Machine Learning for Data Science (CS4786)
Lecture 1

Tu-Th 8:40 AM to 9:55 AM
Klarman Hall KG70

Instructor : Karthik Sridharan
Welcome the first lecture!
WINTER IS COMING

Here
I know it's really early!
Here
WINTER IS COMING! _Here_

But let's have fun!
THE AWESOME TA’S

1. Cameron Benesch
2. Rajesh Bollapragada
3. Ian Delbridge
4. William Gao
5. Varsha Kishore
6. Clara Liu
7. Jeffrey Liu
8. Amanda Ong
9. Jenny Wang
10. Wilson Yoo
Course Information

- Course webpage is the official source of information:
 http://www.cs.cornell.edu/Courses/cs4786/2019sp

- Join Piazza: https://piazza.com/class/jr4fi8k75d571p

- TA office hours will start from week 2. Time and locations will be posted on info tab of course webpage

- Basic knowledge of python is required.
Passing the placement exam is required to enroll

Exam can be found at: http://www.cs.cornell.edu/courses/cs4786/2019sp/hw0.html

Upload your solutions in PDF format via the google form indicated in the exam page

Score on the placement exam is only for feedback, does not count towards grades for the course.
Assignments: 28%

Prelims: 20%

Finals: 20%

Competition: 30%

Survey: 2%
ASSIGNMENTS

- Total of 4 assignments.
- Each worth 7% of the grade
- Will be on Vocareum (using Jupyter notebook/python)
- Has to be done individually
Exams

1. **Prelim**
 - On March 28th at STL185
 - Worth 20% of the grades.

2. **Finals**
 - On May 14th (see schedule for details)
 - Worth 20% of the grades.
One in-class Kaggle competition worth 30% of the grade

You are allowed to work in groups of at most 4.

Kaggle scores only factor in for part of the grade.

Grades for project focus more on thought process (demonstrated through your reports)
Surveys

- 2 Surveys worth 1% each just for participation
- Survey will be anonymous (I will only have a list of students who participated)
- Important form of feedback I can use to steer the class
- Free forum for you to tell us what you want.
1. **0 Tolerance Policy: no exceptions**
 - We have checks in place to look for violations in Vocareum

2. If you use any source (internet, book, paper, or personal communication) cite it.

3. When in doubt cite.
Some info about class . . .

- Would really love it to be interactive.
- You can feel free to ask me anything
- We will have informal quizzes most classes
- We will have a review session for exams
Let's get started ...
Each time you use your credit card: who purchased what, where and when
Each time you use your credit card: who purchased what, where and when

Netflix, Hulu, smart TV: what do different groups of people like to watch
Each time you use your credit card: who purchased what, where and when

Netflix, Hulu, smart TV: what do different groups of people like to watch

Social networks like Facebook, Twitter, . . . : who is friends with who, what do these people post or tweet about
Each time you use your credit card: who purchased what, where and when

Netflix, Hulu, smart TV: what do different groups of people like to watch

Social networks like Facebook, Twitter, . . . : who is friends with who, what do these people post or tweet about

Millions of photos and videos, many tagged
Each time you use your credit card: who purchased what, where and when

Netflix, Hulu, smart TV: what do different groups of people like to watch

Social networks like Facebook, Twitter, ...: who is friends with who, what do these people post or tweet about

Millions of photos and videos, many tagged

Wikipedia, all the news websites: pretty much most of human knowledge
Guess?
Social Network of Marvel Comic Characters!

by Cesc Rosselló, Ricardo Alberich, and Joe Miro from the University of the Balearic Islands
What can we learn from all this data?
Use data to automatically learn to perform tasks better.

Close in spirit to T. Mitchell’s description
WHERE IS IT USED?

Movie Rating Prediction
WHERE IS IT USED?

Pedestrian Detection
WHERE IS IT USED?

Market Predictions
WHERE IS IT USED?

Spam Classification
More Applications

- Each time you use your search engine
 - Autocomplete: Blame machine learning for bad spellings
- Biometrics: reason you shouldn't smile
- Recommendation systems: what you may like to buy based on what your friends and their friends buy
- Computer vision: self driving cars, automatically tagging photos
- Topic modeling: Automatically categorizing documents/emails by topics or music by genre
 ...
MORE APPLICATIONS

- Each time you use your search engine
More Applications

- Each time you use your search engine
- Autocomplete: Blame machine learning for bad spellings
More Applications

- Each time you use your search engine
- Autocomplete: Blame machine learning for bad spellings
- Biometrics: reason you shouldn’t smile
More Applications

• Each time you use your search engine

• Autocomplete: Blame machine learning for bad spellings

• Biometrics: reason you shouldn’t smile

• Recommendation systems: what you may like to buy based on what your friends and their friends buy
More Applications

- Each time you use your search engine
- Autocomplete: Blame machine learning for bad spellings
- Biometrics: reason you shouldn’t smile
- Recommendation systems: what you may like to buy based on what your friends and their friends buy
- Computer vision: self driving cars, automatically tagging photos
More Applications

