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Clustering + Linkage Clustering
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CLUSTERING

Grouping sets of data points s.t.

points in same group are similar

points in different groups are dissimilar

A form of unsupervised classification where 
there are no predefined labels



SOME NOTATIONS

Kary clustering is a partition of x1, . . . ,xn into K groups

For now assume the magical K is given to use

Clustering given by C1, . . . ,CK, the partition of data points.

Given a clustering, we shall use c(xt) to denote the cluster identity

of point xt according to the clustering.

Let nj denote �Cj�, clearly ∑K
j=1

nj = n.



How do we formalize a good 
clustering objective?



Given two clustering {C1, . . . , CK} (or c) and {C 0
1, . . . , C

0
K} (or c0)

How do we decide which is better?

How do we formalize?

Say dissimilarity(xt,xs) measures dissimilarity between xt & xs



Given two clustering {C1, . . . , CK} (or c) and {C 0
1, . . . , C

0
K} (or c0)

How do we decide which is better?

How do we formalize?

Say dissimilarity(xt,xs) measures dissimilarity between xt & xs

points in same cluster are not dissimilar
points in different clusters are dissimilar



CLUSTERING CRITERION

Minimize total within-cluster dissimilarity

M1 = K�
j=1

�
s,t∈Cj
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Maximize between-cluster dissimilarity

M2 = �
xs,xt∶c(xs)≠c(xt)

dissimilarity(xt,xs)
Maximize smallest between-cluster dissimilarity

M3 = min
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Minimize largest within-cluster dissimilarity
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How different are these criteria?



CLUSTERING CRITERION

minimizing M1 ≡maximizing M2

minimizing M5 ≡minimizing M6



CLUSTERING

Multiple clustering criteria all equally valid
Different criteria lead to different algorithms/solutions
Which notion of distances or costs we use matter
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SINGLE LINK CLUSTERING

Initialize n clusters with each point xt to its own cluster

Until there are only K clusters, do

1 Find closest two clusters and merge them into one cluster

2 Update between cluster distances (called proximity matrix)



SINGLE LINK CLUSTERING

Initialize n clusters with each point xt to its own cluster

Until there are only K clusters, do

1 Find closest two clusters and merge them into one cluster

2 Update between cluster distances (called proximity matrix)

dissimilarity(Ci, Cj) = min
t2Ci,s2Cj

dissimilarity(xt, xs)
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SINGLE LINK OBJECTIVE

Objective for single-link:

M4 = min
xs,xt∶c(xs)≠c(xt) �xs − xt�22

Single link clustering is optimal for above objective!
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SINGLE LINK OBJECTIVE

Objective for single-link:

M4 = min
xs,xt∶c(xs)≠c(xt) �xs − xt�22

Single link clustering is optimal for above objective!

Say c is solution produced by single-link clustering

Proof:

Say c0 6= c then,

9 t, s s.t. c0(xt) 6= c0(xs) but c(xt) = c(xs)

xt xs

min
t,s:c(xi) 6=c(xj)

dissimilarity(xi, xj) > max
t,s:c(xt)=c(xs)

dissimilarity(xt, xs)
Distance of points merged  

(on the tree)

Key observation:

a b

c’ boundary

Points merged by single link  
(a tree)
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Linkage Clustering
• Start with each point being its own cluster

• Merge the closest two clusters

• Changing the meaning of what makes two cluster 
closest yield different linkage algorithms

• Single link is the only one provable optimal

• Linking based on average distance works best in 
practice
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CLUSTERING CRITERION

minimizing M1 ≡maximizing M2

minimizing M5 ≡minimizing M6



What is the Algorithm for 
this?


