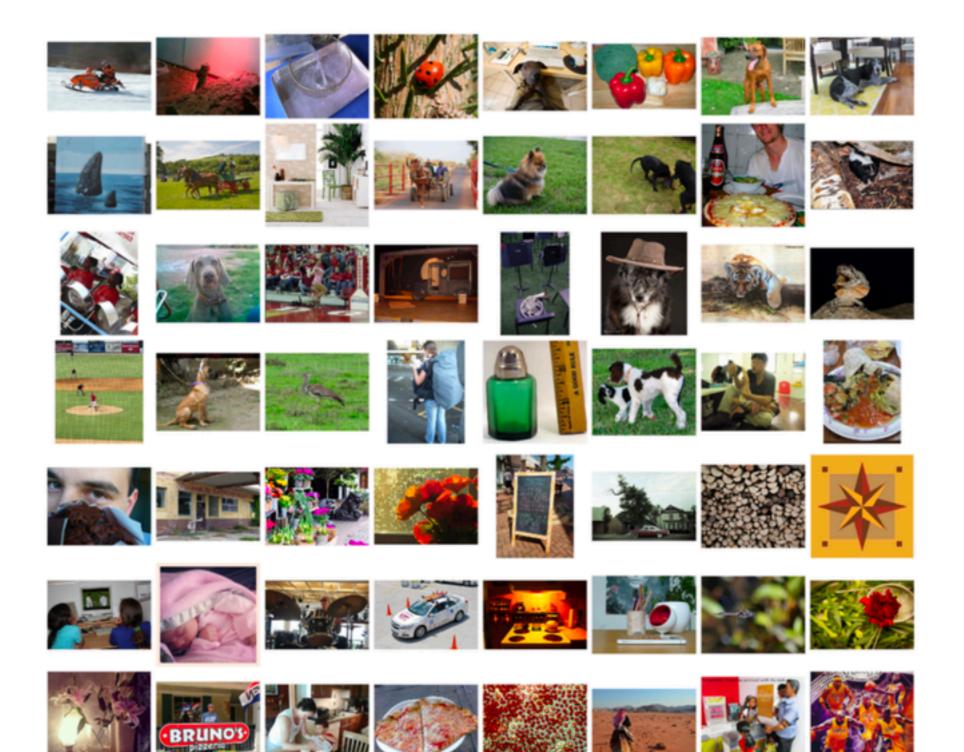
Machine Learning for Data Science (CS4786) Lecture 2

Dimensionality Reduction & Principal Component Analysis

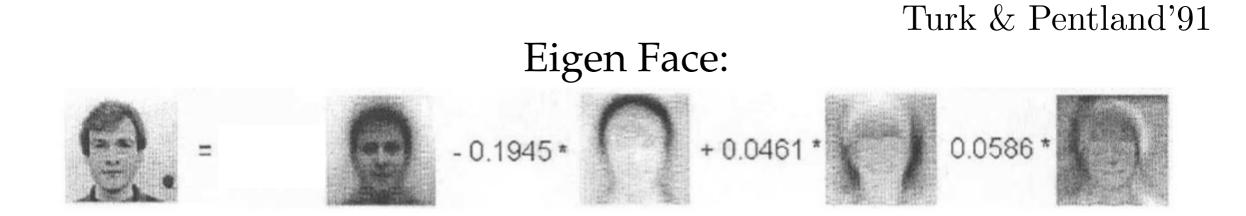
Quiz

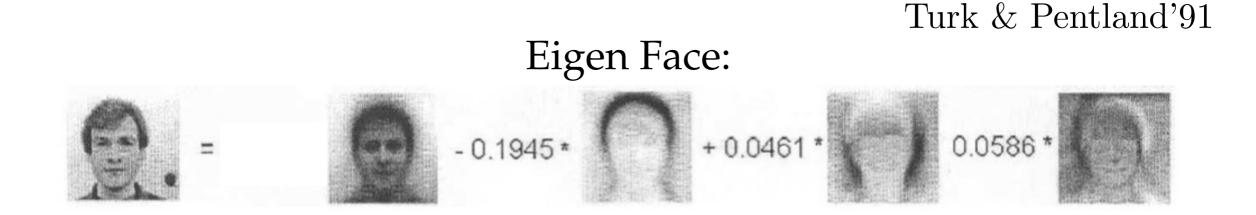
- Let Σ be the empirical covariance matrix of n points in d dimensions
 - A. Σ is an n x n matrix
 - B. Σ is a d x d matrix
 - C. Σ is a m x m matrix where m is the underlying dimensionality of the n points (which can be at most d)
 - D. rank(Σ) is m where m is the underlying dimensionality of the n points

We can compress the following images using JPEG?

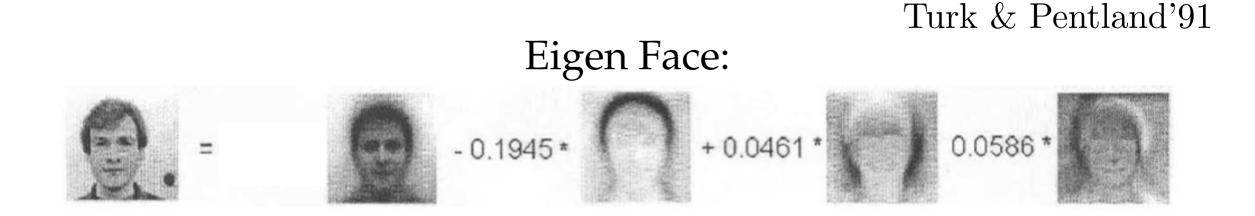


What if our dataset looked like this?

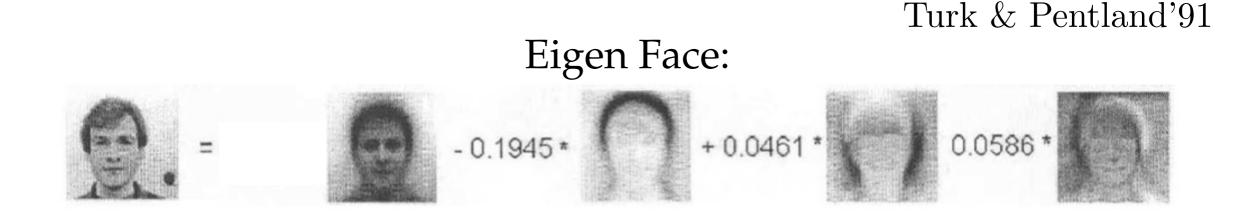




 Write down each data point as a linear combination of small number of basis vectors



- Write down each data point as a linear combination of small number of basis vectors
- Data specific compression scheme



- Write down each data point as a linear combination of small number of basis vectors
- Data specific compression scheme
- One of the early successes: in face recognition: classification based on nearest neighbor in the reduced dimension space

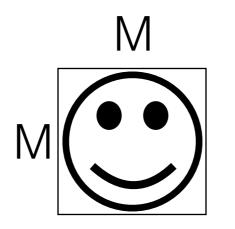
Representing Data as Feature Vectors

• How do we represent data?

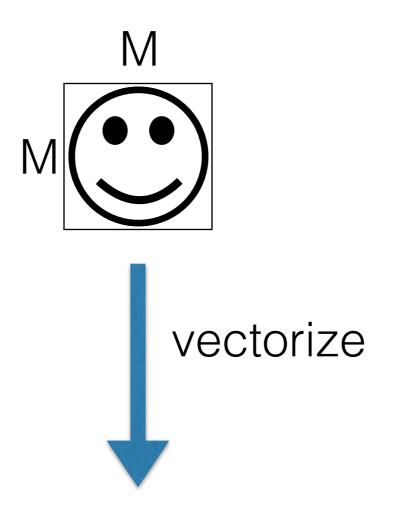
Representing Data as Feature Vectors

- How do we represent data?
- Each data-point often represented as vector referred to as feature vector

