
Machine Learning for Data Science (CS4786)
Lecture 16

Probabilistic Modeling and EM Algorithm

Course Webpage :
http://www.cs.cornell.edu/Courses/cs4786/2017fa/

Probabilistic Modeling

PROBABILISTIC MODEL

Data: x1. . . . ,xn

PROBABILISTIC MODEL

Data: x1. . . . ,xn

✓ 2 ⇥
P✓ explains data

PROBABILISTIC MODEL

PROBABILISTIC MODEL

⌃2

⌃1

⇡1 = 0.5

⇡2 = 0.25

⇡3 = 0.25

⌃3

PROBABILISTIC MODEL

⌃2

⌃1

⇡1 = 0.5

⇡2 = 0.25

⇡3 = 0.25

⌃3

⌃ 3

⌃2

⌃1

⇡1 = 0.5

⇡2 = 0.25

⇡3 = 0.25

PROBABILISTIC MODELS

Set of models ⇥ consists of parameters s.t. P✓ for each ✓ ∈ ⇥ is a
distribution over data.

Learning: Estimate ✓∗ ∈ ⇥ that best models given data

MAXIMUM LIKELIHOOD PRINCIPAL

Pick ✓ ∈ ⇥ that maximizes probability of observation

Reasoning:
One of the models in ⇥ is the correct one
Given data we pick the one that best explains the observed data
Equivalently pick the maximum likelihood estimator,

✓MLE = argmax✓∈⇥ log P✓(x1, . . . ,xn)

Often referred to as frequentist view

MAXIMUM LIKELIHOOD PRINCIPAL

Pick ✓ ∈ ⇥ that maximizes probability of observation

Reasoning:
One of the models in ⇥ is the correct one

Given data we pick the one that best explains the observed data
Equivalently pick the maximum likelihood estimator,

✓MLE = argmax✓∈⇥ log P✓(x1, . . . ,xn)

Often referred to as frequentist view

MAXIMUM LIKELIHOOD PRINCIPAL

Pick ✓ ∈ ⇥ that maximizes probability of observation

Reasoning:
One of the models in ⇥ is the correct one
Given data we pick the one that best explains the observed data

Equivalently pick the maximum likelihood estimator,

✓MLE = argmax✓∈⇥ log P✓(x1, . . . ,xn)

Often referred to as frequentist view

MAXIMUM LIKELIHOOD PRINCIPAL

Pick ✓ ∈ ⇥ that maximizes probability of observation

Reasoning:
One of the models in ⇥ is the correct one
Given data we pick the one that best explains the observed data
Equivalently pick the maximum likelihood estimator,

✓MLE = argmax✓∈⇥ log P✓(x1, . . . ,xn)

Often referred to as frequentist view

MAXIMUM LIKELIHOOD PRINCIPAL

Pick ✓ ∈ ⇥ that maximizes probability of observation

Reasoning:
One of the models in ⇥ is the correct one
Given data we pick the one that best explains the observed data
Equivalently pick the maximum likelihood estimator,

✓MLE = argmax✓∈⇥ log P✓(x1, . . . ,xn)

Often referred to as frequentist view

MAXIMUM LIKELIHOOD PRINCIPAL

Pick ✓ ∈ ⇥ that maximizes probability of observation

✓MLE = argmax✓∈⇥ log P✓(x1, . . . ,xn)���
Likelihood

A priori all models are equally good, data could have been
generated by any one of them

MAXIMUM A POSTERIORI

Pick ✓ ∈ ⇥ that is most likely given data

Reasoning:
Models are abstractions that capture our belief
We update our belief based on observed data
Given data we pick the model that we believe the most
Pick ✓ that maximizes log P(✓�x1, . . . ,xn)

I want to say : Often referred to as Bayesian view

There are Bayesian and there Bayesians

Say you had a prior belief about models provided by P (✓)

MAXIMUM A POSTERIORI

Pick ✓ ∈ ⇥ that is most likely given data

Reasoning:
Models are abstractions that capture our belief

We update our belief based on observed data
Given data we pick the model that we believe the most
Pick ✓ that maximizes log P(✓�x1, . . . ,xn)

I want to say : Often referred to as Bayesian view

There are Bayesian and there Bayesians

Say you had a prior belief about models provided by P (✓)

