Machine Learning for Data Science (CS4786) Lecture 2

Dimensionality Reduction
\&

Principal Component Analysis

Quiz

- Let Σ be the empirical covariance matrix of n points in d dimensions
A. $\quad \Sigma$ is an $\mathrm{n} \times \mathrm{n}$ matrix
B. Σ is a d x d matrix
C. $\quad \Sigma$ is a $\mathrm{m} \times \mathrm{m}$ matrix where m is the underlying dimensionality of the n points (which can be at most d)
D. $\operatorname{rank}(\Sigma)$ is m where m is the underlying dimensionality of the n points

We can compress the following images using JPEG?

What if our dataset looked like this?

PRINCIPAL COMPONENT ANALYSIS (PCA)

Turk \& Pentland'91
Eigen Face:

Principal Component Analysis (PCA)

Turk \& Pentland'91
Eigen Face:

0.0586 *

- Write down each data point as a linear combination of small number of basis vectors

Principal Component Analysis (PCA)

Turk \& Pentland'91
Eigen Face:

0.0586 *

- Write down each data point as a linear combination of small number of basis vectors
- Data specific compression scheme

PRINCIPAL COMPONENT ANALYSIS (PCA)

Turk \& Pentland'91
Eigen Face:

-0.1945 *

0.0586 *

- Write down each data point as a linear combination of small number of basis vectors
- Data specific compression scheme
- One of the early successes: in face recognition: classification based on nearest neighbor in the reduced dimension space
- How do we represent data?

Representing Data as Feature Vectors

- How do we represent data?
- Each data-point often represented as vector referred to as feature vector

EXAMPLE: IMAGES

EXAMPLE: IMAGES

vectorize

EXAMPLE: IMAGES

vectorize

पा1 $d=M^{2}$

Example: Text (Bag of Words)

Documents:
car
engine hood tires truck trunk

Chomsky corpus noun parsing tagging wonderful

EXAMPLE: TEXT (BAG OF WORDS)

DIMENSIONALITY REDUCTION

Given n data points in high-dimensional space, compress them into corresponding n points in lower dimensional space.

Dimensionality Reduction

Dimensionality Reduction

Dimensionality Reduction

WHY DIMENSIONALITY REDUCTION?

- For computational ease
- As input to supervised learning algorithm
- Before clustering to remove redundant information and noise
- Data compression \& Noise reduction
- Data visualization

DIMENSIONALITY REDUCTION

Desired properties:
(1) Original data can be (approximately) reconstructed
(2) Preserve distances between data points
(3) "Relevant" information is preserved
(4) Noise is reduced

Can we reduce to 1 dim?

0.95225911	-1.90451821	2.85677732
0.60681578	-1.21363156	1.82044733
0.76419773	-1.52839546	2.29259318
0.44430217	-0.88860435	1.33290652
0.98425485	-1.9685097	2.95276456
0.04590113	-0.09180227	0.1377034
0.52408131	-1.04816263	1.57224394
0.2887897	-0.5775794	0.8663691
0.4289135	-0.857827	1.2867405
0.23877452	-0.47754905	0.71632357
0.50031855	-1.00063711	1.50095566
0.7155322	-1.43106441	2.14659661
0.19638816	-0.39277632	0.58916448
0.06743744	-0.13487488	0.20231232
0.18019499	-0.36038997	0.54058496
0.68941225	-1.37882451	2.06823676
0.51882043	-1.03764087	1.5564613
0.71398952	-1.42797904	2.14196857

Example:
 Students in classroom

Example:
 Students in classroom

PRINCIPAL COMPONENT ANALYSIS (PCA)

Turk \& Pentland'91
Eigen Face:

Principal Component Analysis (PCA)

Turk \& Pentland'91
Eigen Face:

- Each X_{t} (each row of X) is a face image (vectorized version)

Principal Component Analysis (PCA)

Turk \& Pentland'91
Eigen Face:

- Each x_{t} (each row of X) is a face image (vectorized version)
- Each yt is the set of coefficients we multiply to the eigen face

Principal Component Analysis (PCA)

Turk \& Pentland'91
Eigen Face:

- Each x_{t} (each row of X) is a face image (vectorized version)
- Each yt is the set of coefficients we multiply to the eigen face
- Each column of W is an Eigenface

Prelude: Reducing to 1 Dim

- W is a $d \times 1$ matrix (d dimensional vector)
- Each data point is compressed to a single number
- How do we pick this W?