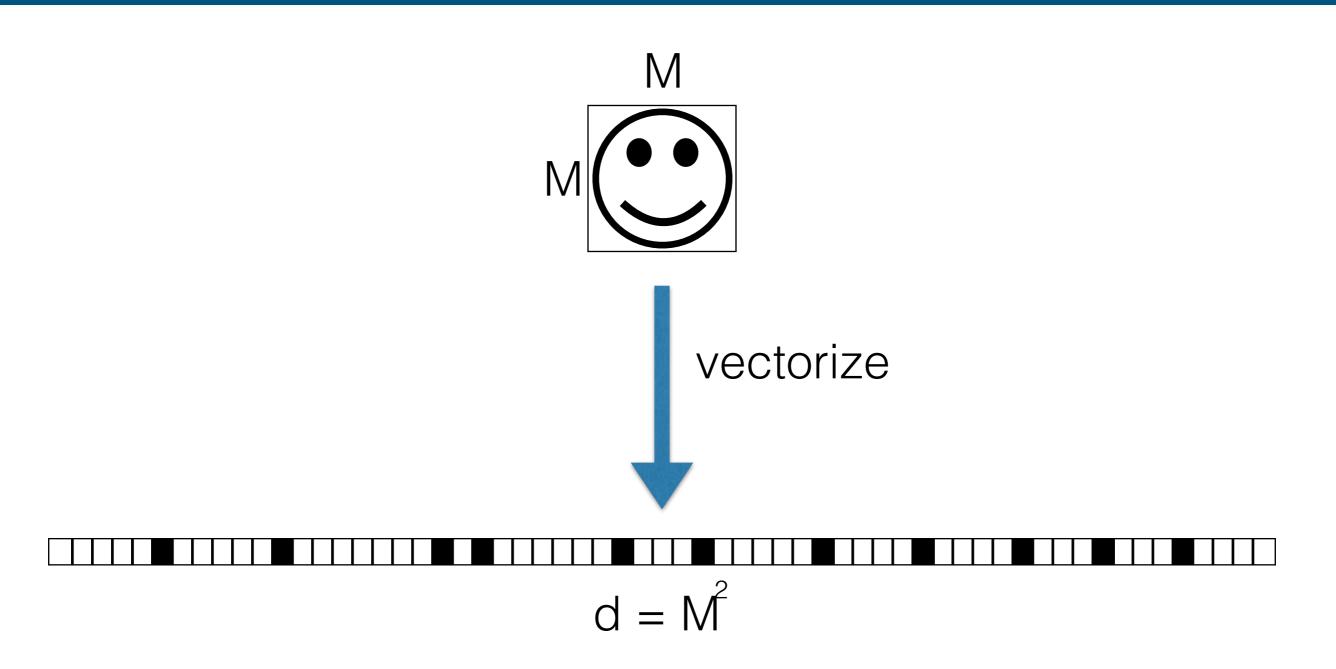
EXAMPLE: IMAGES



EXAMPLE: IMAGES



EXAMPLE: IMAGES



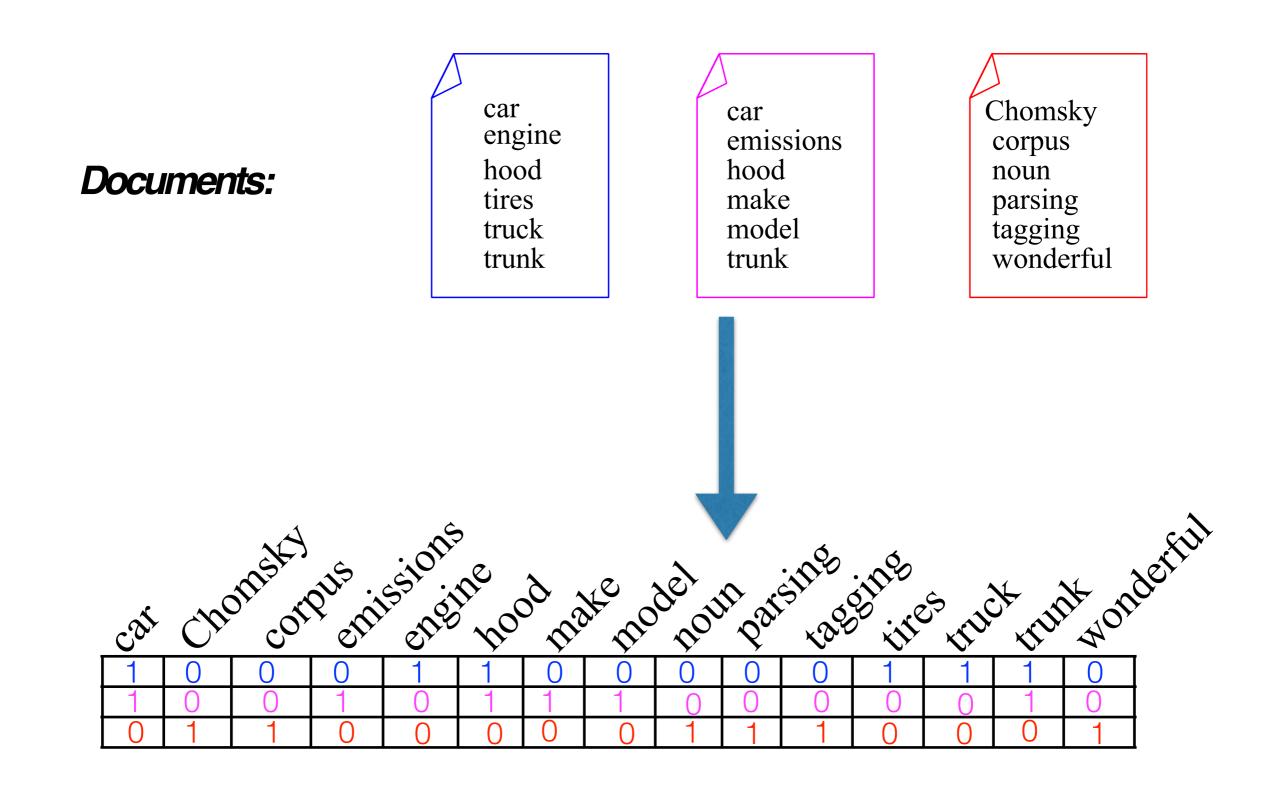
EXAMPLE: TEXT (BAG OF WORDS)

Documents:

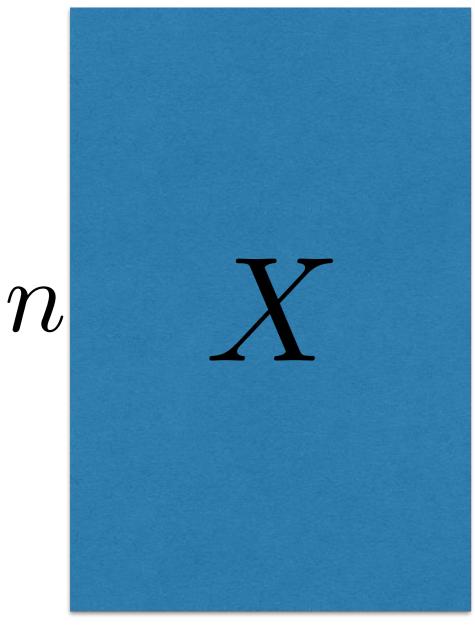
car engine hood tires truck trunk

car emissions hood make model trunk Chomsky corpus noun parsing tagging wonderful

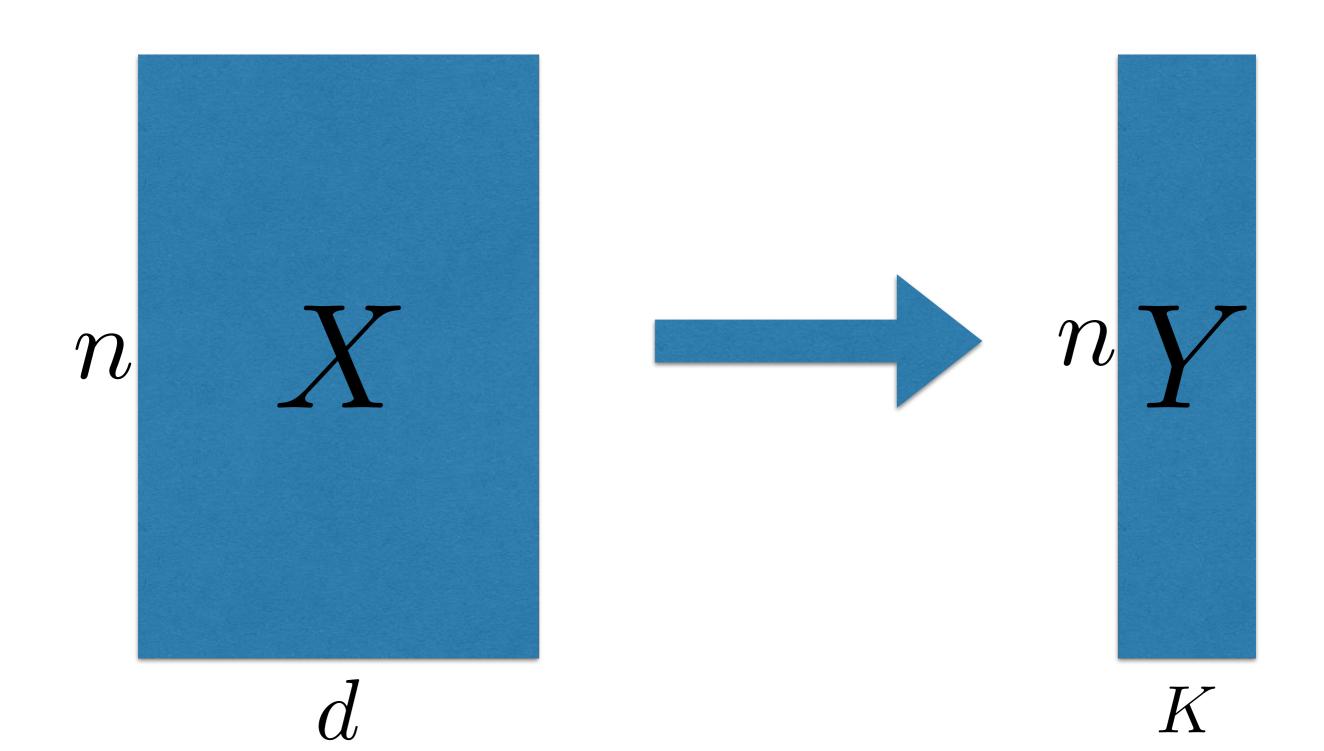
EXAMPLE: TEXT (BAG OF WORDS)

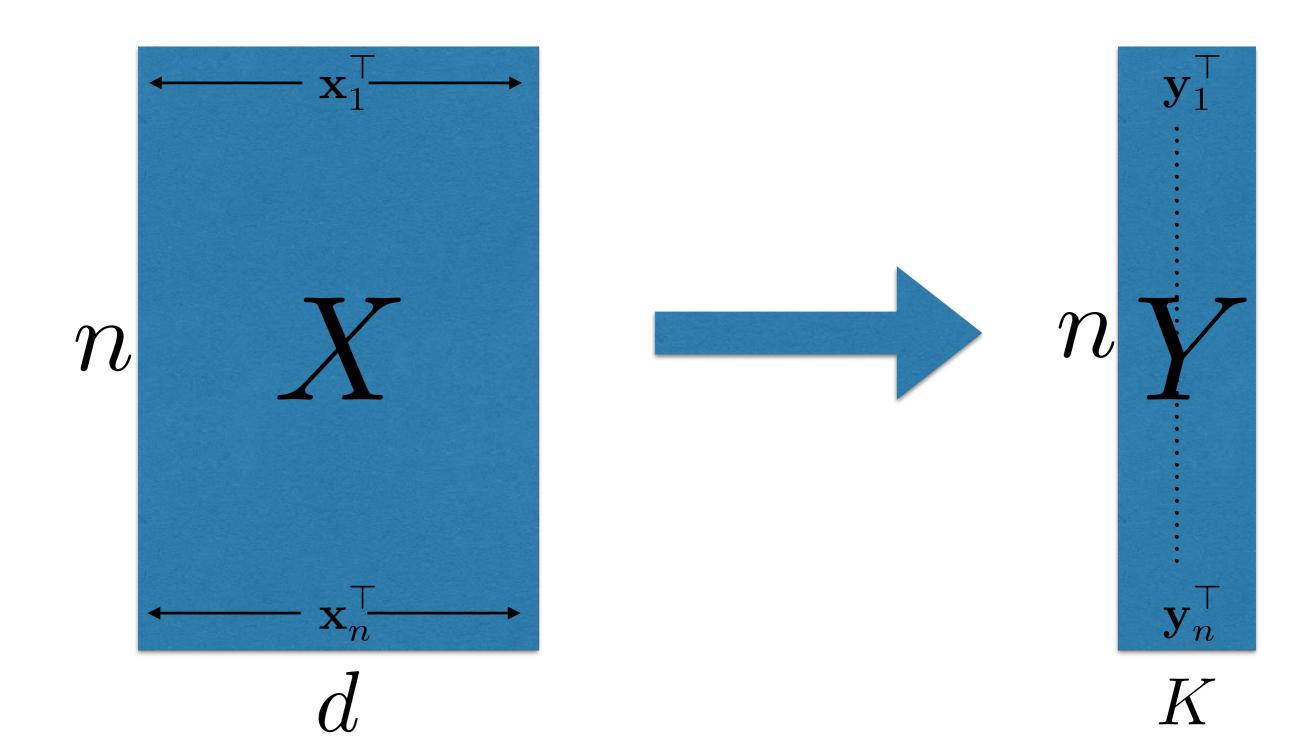


Given *n* data points in high-dimensional space, compress them into corresponding *n* points in lower dimensional space.



