Inference in Bayesian Networks

Course Webpage:
http://www.cs.cornell.edu/Courses/cs4786/2017fa/
Announcement

- November 14th: Guest lecture by Prof. Kilian Weinberger
Bayesian Networks

- Directed acyclic graph (DAG): \(G = (V, E) \)
- Joint distribution \(P_\theta \) over \(X_1, \ldots, X_n \) that factorizes over \(G \):
 \[
P_\theta(X_1, \ldots, X_n) = \prod_{i=1}^{N} P_\theta(X_i|\text{Parent}(X_i))
\]
- Hence Bayesian Networks are specified by \(G \) along with CPD’s over the variables (given their parents)
Variable Elimination: Examples

- Marginals are enough:

\[
P(X_j = x_j, X_k = x_k | X_i = x_i, X_h = x_h) = \frac{P(X_j = x_j, X_k = x_k, X_i = x_i, X_h = x_h)}{P(X_i = x_i, X_h = x_h)}
\]
Variable Elimination: Examples

P(Given variables) = Sum over all other variables (P(All variables))
= Sum over all other variables (Product P(Xᵢ|Parents(Xᵢ)))

\[
P(X₄) = \sum_{x₁} \sum_{x₂} \sum_{x₃} P(X₁ = x₁, X₂ = x₂, X₃ = x₃, X₄)
\]

\[
= \sum_{x₁} \sum_{x₂} \sum_{x₃} (P(X₁ = x₁) \cdot P(X₂ = x₂|X₁ = x₁) \cdot P(X₃ = x₃|X₂ = x₂) \cdot P(X₄|X₂ = x₂))
\]

\[
= \sum_{x₁} \left(P(X₁ = x₁) \sum_{x₂} \left(P(X₂ = x₂|X₁ = x₁)P(X₄|X₂ = x₂) \left(\sum_{x₃} P(X₃ = x₃|X₂ = x₂) \right) \right) \right)
\]
Variable Elimination: Bayesian Network

Initialize List with conditional probability distributions

Pick an order of elimination I for remaining variables

For each $X_i \in I$

Find distributions in List containing variable X_i and remove them

Define new distribution as the sum (over values of X_i) of the product of these distributions

Place the new distribution on List

End

Return List
List initialized to: \(\{P(X_1), P(X_2|X_1), P(X_3|X_1), \ldots, P(X_n|X_1)\} \)

Say \(I = (1,2,3,\ldots,n-1) \)

Iteration 1: Eliminate \(X_1 \)

All terms in list involve \(X_1 \) so remove all of them

Replace them by table:

\[
L_2(x_1, \ldots, x_n) = \sum_{x_1} \left(P(X_1 = x_1) \prod_{t=2}^{n} P(X_t = x_t | X_1 = x_1) \right)
\]
Variable Elimination: Order Matters

List initialized to: \{P(X_1), P(X_2|X_1), P(X_3|X_1), \ldots, P(X_n|X_1)\}

Say \(\mathbf{I} = (1,2,3,\ldots,n-1) \)

Iteration 1: Eliminate \(X_1 \)

All terms in list involve \(X_1 \) so remove all of them

Replace them by table:

\[
L_2(x_1, \ldots, x_n) = \sum_{x_1} \left(P(X_1 = x_1) \prod_{t=2}^{n} P(X_t = x_t | X_1 = x_1) \right)
\]
List initialized to: \{P(X_1), P(X_2|X_1), P(X_3|X_1), \ldots, P(X_n|X_1)\}

Say \(I = (n-1,n-2,\ldots,1)\)

Iteration 1: Eliminate \(X_{n-1}\)

Remove \(P(X_n|X_1)\) from List and replace by

\[
L_{n-1}(x_1) = \sum_{x_{n-1}} P(X_{n-1}|X_1 = x_1) = 1
\]

All the way up to \(X_2\) we replace by all ones message

In the end we only have \(P(X_1), P(X_n|X_1)\)
Right order: $O(n)$

Wrong order: $O(2^n)$
Often we need more than one marginal computation.