- Each time you use your search engine
- Autocomplete: Blame machine learning for bad spellings
- Biometrics: reason you shouldn’t smile
- Recommendation systems: what you may like to buy based on what your friends and their friends buy
- Computer vision: self driving cars, automatically tagging photos
- Topic modeling: Automatically categorizing documents/emails by topics or music by genre
- …
Course Synopsis

- Primary focus: Unsupervised learning
Course Synopsis

- Primary focus: Unsupervised learning

- Roughly speaking 4 parts:
Primary focus: Unsupervised learning

Roughly speaking 4 parts:

1. Dimensionality reduction:
 Principle Components Analysis, Random Projections, Canonical Components Analysis, Kernel PCA, tSNE, Spectral Embedding

2. Clustering:
 Single-link, Hierarchical clustering, k-means, Gaussian Mixture model

3. Probabilistic models and Graphical models
 Mixture models, EM Algorithm, Hidden Markov Model, Graphical models Inference and Learning, Approximate inference

4. Socially responsible ML
 Privacy in ML, Differential Privacy, Fairness, Robustness against polarization
Primary focus: Unsupervised learning

Roughly speaking 4 parts:

1. Dimensionality reduction:
 Principle Components Analysis, Random Projections, Canonical Components Analysis, Kernel PCA, tSNE, Spectral Embedding

2. Clustering:
 single-link, Hierarchical clustering, k-means, Gaussian Mixture model
Primary focus: Unsupervised learning

Roughly speaking 4 parts:

1. Dimensionality reduction:
 Principle Components Analysis, Random Projections, Canonical Components Analysis, Kernel PCA, tSNE, Spectral Embedding

2. Clustering:
 single-link, Hierarchical clustering, k-means, Gaussian Mixture model

3. Probabilistic models and Graphical models
 Mixture models, EM Algorithm, Hidden Markov Model, Graphical models Inference and Learning, Approximate inference
Course Synopsis

- Primary focus: Unsupervised learning

- Roughly speaking 4 parts:

 1. Dimensionality reduction:
 - Principle Components Analysis, Random Projections, Canonical Components Analysis, Kernel PCA, tSNE, Spectral Embedding

 2. Clustering:
 - single-link, Hierarchical clustering, k-means, Gaussian Mixture model

 3. Probabilistic models and Graphical models
 - Mixture models, EM Algorithm, Hidden Markov Model, Graphical models Inference and Learning, Approximate inference

 4. Socially responsible ML
 - Privacy in ML, Differential Privacy, Fairness, Robustness against polarization
Given (unlabeled) data, find useful information, pattern or structure
Given (unlabeled) data, find useful information, pattern or structure

- Dimensionality reduction/compression: compress data set by removing redundancy and retaining only useful information
Given (unlabeled) data, find useful information, pattern or structure

- Dimensionality reduction/compression: compress data set by removing redundancy and retaining only useful information

- Clustering: Find meaningful groupings in data
Given (unlabeled) data, find useful information, pattern or structure

- Dimensionality reduction/compression: compress data set by removing redundancy and retaining only useful information
- Clustering: Find meaningful groupings in data
- Topic modeling: discover topics/groups with which we can tag data points
Given n data points in high-dimensional space, compress them into corresponding n points in lower dimensional space.
WHY DIMENSIONALITY REDUCTION?

As input to supervised learning algorithm
Before clustering to remove redundant information and noise
Data visualization
Data compression
Noise reduction
Why dimensionality reduction?

- For computational ease
 - As input to supervised learning algorithm
 - Before clustering to remove redundant information and noise
Why dimensionality reduction?

- For computational ease
 - As input to supervised learning algorithm
 - Before clustering to remove redundant information and noise
- Data visualization
Why dimensionality reduction?

- For computational ease
 - As input to supervised learning algorithm
 - Before clustering to remove redundant information and noise
- Data visualization
- Data compression
Why dimensionality reduction?

- For computational ease
 - As input to supervised learning algorithm
 - Before clustering to remove redundant information and noise
- Data visualization
- Data compression
- Noise reduction
Desired properties:
Desired properties:

1. Original data can be (approximately) reconstructed
Desired properties:

1. Original data can be (approximately) reconstructed

2. Preserve distances between data points
Desired properties:

1. Original data can be (approximately) reconstructed

2. Preserve distances between data points

3. “Relevant” information is preserved
Desired properties:

1. Original data can be (approximately) reconstructed

2. Preserve distances between data points

3. “Relevant” information is preserved

4. Redundant information is removed
Dimensionality Reduction

Desired properties:

1. Original data can be (approximately) reconstructed
2. Preserve distances between data points
3. “Relevant” information is preserved
4. Redundant information is removed
5. Models our prior knowledge about real world

Based on the choice of desired property and formalism we get different methods
SNEAK PEEK

- Linear projections
- Principle component analysis