d





- For computational ease
 - As input to supervised learning algorithm
 - Before clustering to remove redundant information and noise
- Data compression & Noise reduction
- Data visualization

Desired properties:

- Original data can be (approximately) reconstructed
- Preserve distances between data points
- ③ "Relevant" information is preserved
- In Noise is reduced

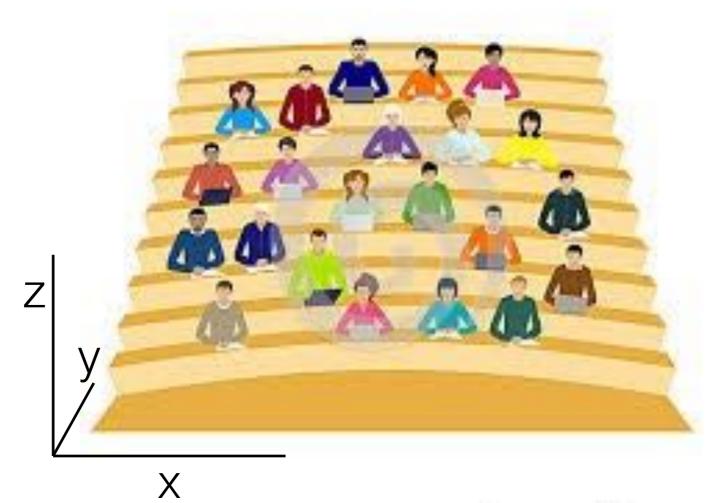
Can we reduce to 1 dim?

0.95225911	-1.90451821	2.85677732
0.60681578	-1.21363156	1.82044733
0.76419773	-1.52839546	2.29259318
0.44430217	-0.88860435	1.33290652
0.98425485	-1.9685097	2.95276456
0.04590113	-0.09180227	0.1377034
0.52408131	-1.04816263	1.57224394
0.2887897	-0.5775794	0.8663691
0.4289135	-0.857827	1.2867405
0.23877452	-0.47754905	0.71632357
0.50031855	-1.00063711	1.50095566
0.7155322	-1.43106441	2.14659661
0.19638816	-0.39277632	0.58916448
0.06743744	-0.13487488	0.20231232
0.18019499	-0.36038997	0.54058496
0.68941225	-1.37882451	2.06823676
0.51882043	-1.03764087	1.5564613
0.71398952	-1.42797904	2.14196857