MAXIMUM A POSTERIORI

Pick ✓ ∈ ⇥ that is most likely given data

Reasoning:
Models are abstractions that capture our belief
We update our belief based on observed data

Given data we pick the model that we believe the most
Pick ✓ that maximizes log P(✓�x1, . . . ,xn)

I want to say : Often referred to as Bayesian view

There are Bayesian and there Bayesians

Say you had a prior belief about models provided by P (✓)

MAXIMUM A POSTERIORI

Pick ✓ ∈ ⇥ that is most likely given data

Reasoning:
Models are abstractions that capture our belief
We update our belief based on observed data
Given data we pick the model that we believe the most

Pick ✓ that maximizes log P(✓�x1, . . . ,xn)
I want to say : Often referred to as Bayesian view

There are Bayesian and there Bayesians

Say you had a prior belief about models provided by P (✓)

MAXIMUM A POSTERIORI

Pick ✓ ∈ ⇥ that is most likely given data

Reasoning:
Models are abstractions that capture our belief
We update our belief based on observed data
Given data we pick the model that we believe the most
Pick ✓ that maximizes log P(✓�x1, . . . ,xn)

I want to say : Often referred to as Bayesian view

There are Bayesian and there Bayesians

Say you had a prior belief about models provided by P (✓)

MAXIMUM A POSTERIORI

Pick ✓ ∈ ⇥ that is most likely given data

Reasoning:
Models are abstractions that capture our belief
We update our belief based on observed data
Given data we pick the model that we believe the most
Pick ✓ that maximizes log P(✓�x1, . . . ,xn)

I want to say : Often referred to as Bayesian view

There are Bayesian and there Bayesians

Say you had a prior belief about models provided by P (✓)

MAXIMUM A POSTERIORI

Pick ✓ ∈ ⇥ that is most likely given data

Reasoning:
Models are abstractions that capture our belief
We update our belief based on observed data
Given data we pick the model that we believe the most
Pick ✓ that maximizes log P(✓�x1, . . . ,xn)

I want to say : Often referred to as Bayesian view

There are Bayesian and there Bayesians

Say you had a prior belief about models provided by P (✓)

MAXIMUM A POSTERIORI

Pick ✓ ∈ ⇥ that is most likely given data

Maximize a posteriori probability of model given data

✓MAP = argmax✓∈⇥P(✓�x1, . . . ,xn)
= argmax✓∈⇥ P(x1, . . . ,xn�✓)P(✓)∑✓∈⇥ P(x1, . . . ,xn�✓)P(✓)
= argmax✓∈⇥ P(x1, . . . ,xn�✓)P(✓)

P(x1, . . . ,xn)= argmax✓∈⇥ P(x1, . . . ,xn�✓)���
likelihood

P(✓)�
prior

= argmax✓∈⇥ log P(x1, . . . ,xn�✓) + log P(✓)

MAXIMUM A POSTERIORI

Pick ✓ ∈ ⇥ that is most likely given data

Maximize a posteriori probability of model given data

✓MAP = argmax✓∈⇥P(✓�x1, . . . ,xn)
= argmax✓∈⇥ P(x1, . . . ,xn�✓)P(✓)∑✓∈⇥ P(x1, . . . ,xn�✓)P(✓)
= argmax✓∈⇥ P(x1, . . . ,xn�✓)P(✓)

P(x1, . . . ,xn)= argmax✓∈⇥ P(x1, . . . ,xn�✓)���
likelihood

P(✓)�
prior

= argmax✓∈⇥ log P(x1, . . . ,xn�✓) + log P(✓)

MAXIMUM A POSTERIORI

Pick ✓ ∈ ⇥ that is most likely given data

Maximize a posteriori probability of model given data

✓MAP = argmax✓∈⇥P(✓�x1, . . . ,xn)
= argmax✓∈⇥ P(x1, . . . ,xn�✓)P(✓)∑✓∈⇥ P(x1, . . . ,xn�✓)P(✓)
= argmax✓∈⇥ P(x1, . . . ,xn�✓)P(✓)

P(x1, . . . ,xn)= argmax✓∈⇥ P(x1, . . . ,xn�✓)���
likelihood

P(✓)�
prior

= argmax✓∈⇥ log P(x1, . . . ,xn�✓) + log P(✓)