Prelude: reducing to 1 dimension

Prelude: reducing to 1 dimension

Prelude: reducing to 1 dimension

Prelude: reducing to 1 dimension

Dim Reduction: Linear Transformation

Prelude: reducing to 1 dimension

$$
\mathbf{y}_{1}=\mathbf{w}^{\top} \mathbf{x}_{1}=\left\|\mathbf{x}_{1}\right\| \cos \left(\angle \mathbf{w} \mathbf{x}_{1}\right)
$$

Dim Reduction: Linear Transformation

Prelude: reducing to 1 dimension

$$
\mathbf{y}_{1}=\mathbf{w}^{\top} \mathbf{x}_{1}=\left\|\mathbf{x}_{1}\right\| \cos \left(\angle \mathbf{w} \mathbf{x}_{1}\right)
$$

Only direction matters, assume without loss of generality that $\|w\|=1$

PCA: VARIANCE MAXIMIZATION

PCA: VARIANCE MAXIMIZATION

PCA: VARIANCE MAXIMIZATION

PCA: VARIANCE MAXIMIZATION

- Pick directions along which data varies the most

PCA: VARIANCE MAXIMIZATION

- Pick directions along which data varies the most

$$
\text { Variance }=\frac{1}{n} \sum_{t=1}^{n}\left(y_{t}-\frac{1}{n} \sum_{s=1}^{n} y_{s}\right)^{2}
$$

PCA: VARIANCE MAXIMIZATION

- Pick directions along which data varies the most

$$
\begin{aligned}
\text { Variance } & =\frac{1}{n} \sum_{t=1}^{n}\left(y_{t}-\frac{1}{n} \sum_{s=1}^{n} y_{s}\right)^{2} \\
& =\frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{w}^{\top} \mathbf{x}_{t}-\frac{1}{n} \sum_{s=1}^{n} \mathbf{w}^{\top} \mathbf{x}_{s}\right)^{2}
\end{aligned}
$$

PCA: VARIANCE MAXIMIZATION

- Pick directions along which data varies the most

$$
\begin{aligned}
\text { Variance } & =\frac{1}{n} \sum_{t=1}^{n}\left(y_{t}-\frac{1}{n} \sum_{s=1}^{n} y_{s}\right)^{2} \\
& =\frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{w}^{\top} \mathbf{x}_{t}-\frac{1}{n} \sum_{s=1}^{n} \mathbf{w}^{\top} \mathbf{x}_{s}\right)^{2} \\
& =\frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{w}^{\top} \mathbf{x}_{t}-\mathbf{w}^{\top}\left(\frac{1}{n} \sum_{s=1}^{n} \mathbf{x}_{s}\right)\right)^{2}
\end{aligned}
$$

PCA: VARIANCE MAXIMIZATION

- Pick directions along which data varies the most

$$
\begin{aligned}
\text { Variance } & =\frac{1}{n} \sum_{t=1}^{n}\left(y_{t}-\frac{1}{n} \sum_{s=1}^{n} y_{s}\right)^{2} \\
& =\frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{w}^{\top} \mathbf{x}_{t}-\frac{1}{n} \sum_{s=1}^{n} \mathbf{w}^{\top} \mathbf{x}_{s}\right)^{2} \\
& =\frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{w}^{\top} \mathbf{x}_{t}-\mathbf{w}^{\top}\left(\frac{1}{n} \sum_{s=1}^{n} \mathbf{x}_{s}\right)\right)^{2} \\
& =\frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{w}^{\top}\left(\mathbf{x}_{t}-\mu\right)\right)^{2}
\end{aligned}
$$