Example: Students in classroom

dresmissimena

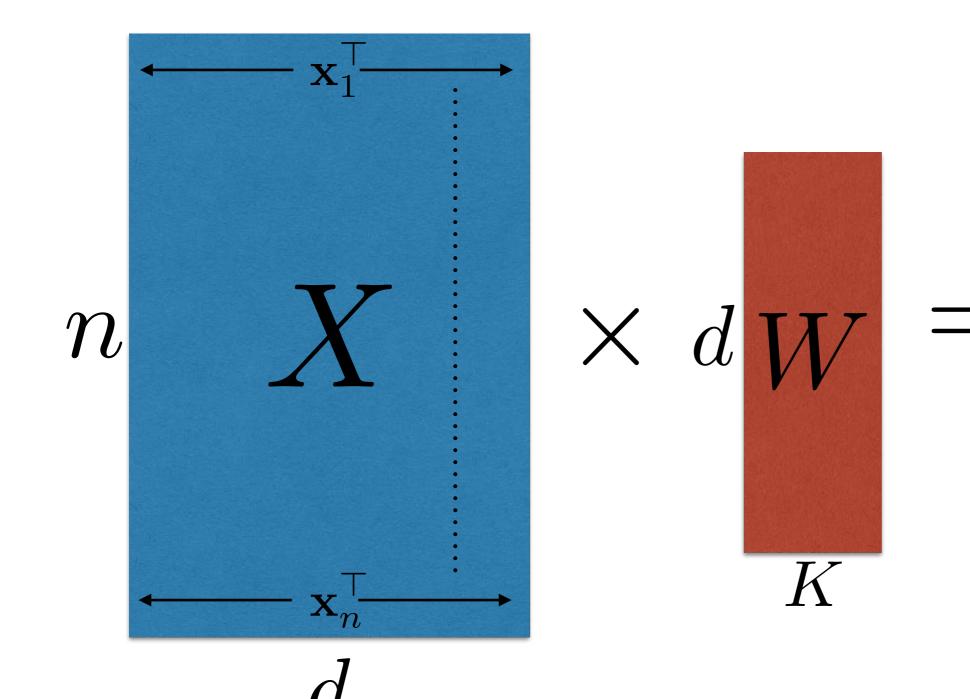
Example: Students in classroom

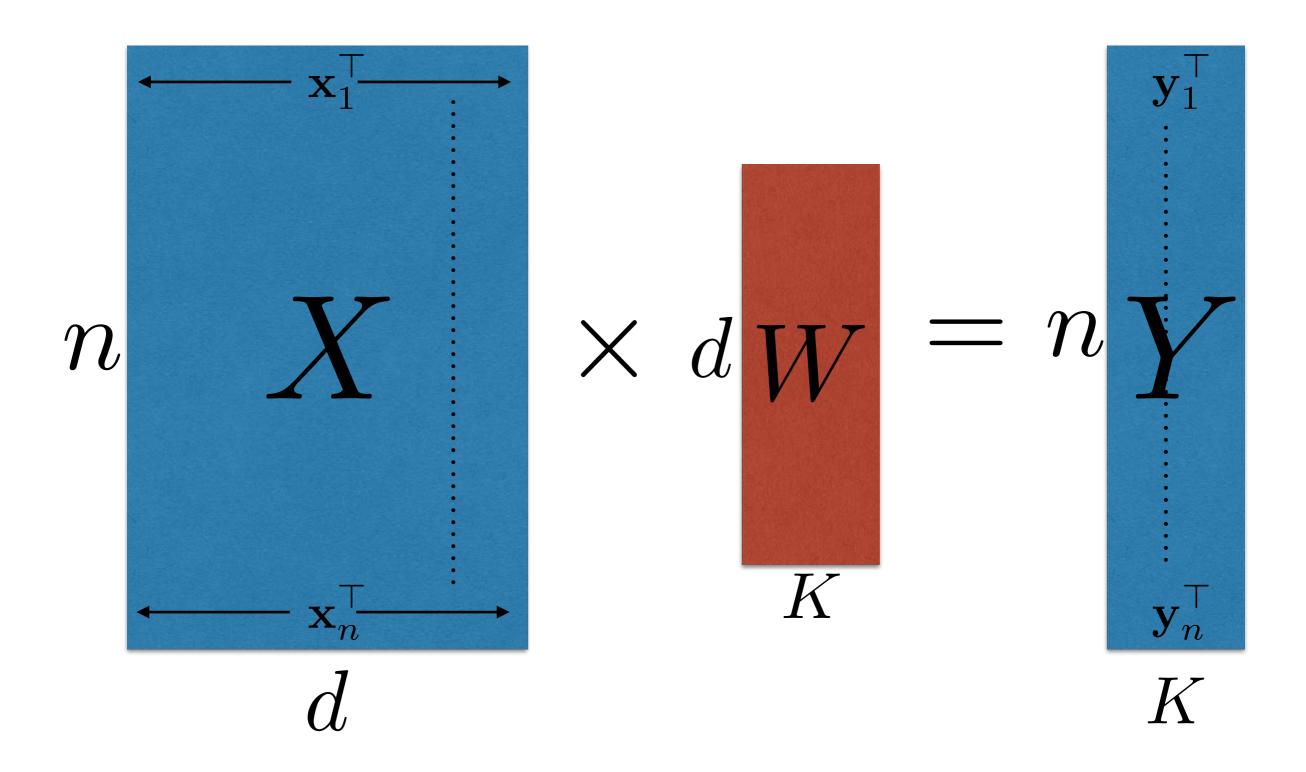


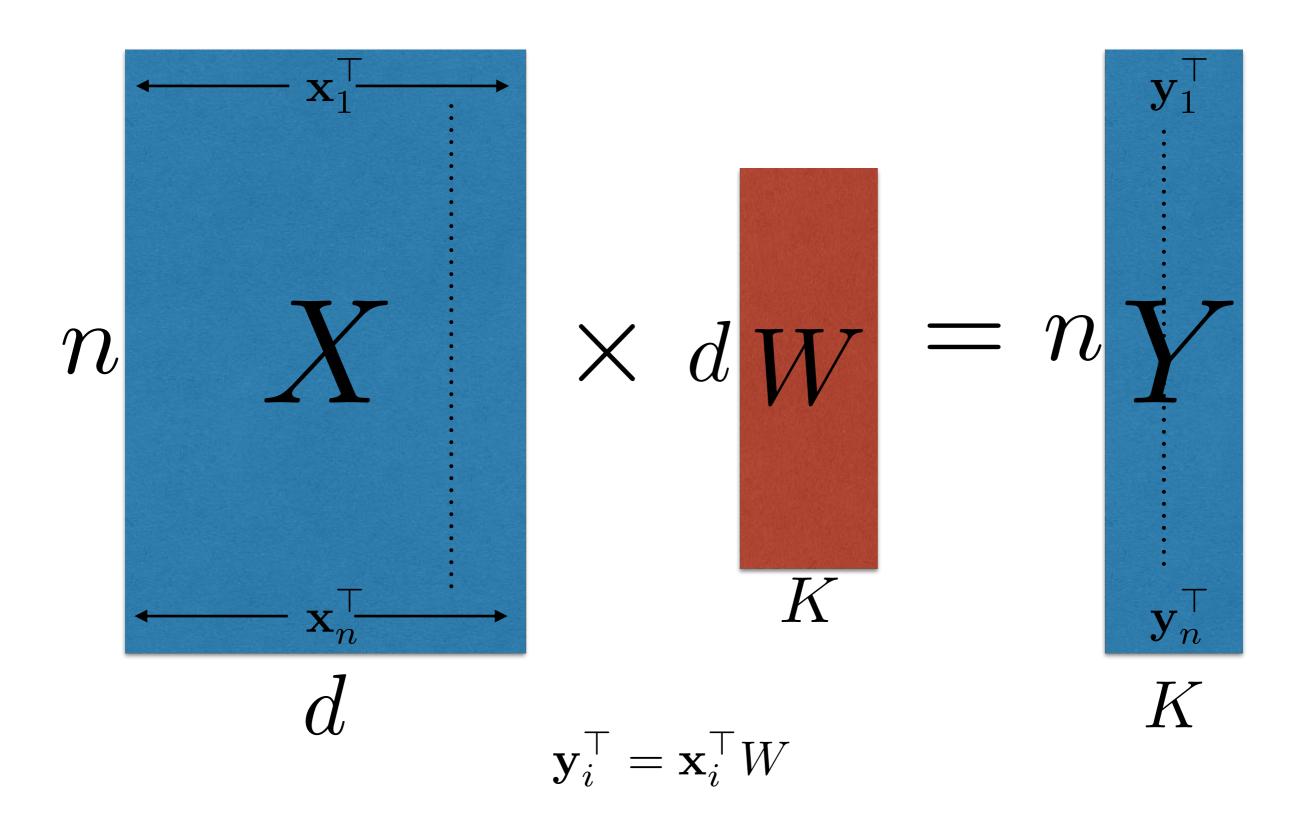
dressmithing the

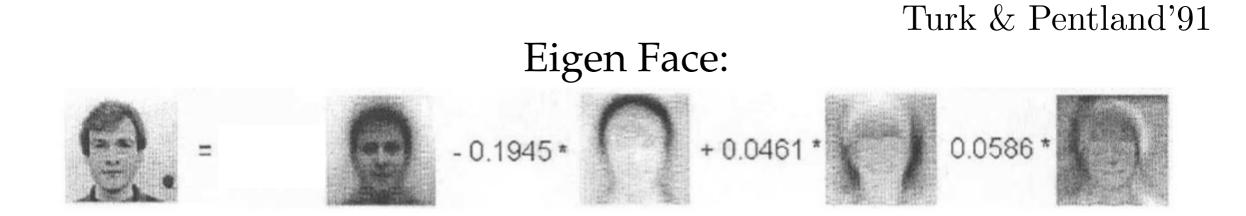
	$\longleftarrow \mathbf{x}_1^{T} \longrightarrow$
n	X
	$\leftarrow \mathbf{x}_n^{\top} \rightarrow$

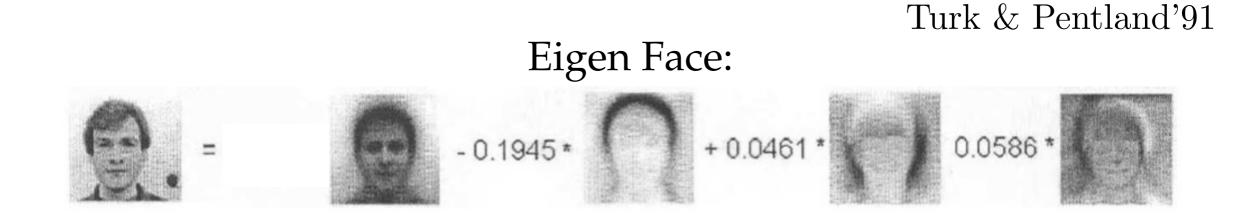
d



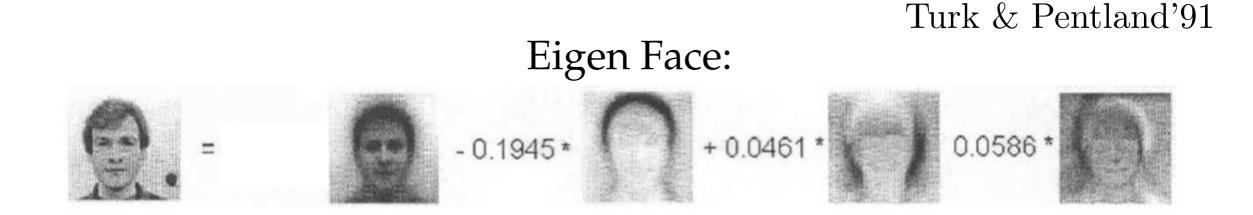




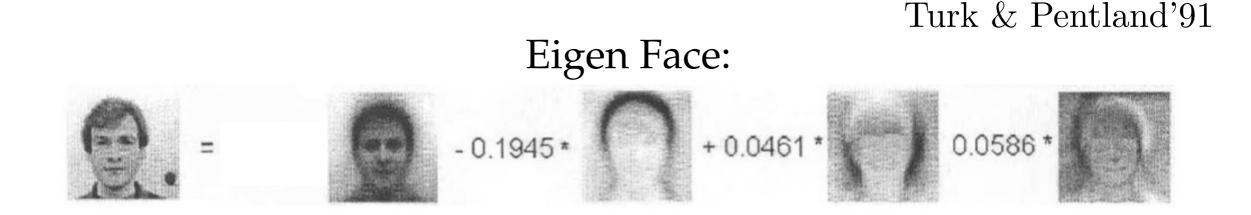




Each xt (each row of X) is a face image (vectorized version)



- Each Xt (each row of X) is a face image (vectorized version)
- Each yt is the set of coefficients we multiply to the eigen face



- Each Xt (each row of X) is a face image (vectorized version)
- Each yt is the set of coefficients we multiply to the eigen face
- Each column of W is an Eigenface

Prelude: Reducing to 1 Dim

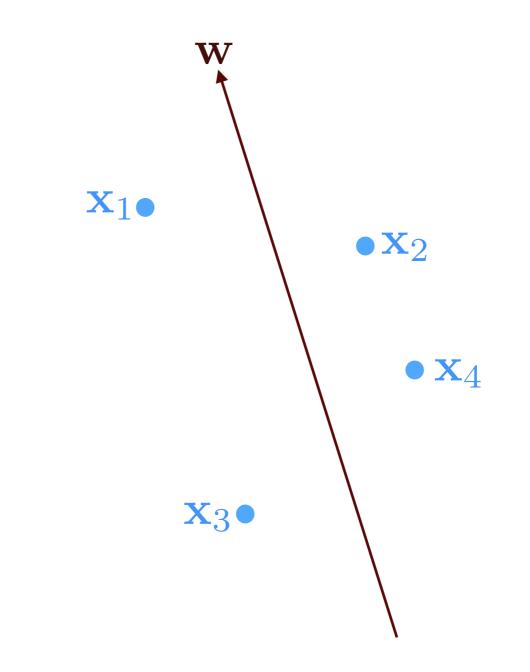
- W is a d x 1 matrix (d dimensional vector)
- Each data point is compressed to a single number
- How do we pick this W?