MAXIMUM A POSTERIORI

Pick ✓ ∈ ⇥ that is most likely given data

Maximize a posteriori probability of model given data

✓MAP = argmax✓∈⇥P(✓�x1, . . . ,xn)
= argmax✓∈⇥ P(x1, . . . ,xn�✓)P(✓)∑✓∈⇥ P(x1, . . . ,xn�✓)P(✓)
= argmax✓∈⇥ P(x1, . . . ,xn�✓)P(✓)

P(x1, . . . ,xn)= argmax✓∈⇥ P(x1, . . . ,xn�✓)���
likelihood

P(✓)�
prior

= argmax✓∈⇥ log P(x1, . . . ,xn�✓) + log P(✓)

THE BAYESIAN CHOICE

Don’t pick any ✓∗ ∈ ⇥
Model is simply an abstraction

We have a prosteriori distribution over models, why pick one if in
the end of the day we only want cluster assignments

For each point find probability of cluster assignment we get by
integrating over a posteriori probability of parameters ✓

We will come back to this later . . .

P (X|data) =
X

✓2⇥

P (X, ✓|data) =
X

✓2⇥

P (X|✓)P (✓|data)

✓?

Lets get back to GMM

HARD GAUSSIAN MIXTURE MODEL

For all j ∈ [K], initialize cluster centroids r̂0
j
, ellipsoids ⌃̂0

j
and

initial proportions ⇡0 randomly and set m = 1
Repeat until convergence (or until patience runs out)

1 For each t ∈ {1, . . . ,n}, set cluster identity of the point

ĉ
m(xt) = arg max

j∈[K] p(xt, r̂m−1
j

, ⌃̂m−1) × ⇡m(j)
2 For each j ∈ [K], set new representative as

r̂m

j
= 1
�Ĉm

j
� �xt∈Ĉm

j

xt ⌃̂m = 1
�Cj� �t∈Cj

(xt − r̂m

j
)(xt − r̂m

j
)� ⇡m

j
= �Cm

j
�

n

3 m← m + 1

Pitfall of Hard Assignment

-5 -4 -3 -2 -1 0 1 2 3 4 5
-3

-2

-1

0

1

2

3

4

Pitfall of Hard Assignment

-5 -4 -3 -2 -1 0 1 2 3 4 5
-3

-2

-1

0

1

2

3

4

Pitfall of Hard Assignment

-5 -4 -3 -2 -1 0 1 2 3 4 5
-3

-2

-1

0

1

2

3

4

Singular

Pitfall of Hard Assignment

-5 -4 -3 -2 -1 0 1 2 3 4 5
-3

-2

-1

0

1

2

3

4

Singular

MLE FOR GMM

Say by some magic you knew cluster assignments, then

log P✓((xt, ct)1,...,n) = n�
t=1

log
�
�

⇡ct�
2 ∗ 3.1415�2

ct

exp�−(xt − µct)2
2�2

ct

���
= n�

t=1
�log(⇡ct) − log(2 ∗ 3.1415 ∗ �2

ct
) − (xt − µct)2

2�2
ct

�
Now consider the partial derivative w.r.t. µi, we have:

@ log P✓((xt, ct)1,...,n)
@µi

= − @

@µi

n�
t=1
� 1

2�2
ct

(xt − µct)2�
= − 1

2�2
i

@

@µi
�

t∶ct=i
(xt − µi)2

= 1
�2

i
�

t∶ct=i
(xt − µi)How would you compute parameters ?

Say we knew model parameters, how do we assign clusters?

⌃ 3

⌃2

⌃1

⇡1 = 0.5

⇡2 = 0.25

⇡3 = 0.25

Given probability of each point belonging to each of the clusters,
how do we compute model parameters?

MLE FOR GMM

Say by some magic you knew cluster assignments, then

log P✓((xt, ct)1,...,n) = n�
t=1

log
�
�

⇡ct�
2 ∗ 3.1415�2

ct

exp�−(xt − µct)2
2�2

ct

���
= n�

t=1
�log(⇡ct) − log(2 ∗ 3.1415 ∗ �2

ct
) − (xt − µct)2

2�2
ct

�
Now consider the partial derivative w.r.t. µi, we have:

@ log P✓((xt, ct)1,...,n)
@µi

= − @

@µi

n�
t=1
� 1

2�2
ct

(xt − µct)2�
= − 1

2�2
i

@

@µi
�

t∶ct=i
(xt − µi)2

= 1
�2

i
�

t∶ct=i
(xt − µi)How would you compute parameters ?

