1 t-SNE

Question 1: Given points $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$, for any $t, s \in[n]$, let

$$
p_{t \rightarrow s}=\frac{\exp \left(-\frac{\left\|\mathbf{x}_{s}-\mathbf{x}_{t}\right\|^{2}}{2 \sigma^{2}}\right)}{\sum_{u \neq t} \exp \left(-\frac{\left\|\mathbf{x}_{u}-\mathbf{x}_{t}\right\|^{2}}{2 \sigma^{2}}\right)}
$$

Now define $P_{s, t}=\frac{p_{t \rightarrow s}+p_{s \rightarrow t}}{2 n}$ and assume $P_{t, t}=0$ for any t. Show that P is a valid probability distribution over $[n] \times[n]$.

2 Spectral Embedding

Consider an undirected graph $G=(V, E)$ consisting of $|V|=n$ vertices and E is the set of edges that indicate which pairs of vertices are connected. Let A be the $n \times n$ adjacency matrix of the graph where $A[i, j]=1$ if node i and node j have an edge between them. Let D be the $n \times n$ diagonal matrix with entry $D[i, i]$ indicating the degree of node i in the graph.

Question 2: Let y be any n dimensional vector (one coordinate for every node in the graph). Show that

$$
\sum_{(u, v) \in E}\left(\mathbf{y}_{u}-\mathbf{y}_{v}\right)^{2}=\mathbf{y}^{\top}(D-A) \mathbf{y}
$$

(Assume in the above sum we only count each edge in only one direction)