Prelude: reducing to 1 dimension

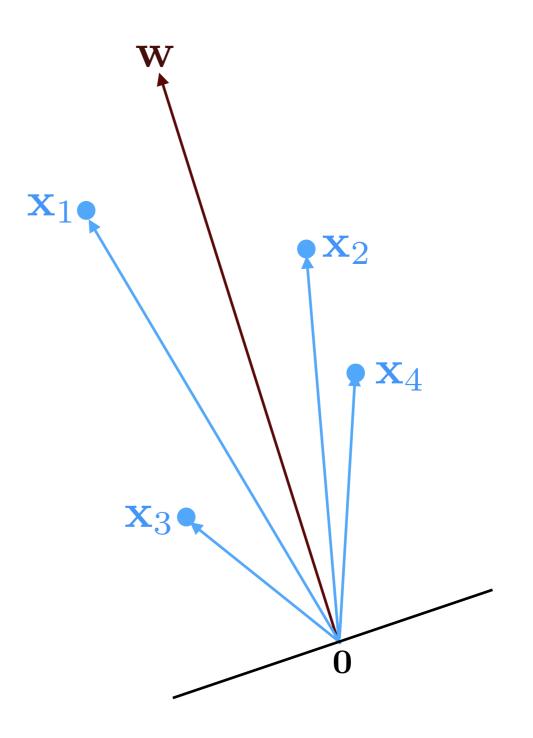
Prelude: reducing to 1 dimension

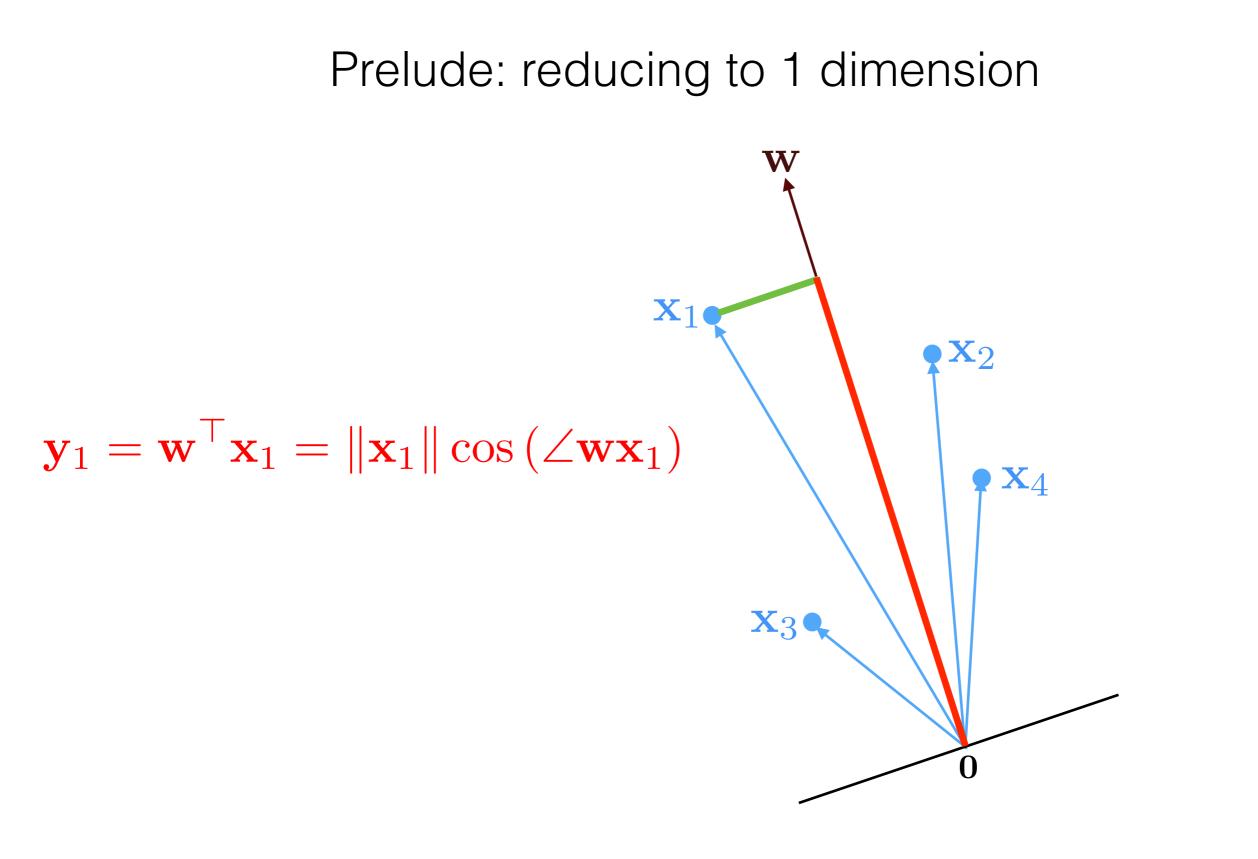


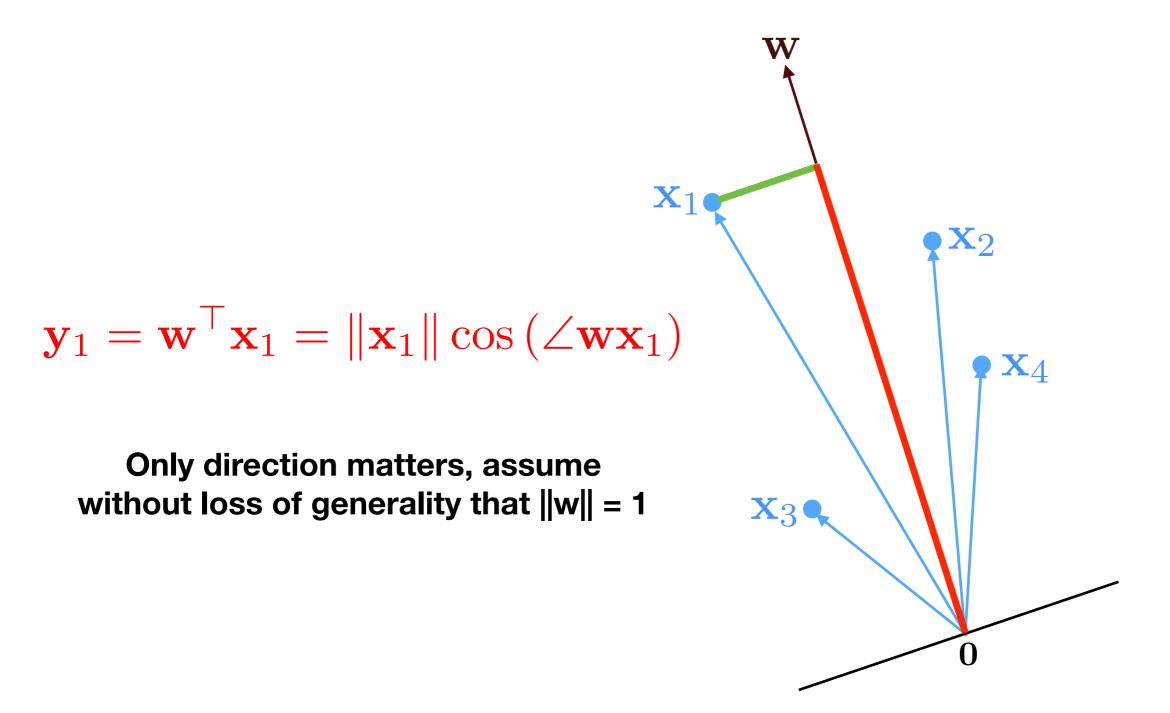
Prelude: reducing to 1 dimension

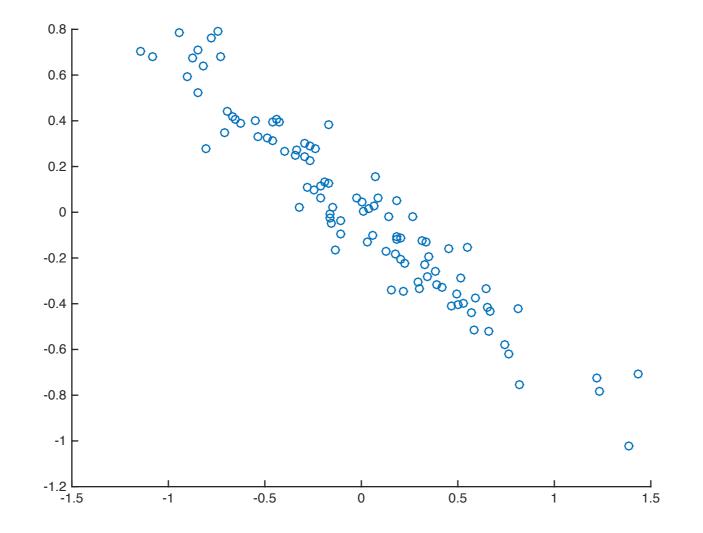


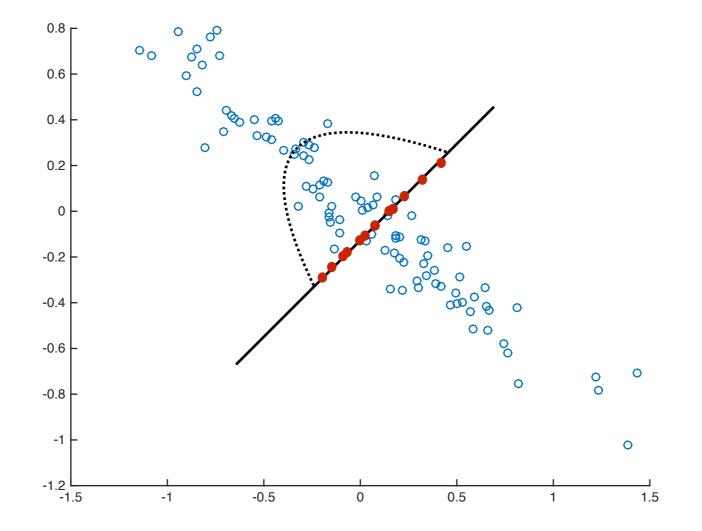
Prelude: reducing to 1 dimension

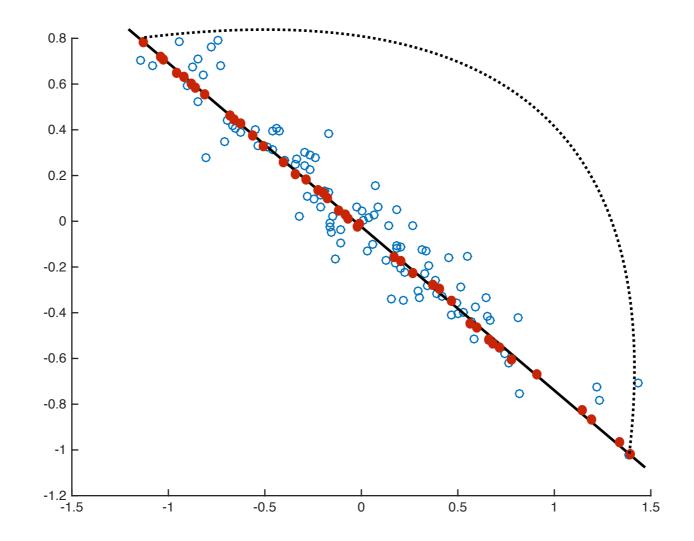












Variance =
$$\frac{1}{n} \sum_{t=1}^{n} \left(y_t - \frac{1}{n} \sum_{s=1}^{n} y_s \right)^2$$

Variance =
$$\frac{1}{n} \sum_{t=1}^{n} \left(y_t - \frac{1}{n} \sum_{s=1}^{n} y_s \right)^2$$

= $\frac{1}{n} \sum_{t=1}^{n} \left(\mathbf{w}^\top \mathbf{x}_t - \frac{1}{n} \sum_{s=1}^{n} \mathbf{w}^\top \mathbf{x}_s \right)^2$

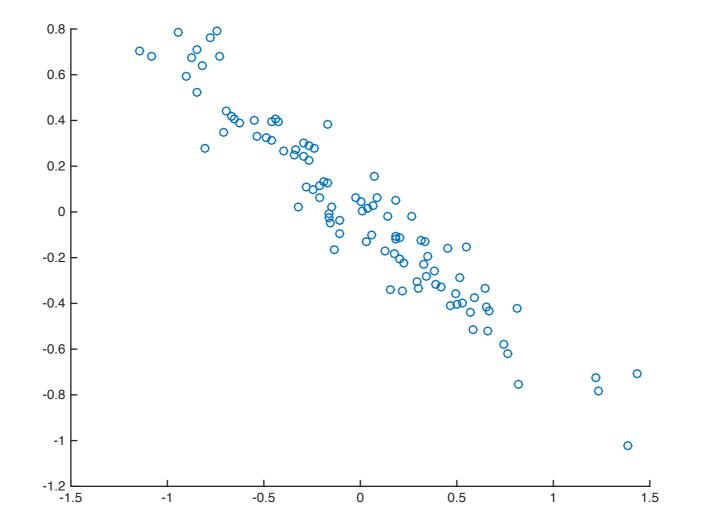
$$\begin{aligned} \text{Variance} &= \frac{1}{n} \sum_{t=1}^{n} \left(y_t - \frac{1}{n} \sum_{s=1}^{n} y_s \right)^2 \\ &= \frac{1}{n} \sum_{t=1}^{n} \left(\mathbf{w}^\top \mathbf{x}_t - \frac{1}{n} \sum_{s=1}^{n} \mathbf{w}^\top \mathbf{x}_s \right)^2 \\ &= \frac{1}{n} \sum_{t=1}^{n} \left(\mathbf{w}^\top \mathbf{x}_t - \mathbf{w}^\top \left(\frac{1}{n} \sum_{s=1}^{n} \mathbf{x}_s \right) \right)^2 \end{aligned}$$