Say we knew model parameters, how do we assign clusters?

⌃ 3

⌃2

⌃1

⇡1 = 0.5

⇡2 = 0.25

⇡3 = 0.25

what are the probabilities of
points falling in each of the clusters?

Given probability of each point belonging to each of the clusters,
how do we compute model parameters?

(SOFT) GAUSSIAN MIXTURE MODEL

For all j ∈ [K], initialize cluster centroids r̂0
j

and ellipsoids ⌃̂0
j

randomly and set m = 1
Repeat until convergence (or until patience runs out)

1 For each t ∈ {1, . . . ,n}, set cluster identity of the point

Q
m

t
(j) = p(xt, r̂m−1

j
, ⌃̂m−1) × ⇡m(j)

2 For each j ∈ [K], set new representative as

r̂m

j
= ∑n

t=1 Qt(j)xt∑n

t=1 Qt(j) ⌃̂m = ∑n

t=1 Qt(j)(xt − r̂m

j
)(xt − r̂m

j
)�

∑n

t=1 Qt(j)
⇡m

j
= ∑n

t=1 Qt(j)
n

3 m← m + 1

EXPECTATION MAXIMIZATION ALGORITHM

For demonstration we shall consider the problem of finding MLE
(MAP version is very similar)
Initialize ✓(0) arbitrarily, repeat unit convergence:

(E step) For every t, define distribution Qt over the latent variable ct as:

Q(i)t (ct) = P(ct�xt,✓
(i−1))

(M step)

✓(i) = argmax✓∈⇥
n�

t=1
�
ct

Q(i)t (ct) log P(xt, ct�✓)

EXAMPLE: EM FOR GMM

E step: For every k ∈ [K],
Q(i)t (ct = k) = P �ct = k�xt,✓

(i−1)� = P �xt�ct = k,✓(i−1)� × P �ct = k�✓(i−1)�
∝ ��xt;µ

(i−1)
k ,⌃(i−1)

k ���
gaussian p.d.f.

×⇡(i−1)
k

M step: Given Q1, . . . ,Qn, we need to find

✓(i) = argmax
✓∈⇥

n�
t=1

K�
k=1

Q(i)t (k) log P(xt, ct = k�✓)
= argmax

✓

n�
t=1

K�
k=1

Q(i)t (k) (log P(xt�ct = k,✓) + log P(ct = k�✓))
= argmax

⇡,µ1,...,K,⌃1,...,K

n�
t=1

K�
ct=1

Q(i)t (k) (log� (xt;µk,⌃k) + log⇡k)

EXAMPLE: EM FOR GMM

E step: For every k ∈ [K],
Q(i)t (ct = k) = P �ct = k�xt,✓

(i−1)� = P �xt�ct = k,✓(i−1)� × P �ct = k�✓(i−1)�
∝ ��xt;µ

(i−1)
k ,⌃(i−1)

k ���
gaussian p.d.f.

×⇡(i−1)
k

M step: Given Q1, . . . ,Qn, we need to find

✓(i) = argmax
✓∈⇥

n�
t=1

K�
k=1

Q(i)t (k) log P(xt, ct = k�✓)
= argmax

✓

n�
t=1

K�
k=1

Q(i)t (k) (log P(xt�ct = k,✓) + log P(ct = k�✓))
= argmax

⇡,µ1,...,K,⌃1,...,K

n�
t=1

K�
ct=1

Q(i)t (k) (log� (xt;µk,⌃k) + log⇡k)

EXAMPLE: EM FOR GMM

For every k ∈ [K], the maximization step yields,

µ
(i)
k = ∑

n
t=1 Q(i)t (k)xt∑n

t=1 Qt(k) , ⌃
(i)
k = ∑

n
t=1 Q(i)t (k)�xt − µ(i)k ��xt − µ(i)k ��

∑n
t=1 Qt(k)

⇡
(i)
k = ∑

n
t=1 Q(i)t (k)

n

Let us derive this!

WHY SHOULD EM WORK?

A very high level view:
Performing E-step will never decrease log-likelihood (or log a
posteriori)

Performing M-step will never decrease log-likelihood (or log a
posteriori)

WHY SHOULD EM WORK?

