 1 1 1 1
20 0 1 0 1 1
21 0 1 0 1 1
22 0 1 0 1 1
23 0 1 1 1 1
24 0 1 0 1 1
25 0 1 1 1 1

Y Call no call
CS on GS on 0.95 0.05
CS off GS on 0.7 0.3
CS on GS off 0.9 0.1
CS off GS off 0.01 0.99

Central 
System =1



Central 
System

Call youCall Police

BELIEF PROPAGATION

Think of variables as nodes in a network, each node is allowed to
chat with its neighbors

Adjacent nodes receive messages from neighbors telling the node
how to update its belief

Each node in turn sends messages to its neighbors:
based on observation, previous received messages, marginal and
conditional distributions telling the other how to update beliefs

(Hopefully) All the nodes converge on their beliefs

Fire in Garage

Call you

REJECTION SAMPLING

Example:

What about �P̂(Xv = 1�observation) − P(Xv = 1�observation)� ?

IMPORTANCE SAMPLING

More generally importance sampling is given by:
Draw x1, . . . ,xn ∼ Q
Notice that

EX∼P[f (X)] = EX∼Q � P(X)
Q(X) f (X)�

Hence,

P̂(X = x) ≈ 1
n

n�
t=1

1{xt = x} P(X = x)
Q(X = x)

Idea draw samples from Q but re-weight them

Garage 
System

Fire No Fire
0.05 0.95

CS On Off
Fire 0.99 0.01

No Fire 0.1 0.9

P Call no call
CS on 1 0
CS off 0.01 0.99

Central 
System =1

F CS GS P Y Weight

1 0 1 0 1 0
2 0 1 1 1 1
3 1 1 1 1 1
4 0 1 0 1 1
5 0 1 0 1 1
6 0 1 0 1 1
7 0 1 1 1 1
8 0 1 0 1 0
9 0 1 0 1 1

10 0 1 1 1 1
11 0 1 0 1 1
12 0 1 1 1 0
13 0 1 0 1 1
14 0 1 1 1 1
15 0 1 0 1 1
16 0 1 0 1 1
17 0 1 0 1 1
18 0 1 0 1 1
19 0 1 1 1 1
20 0 1 0 1 1
21 0 1 0 1 1
22 0 1 0 1 1
23 0 1 1 1 1
24 0 1 0 1 1
25 0 1 1 1 1

GS On Off
Fire 0.9 0.1

No Fire 0.3 0.7

Y Call no 
callCS 

on
GS 
on

0.95 0.05
CS 
off

GS 
on

0.7 0.3
CS 
on

GS 
off

0.9 0.1
CS 
off

GS 
off

0.01 0.99



Central 
System

Call youCall Police

BELIEF PROPAGATION

Think of variables as nodes in a network, each node is allowed to
chat with its neighbors

Adjacent nodes receive messages from neighbors telling the node
how to update its belief

Each node in turn sends messages to its neighbors:
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/ P (CS = 1|F = 0)



REJECTION SAMPLING

Example:

What about �P̂(Xv = 1�observation) − P(Xv = 1�observation)� ?

IMPORTANCE SAMPLING

More generally importance sampling is given by:
Draw x1, . . . ,xn ∼ Q
Notice that

EX∼P[f (X)] = EX∼Q � P(X)
Q(X) f (X)�

Hence,

P̂(X = x) ≈ 1
n

n�
t=1

1{xt = x} P(X = x)
Q(X = x)

Idea draw samples from Q but re-weight them

P (F = 0,GS = 0,P = 1,Y = 0|CS = 1) =
P (F = 0,GS = 0,P = 1,Y = 0,CS = 1)

P (CS = 1)

But:

F CS GS P Y Weight

1 0 1 0 1 0

Call Police

Fire in Garage

Call you

Garage 
SystemCentral 

System =1

weight =
P (F = 0,GS = 0,P = 1,Y = 0|CS = 1)

P (F = 0)⇥ P (GS = 0|F = 0)⇥ P (P = 1|CS = 1)⇥ P (Y = 1|GS = 0,CS = 1)
/ P (CS = 1|F = 0)

=
1

P (CS = 1)
· P (F = 0,GS = 0,P = 1,Y = 0,CS = 1)

P (F = 0)⇥ P (GS = 0|F = 0)⇥ P (P = 1|CS = 1), P (Y = 0|CS = 1,GS = 0)
/ P (CS = 1|F = 0)

=
P (CS = 1|F = 0)

P (CS = 1)
/ P (CS = 1|F = 0)
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Example:

What about �P̂(Xv = 1�observation) − P(Xv = 1�observation)� ?

