## 1 PCA Handout

Let $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ be $d$ dimensional vectors. Denote the mean of these vectors by $\mu=\frac{1}{n} \sum_{t=1}^{n} \mathbf{x}_{t}$. Denote the empirical covariance matrix $\Sigma$ by

$$
\Sigma=\sum_{t=1}^{n}\left(x_{t}-\mu\right)\left(x_{t}-\mu\right)^{\top}
$$

Now let $\mathbf{w}$ be a $d$ dimensional projection vector and the 1 dimensional projection of points $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ is obtained by setting

$$
y_{t}=\mathbf{w}^{\top} \mathbf{x}_{t}
$$

If our goal is to find a $w$ such that $w$ is unit length (i.e. $\|w\|_{2}=1$ ) and spread or variance of the $y$ 's is maximized then show that the optimization problem we need to solve is:

$$
\text { Maximize } \quad \mathbf{w}^{\top} \Sigma \mathbf{w} \quad \text { subject to }\|\mathbf{w}\|_{2}=1
$$

Start here: We need to find $\mathbf{w}$ s.t. $\|\mathbf{w}\|_{2}=1$ and it maximizes the spread/varinace of $y$ 's given by:

$$
\operatorname{Variance}\left(y_{1}, \ldots, y_{n}\right)=\frac{1}{n} \sum_{t=1}^{n}\left(y_{t}-\frac{1}{n} \sum_{t=1}^{n} y_{t}\right)^{2}
$$