A very high level view:
Performing E-step will never decrease log-likelihood (or log a
posteriori)

Performing M-step will never decrease log-likelihood (or log a
posteriori)

WHY SHOULD EM WORK?

Steps to show that log Lik(✓(i)) ≥ log Lik(✓(i−1)) :

log P✓(i)(x1, . . . ,xn) = n�
t=1

log P✓(i)(xt)
= n�

t=1
log
�
�

K�
ct=1

P✓(i)(xt, ct)��
= n�

t=1
log
�
�

K�
ct=1

Q(i)(ct)�P✓(i)(xt, ct)
Q(i)(ct) �

�
�

≥ n�
t=1

K�
ct=1

Q(i)(ct) log�P✓(i)(xt, ct)
Q(i)(ct) �

WHY SHOULD EM WORK?

Steps to show that log Lik(✓(i)) ≥ log Lik(✓(i−1)) :

log P✓(i)(x1, . . . ,xn) = n�
t=1

log P✓(i)(xt)
= n�

t=1
log
�
�

K�
ct=1

P✓(i)(xt, ct)��
= n�

t=1
log
�
�

K�
ct=1

Q(i)(ct)�P✓(i)(xt, ct)
Q(i)(ct) �

�
�

≥ n�
t=1

K�
ct=1

Q(i)(ct) log�P✓(i)(xt, ct)
Q(i)(ct) �

WHY SHOULD EM WORK?

Steps to show that log Lik(✓(i)) ≥ log Lik(✓(i−1)) :

log P✓(i)(x1, . . . ,xn) = n�
t=1

log P✓(i)(xt)
= n�

t=1
log
�
�

K�
ct=1

P✓(i)(xt, ct)��
= n�

t=1
log
�
�

K�
ct=1

Q(i)(ct)�P✓(i)(xt, ct)
Q(i)(ct) �

�
�

≥ n�
t=1

K�
ct=1

Q(i)(ct) log�P✓(i)(xt, ct)
Q(i)(ct) �

WHY SHOULD EM WORK?

Steps to show that log Lik(✓(i)) ≥ log Lik(✓(i−1)) :

log P✓(i)(x1, . . . ,xn) = n�
t=1

log P✓(i)(xt)
= n�

t=1
log
�
�

K�
ct=1

P✓(i)(xt, ct)��
= n�

t=1
log
�
�

K�
ct=1

Q(i)(ct)�P✓(i)(xt, ct)
Q(i)(ct) �

�
�

≥ n�
t=1

K�
ct=1

Q(i)(ct) log�P✓(i)(xt, ct)
Q(i)(ct) �

WHY SHOULD EM WORK?

Steps to show that log Lik(✓(i)) ≥ log Lik(✓(i−1)) :

log P✓(i)(x1, . . . ,xn) = n�
t=1

log P✓(i)(xt)
= n�

t=1
log
�
�

K�
ct=1

P✓(i)(xt, ct)��
= n�

t=1
log
�
�

K�
ct=1

Q(i)(ct)�P✓(i)(xt, ct)
Q(i)(ct) �

�
�

≥ n�
t=1

K�
ct=1

Q(i)(ct) log�P✓(i)(xt, ct)
Q(i)(ct) �

WHY SHOULD EM WORK?

Steps to show that log Lik(✓(i)) ≥ log Lik(✓(i−1)) :

log P✓(i)(x1, . . . ,xn) = n�
t=1

log P✓(i)(xt)
= n�

t=1
log
�
�

K�
ct=1

P✓(i)(xt, ct)��
= n�

t=1
log
�
�

K�
ct=1

Q(i)(ct)�P✓(i)(xt, ct)
Q(i)(ct) �

�
�

≥ n�
t=1

K�
ct=1

Q(i)(ct) log�P✓(i)(xt, ct)
Q(i)(ct) �

Log(average) > average of Log

WHY SHOULD EM WORK?

Steps to show that log Lik(✓(i)) ≥ log Lik(✓(i−1)) :

logP✓(i)(x1, . . . ,xn) ≥ n�
t=1

K�
ct=1

Q(i)(ct) log�P✓(i)(xt, ct)
Q(i)(ct) �

≥ n�
t=1

K�
ct=1

Q(i)(ct) log�P✓(i−1)(xt, ct)
Q(i)(ct) �

= n�
t=1

K�
ct=1

Q(i)(ct) log�P✓(i−1)(xt, ct)
P✓(i−1)(ct�xt) �

= n�
t=1

K�
ct=1

Q(i)(ct) log P✓(i)(xt)
= n�

t=1
log P✓(i)(xt)

WHY SHOULD EM WORK?