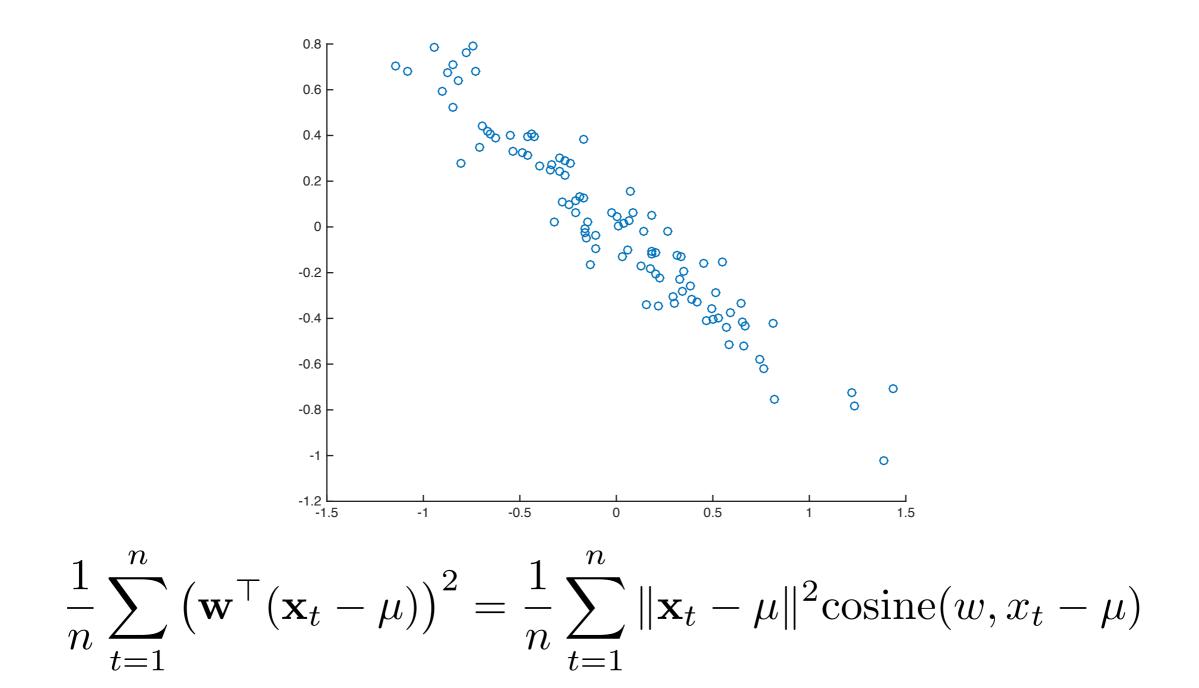
$$\begin{aligned} \text{Variance} &= \frac{1}{n} \sum_{t=1}^{n} \left(y_t - \frac{1}{n} \sum_{s=1}^{n} y_s \right)^2 \\ &= \frac{1}{n} \sum_{t=1}^{n} \left(\mathbf{w}^\top \mathbf{x}_t - \frac{1}{n} \sum_{s=1}^{n} \mathbf{w}^\top \mathbf{x}_s \right)^2 \\ &= \frac{1}{n} \sum_{t=1}^{n} \left(\mathbf{w}^\top \mathbf{x}_t - \mathbf{w}^\top \left(\frac{1}{n} \sum_{s=1}^{n} \mathbf{x}_s \right) \right)^2 \\ &= \frac{1}{n} \sum_{t=1}^{n} \left(\mathbf{w}^\top (\mathbf{x}_t - \mu) \right)^2 \end{aligned}$$

• Pick directions along which data varies the most

$$\begin{aligned} \text{Variance} &= \frac{1}{n} \sum_{t=1}^{n} \left(y_t - \frac{1}{n} \sum_{s=1}^{n} y_s \right)^2 \\ &= \frac{1}{n} \sum_{t=1}^{n} \left(\mathbf{w}^\top \mathbf{x}_t - \frac{1}{n} \sum_{s=1}^{n} \mathbf{w}^\top \mathbf{x}_s \right)^2 \\ &= \frac{1}{n} \sum_{t=1}^{n} \left(\mathbf{w}^\top \mathbf{x}_t - \mathbf{w}^\top \left(\frac{1}{n} \sum_{s=1}^{n} \mathbf{x}_s \right) \right)^2 \\ &= \frac{1}{n} \sum_{t=1}^{n} \left(\mathbf{w}^\top (\mathbf{x}_t - \mu) \right)^2 \end{aligned}$$

= average squared inner product







- Pick directions along which data varies the most
- First principal component:

$$\mathbf{w}_{1} = \arg \max_{\mathbf{w}:\|\mathbf{w}\|_{2}=1} \frac{1}{n} \sum_{t=1}^{n} \left(\mathbf{w}^{\mathsf{T}} \mathbf{x}_{t} - \frac{1}{n} \sum_{t=1}^{n} \mathbf{w}^{\mathsf{T}} \mathbf{x}_{t} \right)^{2}$$
$$= \arg \max_{\mathbf{w}:\|\mathbf{w}\|_{2}=1} \frac{1}{n} \sum_{t=1}^{n} \left(\mathbf{w}^{\mathsf{T}} (\mathbf{x}_{t} - \mu) \right)^{2}$$

- Pick directions along which data varies the most
- First principal component:

$$\mathbf{w}_{1} = \arg \max_{\mathbf{w}:\|\mathbf{w}\|_{2}=1} \frac{1}{n} \sum_{t=1}^{n} \left(\mathbf{w}^{\mathsf{T}} \mathbf{x}_{t} - \frac{1}{n} \sum_{t=1}^{n} \mathbf{w}^{\mathsf{T}} \mathbf{x}_{t} \right)^{2}$$
$$= \arg \max_{\mathbf{w}:\|\mathbf{w}\|_{2}=1} \frac{1}{n} \sum_{t=1}^{n} \left(\mathbf{w}^{\mathsf{T}} (\mathbf{x}_{t} - \mu) \right)^{2}$$
$$= \arg \max_{\mathbf{w}:\|\mathbf{w}\|_{2}=1} \frac{1}{n} \sum_{t=1}^{n} \mathbf{w}^{\mathsf{T}} (\mathbf{x}_{t} - \mu) (\mathbf{x}_{t} - \mu)^{\mathsf{T}} \mathbf{w}$$

- Pick directions along which data varies the most
- First principal component:

$$\mathbf{w}_{1} = \arg \max_{\mathbf{w}:\|\mathbf{w}\|_{2}=1} \frac{1}{n} \sum_{t=1}^{n} \left(\mathbf{w}^{\mathsf{T}} \mathbf{x}_{t} - \frac{1}{n} \sum_{t=1}^{n} \mathbf{w}^{\mathsf{T}} \mathbf{x}_{t} \right)^{2}$$
$$= \arg \max_{\mathbf{w}:\|\mathbf{w}\|_{2}=1} \frac{1}{n} \sum_{t=1}^{n} \left(\mathbf{w}^{\mathsf{T}} (\mathbf{x}_{t} - \mu) \right)^{2}$$
$$= \arg \max_{\mathbf{w}:\|\mathbf{w}\|_{2}=1} \frac{1}{n} \sum_{t=1}^{n} \mathbf{w}^{\mathsf{T}} (\mathbf{x}_{t} - \mu) (\mathbf{x}_{t} - \mu)^{\mathsf{T}} \mathbf{w}$$
$$= \arg \max_{\mathbf{w}:\|\mathbf{w}\|_{2}=1} \mathbf{w}^{\mathsf{T}} \Sigma \mathbf{w}$$

 Σ is the covariance matrix

Covariance Matrix

• Its a $d \times d$ matrix, $\Sigma[i, j]$ measures "covariance" of features *i* and *j*

$$\Sigma[i,j] = \frac{1}{n} \sum_{t=1}^{n} (\mathbf{x}_t[i] - \mu[i]) (\mathbf{x}_t[j] - \mu[j])$$

Covariance matrix:

$$\Sigma = \frac{1}{n} \sum_{t=1}^{n} (\mathbf{x}_t - \boldsymbol{\mu}) (\mathbf{x}_t - \boldsymbol{\mu})^{\mathsf{T}}$$

• Its a $d \times d$ matrix, $\Sigma[i, j]$ measures "covariance" of features *i* and *j*

$$\Sigma[i,j] = \frac{1}{n} \sum_{t=1}^{n} (\mathbf{x}_t[i] - \mu[i]) (\mathbf{x}_t[j] - \mu[j])$$

- Pick directions along which data varies the most
- First principal component:

$$\mathbf{w}_1 = \arg \max_{\mathbf{w}:\|\mathbf{w}\|_2=1} \mathbf{w}^{\mathsf{T}} \boldsymbol{\Sigma} \mathbf{w}$$