IMPORTANCE SAMPLING

More generally importance sampling is given by:
Draw x1, . . . ,xn ∼ Q
Notice that

EX∼P[f (X)] = EX∼Q � P(X)
Q(X) f (X)�

Hence,

P̂(X = x) ≈ 1
n

n�
t=1

1{xt = x} P(X = x)
Q(X = x)

Idea draw samples from Q but re-weight them

P (F = 0,GS = 0,P = 1,Y = 0|CS = 1) =
P (F = 0,GS = 0,P = 1,Y = 0,CS = 1)

P (CS = 1)

But:

F CS GS P Y Weight

1 0 1 0 1 0

Call Police

Fire in Garage

Call you

Garage 
SystemCentral 

System =1

/ P (CS = 1|F = 0)

weight =
P (F = 0,GS = 0,P = 1,Y = 0|CS = 1)

P (F = 0)⇥ P (GS = 0|F = 0)⇥ P (P = 1|CS = 1)⇥ P (Y = 1|GS = 0,CS = 1)
/ P (CS = 1|F = 0)

=
1

P (CS = 1)
· P (F = 0,GS = 0,P = 1,Y = 0,CS = 1)

P (F = 0)⇥ P (GS = 0|F = 0)⇥ P (P = 1|CS = 1), P (Y = 0|CS = 1,GS = 0)
/ P (CS = 1|F = 0)

=
P (CS = 1|F = 0)

P (CS = 1)
/ P (CS = 1|F = 0)



Central 
System

Call youCall Police

BELIEF PROPAGATION

Think of variables as nodes in a network, each node is allowed to
chat with its neighbors

Adjacent nodes receive messages from neighbors telling the node
how to update its belief

Each node in turn sends messages to its neighbors:
based on observation, previous received messages, marginal and
conditional distributions telling the other how to update beliefs

(Hopefully) All the nodes converge on their beliefs

Fire in Garage

Call you

REJECTION SAMPLING

Example:

What about �P̂(Xv = 1�observation) − P(Xv = 1�observation)� ?

IMPORTANCE SAMPLING

More generally importance sampling is given by:
Draw x1, . . . ,xn ∼ Q
Notice that

EX∼P[f (X)] = EX∼Q � P(X)
Q(X) f (X)�

Hence,

P̂(X = x) ≈ 1
n

n�
t=1

1{xt = x} P(X = x)
Q(X = x)

Idea draw samples from Q but re-weight them

Garage 
System

Fire No Fire
0.05 0.95

CS On Off
Fire 0.99 0.01

No Fire 0.1 0.9

P Call no call
CS on 1 0
CS off 0.01 0.99

Central 
System =1

F CS GS P Y Weight

1 0 1 0 1 0 0.1
2 0 1 1 1 1 0.1
3 1 1 1 1 1 0.99
4 0 1 0 1 1 0.1
5 0 1 0 1 1 0.1
6 0 1 0 1 1 0.1
7 0 1 1 1 1 0.1
8 0 1 0 1 0 0.1
9 0 1 0 1 1 0.1

10 0 1 1 1 1 0.1
11 0 1 0 1 1 0.1
12 0 1 1 1 0 0.1
13 0 1 0 1 1 0.1
14 0 1 1 1 1 0.1
15 0 1 0 1 1 0.1
16 0 1 0 1 1 0.1
17 0 1 0 1 1 0.1
18 0 1 0 1 1 0.1
19 0 1 1 1 1 0.1
20 0 1 0 1 1 0.1
21 0 1 0 1 1 0.1
22 0 1 0 1 1 0.1
23 0 1 1 1 1 0.1
24 0 1 0 1 1 0.1
25 0 1 1 1 1 0.1

GS On Off
Fire 0.9 0.1

No Fire 0.3 0.7

Y Call no 
callCS 

on
GS 
on

0.95 0.05
CS 
off

GS 
on

0.7 0.3
CS 
on

GS 
off

0.9 0.1
CS 
off

GS 
off

0.01 0.99