Steps to show that log Lik(✓(i)) ≥ log Lik(✓(i−1)) :

logP✓(i)(x1, . . . ,xn) ≥ n�
t=1

K�
ct=1

Q(i)(ct) log�P✓(i)(xt, ct)
Q(i)(ct) �

≥ n�
t=1

K�
ct=1

Q(i)(ct) log�P✓(i−1)(xt, ct)
Q(i)(ct) �

= n�
t=1

K�
ct=1

Q(i)(ct) log�P✓(i−1)(xt, ct)
P✓(i−1)(ct�xt) �

= n�
t=1

K�
ct=1

Q(i)(ct) log P✓(i)(xt)
= n�

t=1
log P✓(i)(xt)

M-step

WHY SHOULD EM WORK?

Steps to show that log Lik(✓(i)) ≥ log Lik(✓(i−1)) :

logP✓(i)(x1, . . . ,xn) ≥ n�
t=1

K�
ct=1

Q(i)(ct) log�P✓(i)(xt, ct)
Q(i)(ct) �

≥ n�
t=1

K�
ct=1

Q(i)(ct) log�P✓(i−1)(xt, ct)
Q(i)(ct) �

= n�
t=1

K�
ct=1

Q(i)(ct) log�P✓(i−1)(xt, ct)
P✓(i−1)(ct�xt) �

= n�
t=1

K�
ct=1

Q(i)(ct) log P✓(i)(xt)
= n�

t=1
log P✓(i)(xt)

M-step

E-step

WHY SHOULD EM WORK?

Steps to show that log Lik(✓(i)) ≥ log Lik(✓(i−1)) :

logP✓(i)(x1, . . . ,xn) ≥ n�
t=1

K�
ct=1

Q(i)(ct) log�P✓(i)(xt, ct)
Q(i)(ct) �

≥ n�
t=1

K�
ct=1

Q(i)(ct) log�P✓(i−1)(xt, ct)
Q(i)(ct) �

= n�
t=1

K�
ct=1

Q(i)(ct) log�P✓(i−1)(xt, ct)
P✓(i−1)(ct�xt) �

= n�
t=1

K�
ct=1

Q(i)(ct) log P✓(i)(xt)
= n�

t=1
log P✓(i)(xt)

M-step

E-step

WHY SHOULD EM WORK?

Steps to show that log Lik(✓(i)) ≥ log Lik(✓(i−1)) :

logP✓(i)(x1, . . . ,xn) ≥ n�
t=1

K�
ct=1

Q(i)(ct) log�P✓(i)(xt, ct)
Q(i)(ct) �

≥ n�
t=1

K�
ct=1

Q(i)(ct) log�P✓(i−1)(xt, ct)
Q(i)(ct) �

= n�
t=1

K�
ct=1

Q(i)(ct) log�P✓(i−1)(xt, ct)
P✓(i−1)(ct�xt) �

= n�
t=1

K�
ct=1

Q(i)(ct) log P✓(i)(xt)
= n�

t=1
log P✓(i)(xt)

M-step

E-step

WHY SHOULD EM WORK?

Likelihood never decreases

So whenever we converge we converge to a local optima

However problem is non-convex and can have many local optimal

In general no guarantee on rate of convergence

In practice, do multiple random initializations and pick the best
one!

EM Algorithm Generally

• More generally, EM can be used to learn any probabilistic
model with some Latent (unseen) variables and some
observed variables whenever

• Its is easy to find parameters given distribution/
observation for all variables

• Given all parameters finding distribution for latent
variables is easy

How to choose K (no. of clusters)
• Elbow method:

• plot Objective versus K, typically it monotonically decreases.

• Pick point where there is a kink

• Intuition: look at rate of change

• Add to objective penalty (+ pen(K)) and minimize, pen increases with K

• intuition we prefer smaller number of clusters

• Use prior knowledge to pick p

• (AIC, BIC etc can been seen to be specific cases)

• We can leave the burden of choosing K to the probabilistic model

