1 PCA Handout II

Assume the vectors $\mathbf{w}_{1}, \ldots, \mathbf{w}_{d}$ are all unit length vectors, that is,

$$
\forall i \in[d], \quad\left\|\mathbf{w}_{i}\right\|_{2}^{2}=\sum_{j=1}^{d} \mathbf{w}_{i}[j]^{2}=1
$$

and are such that for any $i \neq j, \mathbf{w}_{i} \perp \mathbf{w}_{j}$, that is:

$$
\sum_{k=1}^{d} \mathbf{w}_{i}[k] \cdot \mathbf{w}_{j}[k]=0
$$

It is a fact from Linear algebra that any vector in d dimensions can be written as a linear combination of the orthonormal basis vectors: $\mathbf{w}_{1}, \ldots, \mathbf{w}_{d}$. Now say the vector $\mathbf{x}_{t}-\mu$ is written as a linear combination of the basis vectors as:

$$
\mathbf{x}_{t}=\mu+\sum_{j=1}^{d} \mathbf{y}_{t}[j] \mathbf{w}_{j}
$$

and define the vector $\hat{\mathbf{x}}_{t}$ by taking $\hat{\mathbf{x}}_{t}-\mu$ as linear combination of only first K of the basis, that is:

$$
\hat{\mathbf{x}}_{t}=\mu+\sum_{j=1}^{K} \mathbf{y}_{t}[j] \mathbf{w}_{j}
$$

Question 1: Show that,

$$
\operatorname{dist}^{2}\left(\hat{\mathbf{x}}_{t}, \mathbf{x}_{t}\right)=\left\|\hat{\mathbf{x}}_{t}-\mathbf{x}_{t}\right\|_{2}^{2}=\sum_{j=K+1}^{d} \mathbf{y}_{t}[j]^{2}
$$

Question 2: Say for any K, we can show that:

$$
\frac{1}{n} \sum_{t=1}^{n}\left\|\hat{\mathbf{x}}_{t}-\mathbf{x}_{t}\right\|_{2}^{2}=\sum_{j=K+1}^{d} \mathbf{w}_{j}^{\top} \Sigma \mathbf{w}_{j}
$$

Then show that

$$
\sum_{j=1}^{d} \mathbf{w}_{j}^{\top} \Sigma \mathbf{w}_{j}=\frac{1}{n} \sum_{t=1}^{n}\left\|\mathbf{x}_{t}-\mu\right\|_{2}^{2}
$$