PCA: VARIANCE MAXIMIZATION

- Pick directions along which data varies the most

$$
\begin{aligned}
\text { Variance } & =\frac{1}{n} \sum_{t=1}^{n}\left(y_{t}-\frac{1}{n} \sum_{s=1}^{n} y_{s}\right)^{2} \\
& =\frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{w}^{\top} \mathbf{x}_{t}-\frac{1}{n} \sum_{s=1}^{n} \mathbf{w}^{\top} \mathbf{x}_{s}\right)^{2} \\
& =\frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{w}^{\top} \mathbf{x}_{t}-\mathbf{w}^{\top}\left(\frac{1}{n} \sum_{s=1}^{n} \mathbf{x}_{s}\right)\right)^{2} \\
& =\frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{w}^{\top}\left(\mathbf{x}_{t}-\mu\right)\right)^{2} \\
& =\text { average squared inner product }
\end{aligned}
$$

Which Direction?

Which Direction?

$$
\frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{w}^{\top}\left(\mathbf{x}_{t}-\mu\right)\right)^{2}=\frac{1}{n} \sum_{t=1}^{n}\left\|\mathbf{x}_{t}-\mu\right\|^{2} \operatorname{cosine}\left(w, x_{t}-\mu\right)
$$

Which Direction?

$$
\frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{w}^{\top}\left(\mathbf{x}_{t}-\mu\right)\right)^{2}=\frac{1}{n} \sum_{t=1}^{n}\left\|\mathbf{x}_{t}-\mu\right\|^{2} \operatorname{cosine}\left(w, x_{t}-\mu\right)
$$

PCA: VARIANCE MAXIMIZATION

- Pick directions along which data varies the most
- First principal component:

$$
\begin{aligned}
\mathbf{w}_{1} & =\arg \max _{\mathbf{w}:\|\mathbf{w}\|_{2}=1} \frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{w}^{\top} \mathbf{x}_{t}-\frac{1}{n} \sum_{t=1}^{n} \mathbf{w}^{\top} \mathbf{x}_{t}\right)^{2} \\
& =\arg \max _{\mathbf{w}:\|\mathbf{w}\|_{2}=1} \frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{w}^{\top}\left(\mathbf{x}_{t}-\mu\right)\right)^{2}
\end{aligned}
$$

PCA: VARIANCE MAXIMIZATION

- Pick directions along which data varies the most
- First principal component:

$$
\begin{aligned}
\mathbf{w}_{1} & =\arg \max _{\mathbf{w}:\|\mathbf{w}\|_{2}=1} \frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{w}^{\top} \mathbf{x}_{t}-\frac{1}{n} \sum_{t=1}^{n} \mathbf{w}^{\top} \mathbf{x}_{t}\right)^{2} \\
& =\arg \max _{\mathbf{w}:\|\mathbf{w}\|_{2}=1} \frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{w}^{\top}\left(\mathbf{x}_{t}-\mu\right)\right)^{2} \\
& =\arg \max _{\mathbf{w}:\|\mathbf{w}\|_{2}=1} \frac{1}{n} \sum_{t=1}^{n} \mathbf{w}^{\top}\left(\mathbf{x}_{t}-\mu\right)\left(\mathbf{x}_{t}-\mu\right)^{\top} \mathbf{w}
\end{aligned}
$$

