1 Random Projections Handout

Assume that the d dimensional vector \mathbf{u} is obtained by setting each of its coordinates to either +1 or -1 based on coin flips. That is, for each $i \in[d], \mathbf{u}[i]=\left\{\begin{array}{ll}+1 & \text { with probability } 1 / 2 \\ -1 & \text { with probability } 1 / 2\end{array}\right.$. Now set $y_{t}=\mathbf{x}_{t}^{\top} \mathbf{u}$ for every $t \in[n]$.

Question: For some $t, s \in[n]$, what is:

1. $\mathbb{E}\left[y_{t}-y_{s}\right]$?
2. $\mathbb{E}\left[\left(y_{t}-y_{s}\right)^{2}\right]$?