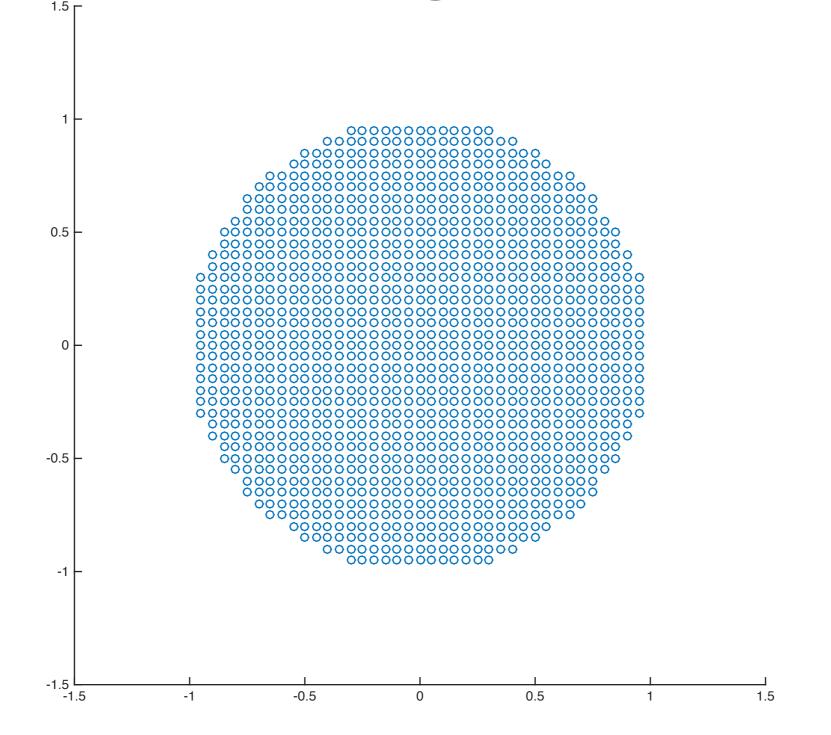
 Σ is the covariance matrix

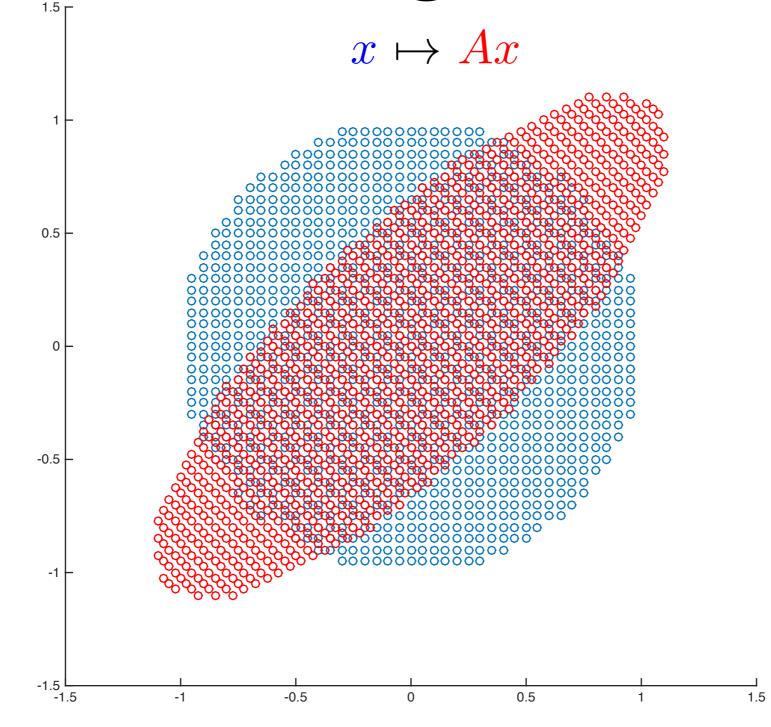
- Pick directions along which data varies the most
- First principal component:

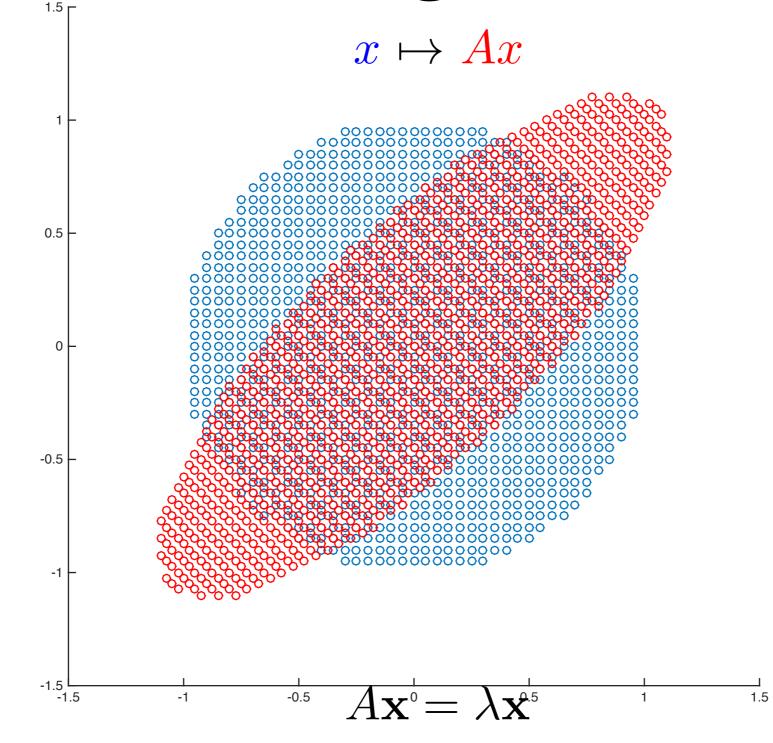
$$\mathbf{w}_1 = \arg \max_{\mathbf{w}:\|\mathbf{w}\|_2=1} \mathbf{w}^{\mathsf{T}} \boldsymbol{\Sigma} \mathbf{w}$$

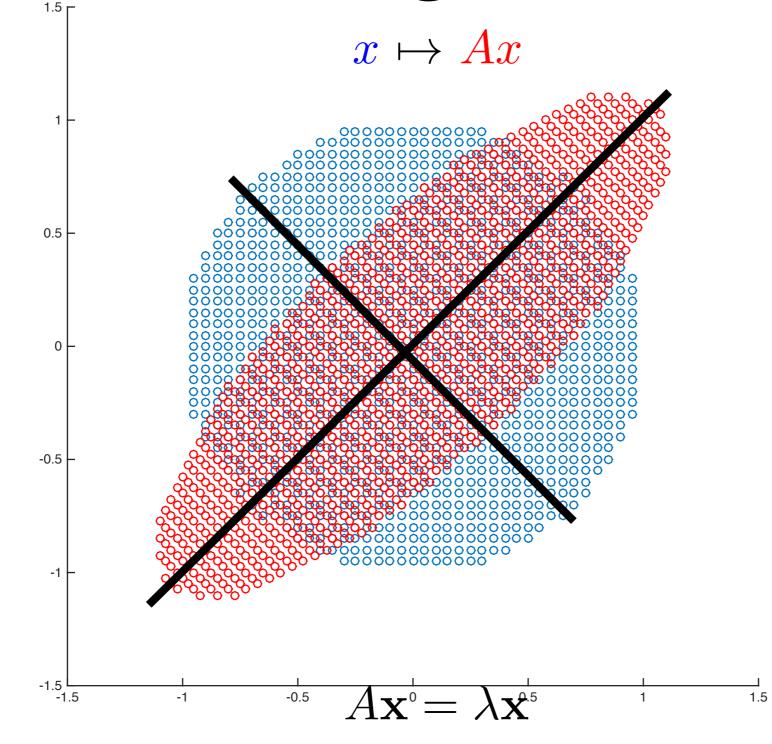
 Σ is the covariance matrix

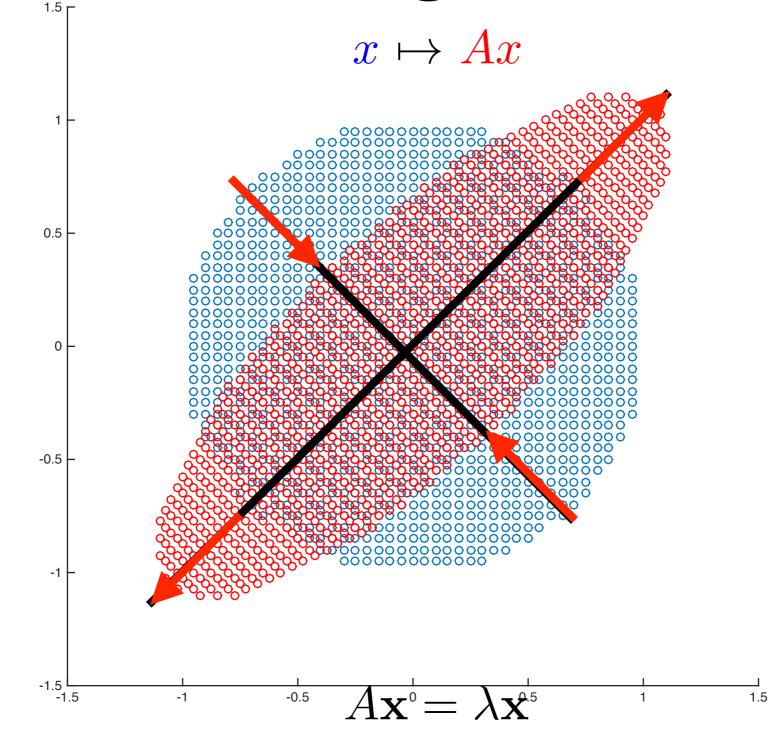
Solution: $\mathbf{w}_1 = \text{Largest Eigenvector of } \Sigma$