PCA: VARIANCE MAXIMIZATION

- Pick directions along which data varies the most
- First principal component:

$$
\begin{aligned}
\mathbf{w}_{1} & =\arg \max _{\mathbf{w}:\|\mathbf{w}\|_{2}=1} \frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{w}^{\top} \mathbf{x}_{t}-\frac{1}{n} \sum_{t=1}^{n} \mathbf{w}^{\top} \mathbf{x}_{t}\right)^{2} \\
& =\arg \max _{\mathbf{w}:\|\mathbf{w}\|_{2}=1} \frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{w}^{\top}\left(\mathbf{x}_{t}-\mu\right)\right)^{2} \\
& =\arg \max _{\mathbf{w}:\|\mathbf{w}\|_{2}=1} \frac{1}{n} \sum_{t=1}^{n} \mathbf{w}^{\top}\left(\mathbf{x}_{t}-\mu\right)\left(\mathbf{x}_{t}-\mu\right)^{\top} \mathbf{w} \\
& =\arg \max _{\mathbf{w}:\|\mathbf{w}\|_{2}=1} \mathbf{w}^{\top} \Sigma \mathbf{w}
\end{aligned}
$$

Σ is the covariance matrix

Covariance Matrix

- Its a $d \times d$ matrix, $\Sigma[i, j]$ measures "covariance" of features i and j

$$
\Sigma[i, j]=\frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{x}_{t}[i]-\mu[i]\right)\left(\mathbf{x}_{t}[j]-\mu[j]\right)
$$

PCA: VARIANCE MAXIMIZATION

Covariance matrix:

$$
\Sigma=\frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{x}_{t}-\mu\right)\left(\mathbf{x}_{t}-\mu\right)^{\top}
$$

- Its a $d \times d$ matrix, $\Sigma[i, j]$ measures "covariance" of features i and j

$$
\Sigma[i, j]=\frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{x}_{t}[i]-\mu[i]\right)\left(\mathbf{x}_{t}[j]-\mu[j]\right)
$$

PCA: VARIANCE MAXIMIZATION

- Pick directions along which data varies the most
- First principal component:

$$
\mathbf{w}_{1}=\arg \max _{\mathbf{w}:\|\mathbf{w}\|_{2}=1} \mathbf{w}^{\top} \Sigma \mathbf{w}
$$

Σ is the covariance matrix

PCA: VARIANCE MAXIMIZATION

- Pick directions along which data varies the most
- First principal component:

$$
\mathbf{w}_{1}=\arg \max _{\mathbf{w}:\|\mathbf{w}\|_{2}=1} \mathbf{w}^{\top} \Sigma \mathbf{w}
$$

Σ is the covariance matrix

Solution: $\mathbf{w}_{1}=$ Largest Eigenvector of Σ

What are Eigen Vectors?

Which Direction?

Which Direction?

Top Eigenvector of covariance matrix

- What if we want more than one number for each data point?
- That is we want to reduce to $\mathrm{K}>1$ dimensions?

PCA: VARIANCE MAXIMIZATION

- How do we find the K components?

PCA: VARIANCE MAXIMIZATION

- How do we find the K components?

Ans: Maximize sum of spread in the K directions

PCA: VARIANCE MAXIMIZATION

- How do we find the K components?
- We are looking for orthogonal directions that maximize total spread in each direction

PCA: VARIANCE MAXIMIZATION

- How do we find the K components?
- We are looking for orthogonal directions that maximize total spread in each direction
- Find orthonormal W that maximizes

PCA: VARIANCE MAXIMIZATION

- How do we find the K components?
- We are looking for orthogonal directions that maximize total spread in each direction
- Find orthonormal W that maximizes

$$
\sum_{j=1}^{K} \frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{y}_{t}[j]-\frac{1}{n} \sum_{t=1}^{n} \mathbf{y}_{t}[j]\right)^{2}=\sum_{j=1}^{K} \frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{w}_{j}^{\top}\left(\mathbf{x}_{t}-\frac{1}{n} \sum_{t=1}^{n} \mathbf{x}_{t}\right)\right)^{2}
$$