Can we exploit structure and compute these intermediate terms that can be reused?

Eg. forward backward algorithm for HMM.
Belief Propagation

• This is specific to Bayesian networks

 • Messages to parents: belief about parent’s value

 • Messages to Children: belief about self
Belief Propagation

- Evidence E_i for node X_i can be seen as a priori belief of each node about itself.
 - if unobserved, set it to uniform distribution
 - if $X_i = x_i$ is observed,

 set $E_i(x_i) = 1$ and $E_i(x) = 0$ for any other x
• Nodes in the Bayesian network propagate beliefs or messages to their neighbors over multiple iterations

• Belief’s are vectors
 • Messages to children, belief about own value
 • Messages to parents, beliefs about parents’ value

• Evidence for each node takes into account observations
Think of variables as nodes in a network, each node is allowed to chat with its neighbors. Adjacent nodes receive messages from neighbors telling the node how to update its belief. Each node in turn sends messages to its neighbors: based on observation, previous received messages, marginal and conditional distributions telling the other how to update beliefs. (Hopefully) All the nodes converge on their beliefs.

You receive a phone call.
• Compute probability of fire in kitchen using messages received in last round
Belief Propagation

If X_j is parent of X_i:

$$M_{i \rightarrow j}(x_j) = \sum_{\text{all other parents and value of self}} \left(\begin{array}{c}
\text{Evidence-for-}X_i \\
\times P(X_i | \text{Parent}(X_i)) \\
\times (\text{Product-of-all-messages-but-one-from-}X_j)
\end{array} \right)$$

(from previous round)
Belief Propagation

If X_j is the child of X_i:

$$M_{i\rightarrow j}(x_i) = \sum_{\text{all parents' values}} \left(\text{Evidence-for-}X_i \times P(X_i|\text{Parent}(X_i)) \times (\text{Product-of-all-messages-but-one-from-}X_j) \right)$$

(from previous round)
• On each round: Receive messages from previous round
Belief Propagation

• On each round: Receive messages from previous round

Round t
• On each round: Receive messages from previous round

Round t

Message from node X_i to **Child** X_k on round t

$$M^{t}_{i \rightarrow k}(x_i) = \sum_{\text{Parents}(X_i)} E_{X_i}(x_i) P(X_i = x_i | \text{Parents}(X_i)) \text{ (product of all messages but one from } X_j)$$

from previous round $(t-1)$
Belief Propagation

- On each round: Receive messages from previous round

Round t

Message from node X_i to **Child** X_k on round t

$$M_{i \rightarrow k}^t(x_i) = \sum_{\text{Parents}(X_i)} E_{X_i}(x_i) P(X_i = x_i | \text{Parents}(X_i)) \text{ (product of all messages but one from } X_j)$$

from previous round ($t-1$)
On each round: Receive messages from previous round

Round t

Message from node X_i to Child X_k on round t

$$M_{i
ightarrow k}^t(x_i) = \sum_{\text{Parents}(X_i)} E_{X_i}(x_i) P(X_i = x_i | \text{Parents}(X_i)) \text{ (product of all messages but one from } X_j)$$
from previous round (t-1)
• On each round: Receive messages from previous round

Round t

Message from node X_i to Parent X_j on round t

$$M_{i \rightarrow j}(x_j) = \sum_{x_i, \text{Parents}(X_i) \setminus X_j} E_{X_i}(x_i) P(X_i = x_i | \text{Parents}(X_i)) \text{ (product of all messages but one from } X_j)$$

from previous round (t-1)
Belief Propagation

- On each round: Receive messages from previous round

Round t

Message from node X_i to Parent X_j on round t

$$M_{i \rightarrow j}(x_j) = \sum_{x_i, \text{Parents}(X_i) \setminus X_j} E_{X_i}(x_i)P(X_i = x_i | \text{Parents}(X_i)) \text{ (product of all messages but one from } X_j)$$

from previous round (t-1)
Belief Propagation

• On each round: Receive messages from previous round

Round t

Message from node X_i to Parent X_j on round t

$$M_{i \rightarrow j}(x_j) = \sum_{x_i, \text{Parents}(X_i) \setminus X_j} E_{X_i}(x_i) P(X_i = x_i | \text{Parents}(X_i)) \left(\text{product of all messages but one from } X_j \right)$$

