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Quiz
• Let 𝛴 be the empirical covariance matrix of n points in d 

dimensions


A. 𝛴 is an n x n matrix


B. 𝛴 is a d x d matrix


C. 𝛴 is a m x m matrix where m is the underlying 
dimensionality of the n points (which can be at most d)


D. rank(𝛴) is m where m is the underlying dimensionality of 
the n points



We can compress the 
following images using JPEG?



What if our dataset looked 
like this?



PRINCIPAL COMPONENT ANALYSIS (PCA)

Eigen Face:

Write down each data point as a linear combination of small
number of basis vectors

Data specific compression scheme

One of the early successes: in face recognition: classification based
on nearest neighbor in the reduced dimension space

Turk & Pentland’91
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REPRESENTING DATA AS FEATURE VECTORS

How do we represent data?

Each data-point often represented as vector referred to as feature
vector

Eg. text document represented by vector in which each coordinate
represents a word and value represents number of times the word
occurred in the document

Eg. Image represented as a vector where each coordinate
represents a pixel and value represents the grayscale value of that
pixel
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DIMENSIONALITY REDUCTION

Given n data points in high-dimensional space, compress them into
corresponding n points in lower dimensional space.



DIMENSIONALITY REDUCTION

Given feature vectors x1, . . . ,xn ∈ Rd, compress the data points into
low dimensional representation y1, . . . ,yn ∈ RK where K << d



DIMENSIONALITY REDUCTION

Given feature vectors x1, . . . ,xn ∈ Rd, compress the data points into
low dimensional representation y1, . . . ,yn ∈ RK where K << dX

d

n



DIMENSIONALITY REDUCTION

Given feature vectors x1, . . . ,xn ∈ Rd, compress the data points into
low dimensional representation y1, . . . ,yn ∈ RK where K << dX

d

n Yn

K



DIMENSIONALITY REDUCTION

Given feature vectors x1, . . . ,xn ∈ Rd, compress the data points into
low dimensional representation y1, . . . ,yn ∈ RK where K << dX

d

n Yn

K
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WHY DIMENSIONALITY REDUCTION?

For computational ease

As input to supervised learning algorithm

Before clustering to remove redundant information and noise

Data compression & Noise reduction

Data visualization



DIMENSIONALITY REDUCTION

Desired properties:

1 Original data can be (approximately) reconstructed

2 Preserve distances between data points

3 “Relevant” information is preserved

4 Noise is reduced



0.95225911 -1.90451821 2.85677732
0.60681578 -1.21363156 1.82044733
0.76419773 -1.52839546 2.29259318
0.44430217 -0.88860435 1.33290652
0.98425485 -1.9685097 2.95276456
0.04590113 -0.09180227 0.1377034
0.52408131 -1.04816263 1.57224394
0.2887897 -0.5775794 0.8663691
0.4289135 -0.857827 1.2867405
0.23877452 -0.47754905 0.71632357
0.50031855 -1.00063711 1.50095566
0.7155322 -1.43106441 2.14659661
0.19638816 -0.39277632 0.58916448
0.06743744 -0.13487488 0.20231232
0.18019499 -0.36038997 0.54058496
0.68941225 -1.37882451 2.06823676
0.51882043 -1.03764087 1.5564613
0.71398952 -1.42797904 2.14196857
0.99729698 -1.99459395 2.99189093

Can we reduce to 1 dim?



Example:  
Students in classroom
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DIM REDUCTION: LINEAR TRANSFORMATION

Pick a low dimensional subspace

Project linearly to this subspace

Subspace retains as much information
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Eigen Face:

Write down each data point as a linear combination of small
number of basis vectors

Data specific compression scheme

One of the early successes: in face recognition: classification based
on nearest neighbor in the reduced dimension space

Turk & Pentland’91
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PRINCIPAL COMPONENT ANALYSIS (PCA)

Eigen Face:

Write down each data point as a linear combination of small
number of basis vectors

Data specific compression scheme

One of the early successes: in face recognition: classification based
on nearest neighbor in the reduced dimension space

Turk & Pentland’91

• Each xt  (each row of X) is a face image (vectorized 
version)

• Each yt is the set of coefficients we multiply to the 
eigen face

• Each column of W is an Eigenface



Prelude: Reducing to 1 Dim

• W is a d x 1 matrix (d dimensional vector) 

• Each data point is compressed to a single number 

• How do we pick this W?
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DIM REDUCTION: LINEAR TRANSFORMATION

Pick a low dimensional subspace

Project linearly to this subspace

Subspace retains as much information

Prelude: reducing to 1 dimension
w

x1
x2

x3

x4

0

y1 = w>x1 = kx1k cos (\wx1)

Only direction matters, assume  
without loss of generality that ||w|| = 1



PCA: VARIANCE MAXIMIZATION

Pick directions along which data varies the most
First principal component:

w1 = arg max
w∶�w�2=1
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PCA: VARIANCE MAXIMIZATION
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• What if we want more than one number for each 
data point? 

• That is we want to reduce to K > 1 dimensions?

x

y
z



PCA: VARIANCE MAXIMIZATION

How do we find the K components?

We are looking for orthogonal directions that maximize total
spread in each direction

Find orthonormal W that maximizes
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This solutions is given by W = Top K eigenvectors of ⌃
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How do we find the K components?

We are looking for orthogonal directions that maximize total
spread in each direction

Find orthonormal W that maximizes
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Intuition: Remove top direction, now reduce dimension for remaining d-1 dimensions



PRINCIPAL COMPONENT ANALYSIS

Eigenvectors of the covariance matrix are the principal
components

Top K principal components are the eigenvectors with K largest
eigenvalues

Projection = Data × Top Keigenvectors

Reconstruction = Projection × Transpose of top K eigenvectors

Independently discovered by Pearson in 1901 and Hotelling in
1933.

⌃ =cov X
 !

1.

eigs= ⌃ ,K( )W2.

3. Y = W⇥X



Can we reconstruct the 
original data points?