PCA: VARIANCE MAXIMIZATION

- How do we find the K components?
- We are looking for orthogonal directions that maximize total spread in each direction
- Find orthonormal W that maximizes

$$
\begin{aligned}
\sum_{j=1}^{K} \frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{y}_{t}[j]-\frac{1}{n} \sum_{t=1}^{n} \mathbf{y}_{t}[j]\right)^{2} & =\sum_{j=1}^{K} \frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{w}_{j}^{\top}\left(\mathbf{x}_{t}-\frac{1}{n} \sum_{t=1}^{n} \mathbf{x}_{t}\right)\right)^{2} \\
& =\sum_{j=1}^{K} \mathbf{w}_{j}^{\top} \Sigma \mathbf{w}_{j}
\end{aligned}
$$

PCA: VARIANCE MAXIMIZATION

- How do we find the K components?
- We are looking for orthogonal directions that maximize total spread in each direction
- Find orthonormal W that maximizes $\sum_{k=1}^{d} \mathbf{w}_{i}[k] \mathbf{w}_{j}[k]=0 \& \sum_{k=1}^{d} \mathbf{w}_{i}[k]=1$

$$
\begin{aligned}
\sum_{j=1}^{K} \frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{y}_{t}[j]-\frac{1}{n} \sum_{t=1}^{n} \mathbf{y}_{t}[j]\right)^{2} & =\sum_{j=1}^{K} \frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{w}_{j}^{\top}\left(\mathbf{x}_{t}-\frac{1}{n} \sum_{t=1}^{n} \mathbf{x}_{t}\right)\right)^{N-1} \\
& =\sum_{j=1}^{K} \mathbf{w}_{j}^{\top} \Sigma \mathbf{w}_{j}
\end{aligned}
$$

PCA: VARIANCE MAXIMIZATION

- How do we find the K components?
- We are looking for orthogonal directions that maximize total spread in each direction
- Find orthonormal W that maximizes $\sum_{k=1}^{d} \mathbf{w}_{i}[k] \mathbf{w}_{j}[k]=0 \& \sum_{k=1}^{d} \mathbf{w}_{i}[k]=1$

$$
\begin{aligned}
\sum_{j=1}^{K} \frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{y}_{t}[j]-\frac{1}{n} \sum_{t=1}^{n} \mathbf{y}_{t}[j]\right)^{2} & =\sum_{j=1}^{K} \frac{1}{n} \sum_{t=1}^{n=1}\left(\mathbf{w}_{j}^{\top}\left(\mathbf{x}_{t}-\frac{1}{n} \sum_{t=1}^{n} \mathbf{x}_{t}\right)\right)^{k=1} \\
& =\sum_{j=1}^{K} \mathbf{w}_{j}^{\top} \Sigma \mathbf{w}_{j}
\end{aligned}
$$

- This solutions is given by $W=$ Top K eigenvectors of Σ

PCA: VARIANCE MAXIMIZATION

- How do we find the K components?
- We are looking for orthogonal directions that maximize total spread in each direction
- Find orthonormal W that maximizes $\sum_{k=1}^{d} \mathbf{w}_{i}[k] \mathbf{w}_{j}[k]=0 \& \sum_{k=1}^{d} \mathbf{w}_{i}[k]=1$

$$
\begin{aligned}
\sum_{j=1}^{K} \frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{y}_{t}[j]-\frac{1}{n} \sum_{t=1}^{n} \mathbf{y}_{t}[j]\right)^{2} & =\sum_{j=1}^{K} \frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{w}_{j}^{\top}\left(\mathbf{x}_{t}-\frac{1}{n} \sum_{t=1}^{n} \mathbf{x}_{t}\right)\right)^{2} \\
& =\sum_{j=1}^{K} \mathbf{w}_{j}^{\top} \Sigma \mathbf{w}_{j}
\end{aligned}
$$

Intuition: Remove top direction, now reduce dimension for remaining d-1 dimensions

- This solutions is given by $W=$ Top K eigenvectors of Σ

PRINCIPAL COMPONENT ANALYsIS

Can we reconstruct the original data points?