Only these vary over iterations

From previous round (t-1)
Think of variables as nodes in a network, each node is allowed to chat with its neighbors. Adjacent nodes receive messages from neighbors telling the node how to update its belief. Each node in turn sends messages to its neighbors: based on observation, previous received messages, marginal and conditional distributions telling the other how to update beliefs. (Hopefully) All the nodes converge on their beliefs.

You receive phone call
Think of variables as nodes in a network, each node is allowed to chat with its neighbors. Adjacent nodes receive messages from neighbors telling the node how to update its belief. Each node in turn sends messages to its neighbors: based on observation, previous received messages, marginal and conditional distributions telling the other how to update beliefs. (Hopefully) All the nodes converge on their beliefs.

i=1

You receive phone call
Think of variables as nodes in a network, each node is allowed to chat with its neighbors. Adjacent nodes receive messages from neighbors telling the node how to update its belief. Each node in turn sends messages to its neighbors: based on observation, previous received messages, marginal and conditional distributions telling the other how to update beliefs. (Hopefully) All the nodes converge on their beliefs.

You receive phone call
Belief Propagation

\[i = 1, 2, 3 \]

Think of variables as nodes in a network, each node is allowed to chat with its neighbors. Adjacent nodes receive messages from neighbors telling the node how to update its belief. Each node in turn sends messages to its neighbors: based on observation, previous received messages, marginal and conditional distributions telling the other how to update beliefs. Hopefully, all the nodes converge on their beliefs.

You receive phone call
Belief Propagation

\(i = 1, 2, 3 \)

Alarm in Kitchen

Alarm in Bedroom

Alarm in Garage

Central System

Call 911

Call your cell-phone

You receive phone call
Belief Propagation

\(i = 1, 2, 3 \)

Alarm in Kitchen

Alarm in Bedroom

Alarm in Garage

Central System

Call 911

Call your cell-phone

You receive phone call

Think of variables as nodes in a network, each node is allowed to chat with its neighbors. Adjacent nodes receive messages from neighbors telling the node how to update its belief. Each node in turn sends messages to its neighbors: based on observation, previous received messages, marginal and conditional distributions telling the other how to update beliefs. (Hopefully) All the nodes converge on their beliefs.
Belief Propagation

i=1, 2, 3

Alarm in
Kitchen

Alarm in
Bedroom

Alarm in
Garage

Central System

system for garage

Call 911

Call your cell-phone

You receive phone call
Think of variables as nodes in a network, each node is allowed to chat with its neighbors. Adjacent nodes receive messages from neighbors telling the node how to update its belief. Each node in turn sends messages to its neighbors: based on observation, previous received messages, marginal and conditional distributions telling the other how to update beliefs. (Hopefully) All the nodes converge on their beliefs.

You receive phone call

You receive phone call
Think of variables as nodes in a network, each node is allowed to chat with its neighbors. Adjacent nodes receive messages from neighbors telling the node how to update its belief. Each node in turn sends messages to its neighbors: based on observation, previous received messages, marginal and conditional distributions telling the other how to update beliefs. (Hopefully) All the nodes converge on their beliefs.

You receive phone call

Belief Propagation

i=1,2,3
Think of variables as nodes in a network, each node is allowed to chat with its neighbors. Adjacent nodes receive messages from neighbors telling the node how to update its belief. Each node in turn sends messages to its neighbors: based on observation, previous received messages, marginal and conditional distributions telling the other how to update beliefs. (Hopefully) All the nodes converge on their beliefs.

Guaranteed to converge on trees.

You receive phone call
Belief Propagation

After convergence:

\[P(X_i = x_i | \text{Observation}) \propto \sum_{\text{values of Parent}(X_i)} E_{X_i}(x_i) \times P(X_i = x_i | \text{Parent}(X_i)) \times \text{Product of all messages} \]