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GRAPHICAL MODELS

Abstract away the parameterization specifics

Focus on relationship between random variables



RELATIONSHIP BETWEEN VARIABLES

Let X = (X1, . . . ,XN) be the random variables of our model (both latent
and observed)

Joint probability distribution over variable can be complex esp. if
we have many complexly related variables

Can we represent relation between variables in conceptually
simpler fashion?

We often have prior knowledge about the dependencies (or
conditional (in)dependencies) between variables
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A graph whose nodes are variables X1, . . . ,XN

Graphs are an intuitive way of representing relationships between
large number of variables

Allows us to abstract out the parametric form that depends on ✓
and the basic relationship between the random variables.



GRAPHICAL MODELS

A graph whose nodes are variables X1, . . . ,XN

Graphs are an intuitive way of representing relationships between
large number of variables

Allows us to abstract out the parametric form that depends on ✓
and the basic relationship between the random variables.

Draw a picture for the generative story  
that explains what generates what.



EXAMPLE: CI AND MIGRAPHICAL MODELS

A graph whose nodes are variables X1, . . . ,XN

Graphs are an intuitive way of representing relationships between
large number of variables

Allows us to abstract out the parametric form that depends on ✓
and the basic relationship between the random variables.

• Variables     is written as            if      is observed 

• Variables     is written as             if      is latent 

• Parameters are often left out (its understood and 
not explicitly written out). If present they don’t have 
bounding objects 

• An directed edge        is drawn connecting every 
parent to its child (from parent to child)

XiXi Xi

XiXi Xi



EXAMPLE: SUM OF COIN FLIPS

S1 S2 S3

S1 S2 S3

X1 X2 X3



EXAMPLE: NAIVE BAYES CLASSIFIER

C

X1 X2 X3 X4

Eg. Spam classification



EXAMPLE: HIDDEN MARKOV MODEL

S1 S2 S3

X1 X2 X3



HIDDEN MARKOV MODEL (HMM)

• Speech recognition 

• Natural language processing models 

• Robot localization 

• User attention modeling 

• Medical monitoring

Time! … sequence of observations



MARKOV MODEL

S1 S2 S3

• Each node is identically distributed given its 
predecessor (stationary) 

• The values the nodes take are called states 

• Parameters?  

• P(S1) the initial probability table 

• P(St|St-1) the transition probabilities



MARKOV MODEL

Bot tends to follow outlined path, but with some probability 
jumps to arbitrary neighbor 
• Number of states: 25 (one for each location) 
• For white boxes probability of jumping to any of the 4 

neighbors is same 1/4 
• For Blue boxes, probability of following path is 0.9 and 

jumping to some other neighbor is 0.0333333
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MARKOV MODEL

• If we observe the bot long enough, we get an 
estimate of its behavior (the transition table of 
jumping from state to state) 

• If we observe enough number of times, we can also 
estimate initial distribution over states
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• Inference question: what is probability that we will 
be in state k at time t?

Answer:

P (St = k)?

P (St = k) =
KX

s1=1

. . .
KX

st�1=1

P (S1 = s1, . . . , St�1 = st�1, St = k)

=
KX

s1=1

. . .
KX

st�1=1

t�1Y

i=1

(P (Si = si|Si�1 = si�1)⇥ P (St = k|St�1 = st�1))

For every t we can repeat the above or…

P (St = k) =
KX

st�1=1

P (St = k|St�1 = st�1)P (St�1 = st�1)

recursively compute probability of previous state



MARKOV MODEL

• As time goes by, P(St = k) approaches a fixed 
distribution called stationary distribution 

• Without any further observations, you are unlikely to 
find the bot on a new run (only by luck)
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HIDDEN MARKOV MODEL (HMM)

Same example: 

But you don’t observe location
(dark room)

You hear how close the bot is!

S1 S2 S3

X1 X2 X3

Xt’s are loudness of what you hear
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• Both during the initial training/estimation phase, 
you never see the bot you only hear it

• But you hear it at any point in time

• We will come back to learning next class.

• What is probability that bot will be in state k at time 
t given the entire sequence of observations?

P (St = k|X1, . . . , XN )?
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HIDDEN MARKOV MODEL (HMM)

Same example:  

But you don’t observe location 
(dark room) 

You hear how close the bot is!

What you hear:

Can you catch the Bot?



HIDDEN MARKOV MODEL (HMM)

Xt’s are what you hear (observation) 

St’s are the unseen locations (states) 

Eg: for n x n grid we have, K = n  states2

Number of alphabets = 5    
(colors you can observe)
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S1 S2 S3

X1 X2 X3

What are the parameters?
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• What is probability that bot will be in location k at 
time t given the entire sequence of observations?

P (St = k|X1, . . . , XN )?



INFERENCE IN HMM
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/ P (Xt+1, . . . , XN |St = k,X1, . . . , Xt)P (Xt|St = k,X1, . . . , Xt�1)P (St = k,X1, . . . , Xt�1)

= P (Xt+1, . . . , XN |St = k)P (Xt|St = k)P (St = k,X1, . . . , Xt�1)

We know P (Xt|St = k)’s and P (St|St�1)

Compute P (Xt+1, . . . , XN ) and P (St = k,X1, . . . , Xt�1) recursively.

/



INFERENCE IN HMM

S1 S2 S3

X1 X2 X3

messageSt�1 7!St
(k) = P (St = k,X1, . . . , Xt�1)

messageSt+1 7!St
(k) = P (Xn, . . . , Xt+1|St = k)

P (St = k|X1, . . . , Xn) / messageSt�1 7!St
(k)⇥messageSt+1 7!St

(k)⇥ P (Xt|St = k)



INFERENCE IN HMM

S1 S2 S3

X1 X2 X3

Forward:

messageSt�1 7!St
(k) = P (St = k,X1, . . . , Xt�1)

messageSt+1 7!St
(k) = P (Xn, . . . , Xt+1|St = k)

P (X1, . . . , Xt�1, St = k) =
KX

j=1

P (St = k|St�1 = j)P (Xt�1|St�1 = j)P (X1, . . . , Xt�2, St�1 = j)

messageSt�1 7!St
(k) =
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P (St = k|St�1 = j)P (Xt�1|St�1 = j)messageSt�2 7!St�1
(j)
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LEARNING PARAMETERS FOR HMM

Now that we have algorithm for inference, what about learning
Given observations, how do we estimate parameters for HMM?
Three guesses . . .