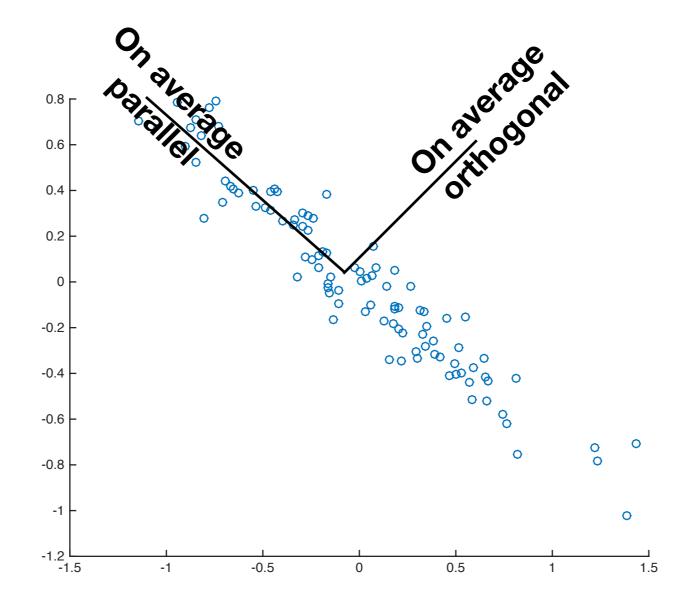


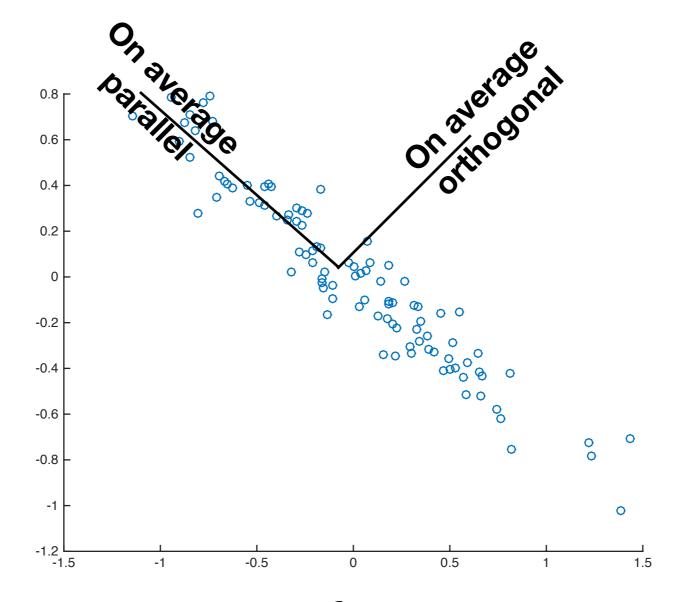






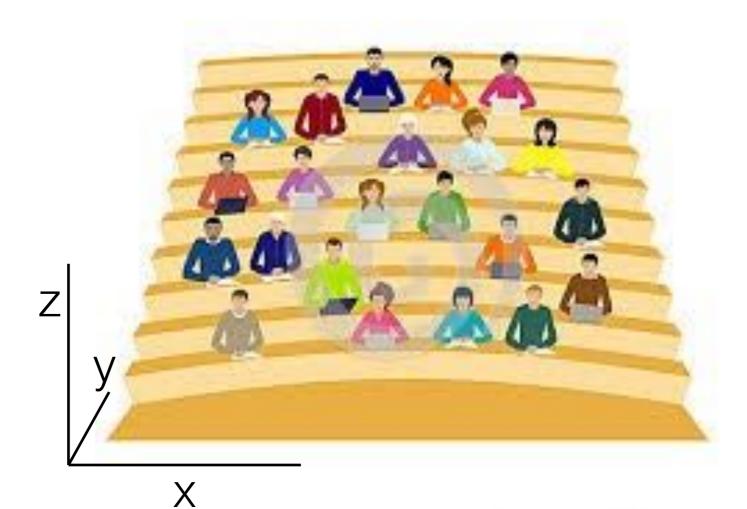






Top Eigenvector of covariance matrix

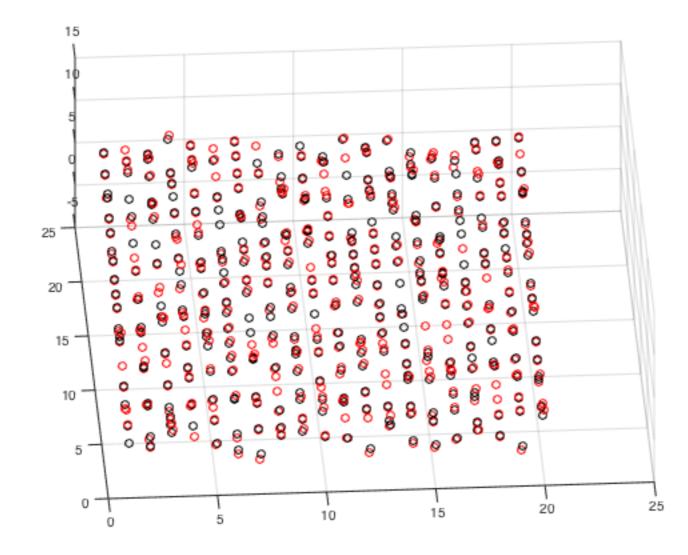
- What if we want more than one number for each data point?
- That is we want to reduce to K > 1 dimensions?



• How do we find the *K* components?

• How do we find the *K* components?

Ans: Maximize sum of spread in the K directions



- How do we find the *K* components?
- We are looking for orthogonal directions that maximize total spread in each direction

- How do we find the *K* components?
- We are looking for orthogonal directions that maximize total spread in each direction
- Find orthonormal W that maximizes

- How do we find the *K* components?
- We are looking for orthogonal directions that maximize total spread in each direction
- Find orthonormal W that maximizes

$$\sum_{j=1}^{K} \frac{1}{n} \sum_{t=1}^{n} \left(\mathbf{y}_{t}[j] - \frac{1}{n} \sum_{t=1}^{n} \mathbf{y}_{t}[j] \right)^{2} = \sum_{j=1}^{K} \frac{1}{n} \sum_{t=1}^{n} \left(\mathbf{w}_{j}^{\mathsf{T}} \left(\mathbf{x}_{t} - \frac{1}{n} \sum_{t=1}^{n} \mathbf{x}_{t} \right) \right)^{2}$$

- How do we find the *K* components?
- We are looking for orthogonal directions that maximize total spread in each direction
- Find orthonormal W that maximizes

$$\sum_{j=1}^{K} \frac{1}{n} \sum_{t=1}^{n} \left(\mathbf{y}_{t}[j] - \frac{1}{n} \sum_{t=1}^{n} \mathbf{y}_{t}[j] \right)^{2} = \sum_{j=1}^{K} \frac{1}{n} \sum_{t=1}^{n} \left(\mathbf{w}_{j}^{\mathsf{T}} \left(\mathbf{x}_{t} - \frac{1}{n} \sum_{t=1}^{n} \mathbf{x}_{t} \right) \right)^{2}$$
$$= \sum_{j=1}^{K} \mathbf{w}_{j}^{\mathsf{T}} \Sigma \mathbf{w}_{j}$$

- How do we find the *K* components?
- We are looking for orthogonal directions that maximize total spread in each direction
- Find orthonormal W that maximizes $\sum_{k=1}^{d} \mathbf{w}_{i}[k]\mathbf{w}_{j}[k] = 0 \quad \& \quad \sum_{k=1}^{d} \mathbf{w}_{i}[k] = 1$ $\sum_{j=1}^{K} \frac{1}{n} \sum_{t=1}^{n} \left(\mathbf{y}_{t}[j] \frac{1}{n} \sum_{t=1}^{n} \mathbf{y}_{t}[j] \right)^{2} = \sum_{j=1}^{K} \frac{1}{n} \sum_{t=1}^{n} \left(\mathbf{w}_{j}^{\mathsf{T}} \left(\mathbf{x}_{t} \frac{1}{n} \sum_{t=1}^{n} \mathbf{x}_{t} \right) \right)^{2}$ $= \sum_{j=1}^{K} \mathbf{w}_{j}^{\mathsf{T}} \Sigma \mathbf{w}_{j}$

- How do we find the *K* components?
- We are looking for orthogonal directions that maximize total spread in each direction
- Find orthonormal W that maximizes $\sum_{k=1}^{d} \mathbf{w}_{i}[k]\mathbf{w}_{j}[k] = 0 \quad \& \quad \sum_{k=1}^{d} \mathbf{w}_{i}[k] = 1$ $\sum_{j=1}^{K} \frac{1}{n} \sum_{t=1}^{n} \left(\mathbf{y}_{t}[j] \frac{1}{n} \sum_{t=1}^{n} \mathbf{y}_{t}[j] \right)^{2} = \sum_{j=1}^{K} \frac{1}{n} \sum_{t=1}^{n} \left(\mathbf{w}_{j}^{\mathsf{T}} \left(\mathbf{x}_{t} \frac{1}{n} \sum_{t=1}^{n} \mathbf{x}_{t} \right) \right)^{2}$ $= \sum_{j=1}^{K} \mathbf{w}_{j}^{\mathsf{T}} \Sigma \mathbf{w}_{j}$
- This solutions is given by W = Top K eigenvectors of Σ

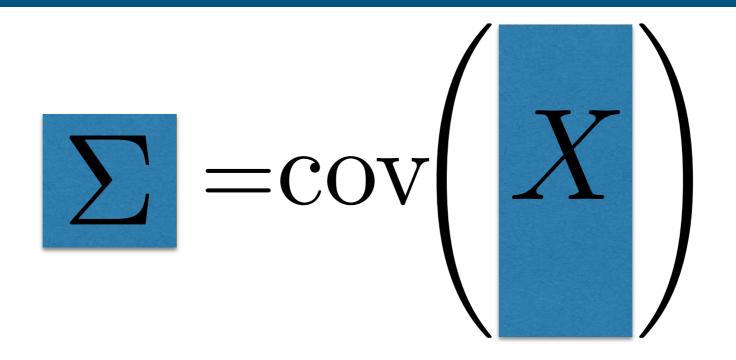
- How do we find the *K* components?
- We are looking for orthogonal directions that maximize total spread in each direction

• Find orthonormal W that maximizes
$$\sum_{k=1}^{d} \mathbf{w}_{i}[k]\mathbf{w}_{j}[k] = 0 \quad \& \quad \sum_{k=1}^{d} \mathbf{w}_{i}[k] = 1$$
$$\sum_{j=1}^{K} \frac{1}{n} \sum_{t=1}^{n} \left(\mathbf{y}_{t}[j] - \frac{1}{n} \sum_{t=1}^{n} \mathbf{y}_{t}[j] \right)^{2} = \sum_{j=1}^{K} \frac{1}{n} \sum_{t=1}^{n} \left(\mathbf{w}_{j}^{\mathsf{T}} \left(\mathbf{x}_{t} - \frac{1}{n} \sum_{t=1}^{n} \mathbf{x}_{t} \right) \right)^{2}$$
$$= \sum_{j=1}^{K} \mathbf{w}_{j}^{\mathsf{T}} \Sigma \mathbf{w}_{j}$$

Intuition: Remove top direction, now reduce dimension for remaining d-1 dimensions

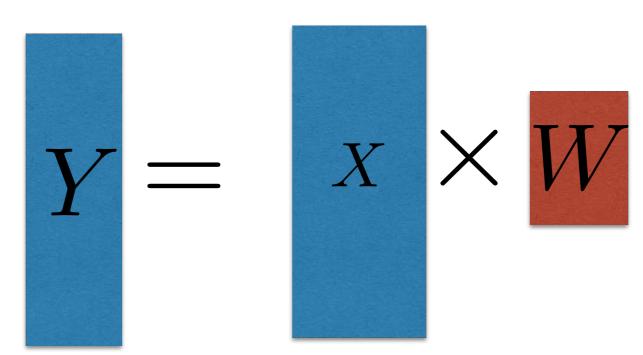
• This solutions is given by W = Top K eigenvectors of Σ

PRINCIPAL COMPONENT ANALYSIS





1.



3.

Can we reconstruct the original data points?