Probabilistic Modeling and EM Algorithm

Course Webpage:
http://www.cs.cornell.edu/Courses/cs4786/2017fa/
Probabilistic Model

Data: x_1, \ldots, x_n

$\theta \in \Theta$

P_θ explains data
Probabilistic Model

- $\pi_1 = 0.5$,
- Σ_1
- Σ_2, $\pi_2 = 0.25$
- Σ_3, $\pi_3 = 0.25$
Gaussian Mixture Model

- Each θ consists of mixture distribution $\pi = (\pi_1, \ldots, \pi_K)$, means $\mu_1, \ldots, \mu_K \in \mathbb{R}^d$ and covariance matrices $\Sigma_1, \ldots, \Sigma_K$
- At time t we generate a new tree as follows:

$$c_t \sim \pi, \quad x_t \sim N(\mu_{c_t}, \Sigma_{c_t})$$
Probabilistic Models

- Set of models Θ consists of parameters s.t. P_θ for each $\theta \in \Theta$ is a distribution over data.

- Learning: Estimate $\theta^* \in \Theta$ that best models given data
Pick \(\theta \in \Theta \) that maximizes probability of observation
Pick $\theta \in \Theta$ that maximizes probability of observation

Reasoning:
- One of the models in Θ is the correct one
Pick \(\theta \in \Theta \) that maximizes probability of observation

Reasoning:
- One of the models in \(\Theta \) is the correct one
- Given data we pick the one that best explains the observed data
Pick $\theta \in \Theta$ that maximizes probability of observation

Reasoning:
- One of the models in Θ is the correct one
- Given data we pick the one that best explains the observed data
- Equivalently pick the maximum likelihood estimator,

$$\theta_{MLE} = \arg\max_{\theta \in \Theta} \log P_{\theta}(x_1, \ldots, x_n)$$
Pick $\theta \in \Theta$ that maximizes probability of observation

Reasoning:
- One of the models in Θ is the correct one
- Given data we pick the one that best explains the observed data
- Equivalently pick the maximum likelihood estimator,

$$\theta_{MLE} = \arg\max_{\theta \in \Theta} \log P_\theta(x_1, \ldots, x_n)$$

Often referred to as frequentist view
Pick $\theta \in \Theta$ that maximizes probability of observation

$$\theta_{MLE} = \operatorname{argmax}_{\theta \in \Theta} \log P_{\theta}(x_1, \ldots, x_n)$$

- A priori all models are equally good, data could have been generated by any one of them
Say you had a prior belief about models provided by $P(\theta)$.

Pick $\theta \in \Theta$ that is most likely given data.
Say you had a prior belief about models provided by $P(\theta)$
Pick $\theta \in \Theta$ that is most likely given data

Reasoning:
- Models are abstractions that capture our belief
Say you had a prior belief about models provided by $P(\theta)$

Pick $\theta \in \Theta$ that is most likely given data

Reasoning:
- Models are abstractions that capture our belief
- We update our belief based on observed data
Say you had a prior belief about models provided by $P(\theta)$.

Pick $\theta \in \Theta$ that is most likely given data.

Reasoning:

- Models are abstractions that capture our belief.
- We update our belief based on observed data.
- Given data we pick the model that we believe the most.
Say you had a prior belief about models provided by $P(\theta)$.

Pick $\theta \in \Theta$ that is most likely given data.

Reasoning:

- Models are abstractions that capture our belief.
- We update our belief based on observed data.
- Given data we pick the model that we believe the most.
- Pick θ that maximizes $\log P(\theta | x_1, \ldots, x_n)$.
Say you had a prior belief about models provided by $P(\theta)$

Pick $\theta \in \Theta$ that is most likely given data

Reasoning:
- Models are abstractions that capture our belief
- We update our belief based on observed data
- Given data we pick the model that we believe the most
- Pick θ that maximizes $\log P(\theta|x_1, \ldots, x_n)$

I want to say: Often referred to as Bayesian view
Say you had a prior belief about models provided by $P(\theta)$

Pick $\theta \in \Theta$ that is most likely given data

Reasoning:
- Models are abstractions that capture our belief
- We update our belief based on observed data
- Given data we pick the model that we believe the most
- Pick θ that maximizes $\log P(\theta|x_1, \ldots, x_n)$

I want to say: Often referred to as Bayesian view

There are Bayesian and there Bayesians
Maximum A Posteriori

Pick \(\theta \in \Theta \) that is most likely given data

Maximize a posteriori probability of model given data

\[
\theta_{MAP} = \arg\max_{\theta \in \Theta} P(\theta|x_1, \ldots, x_n)
\]
Don’t pick any $\theta^* \in \Theta$

- Model is simply an abstraction
- We have a posteriori distribution over models, why pick one θ?

$$P(X|\text{data}) = \sum_{\theta \in \Theta} P(X, \theta|\text{data}) = \sum_{\theta \in \Theta} P(X|\theta)P(\theta|\text{data})$$
Latent Variables and Expectation Maximization (EM)
Example: Gaussian Mixture Model

$$\text{MLE: } \theta = (\mu_1, \ldots, \mu_K), \pi, \Sigma$$

$$P_\theta(x_1, \ldots, x_n) = \prod_{t=1}^n \left(\sum_{i=1}^K \pi_i \frac{1}{\sqrt{(2 \times 3.1415)^2 |\Sigma_i|}} \exp \left(-(x_t - \mu_i)^\top \Sigma_i (x_t - \mu_i) \right) \right)$$

Find θ that maximizes $\log P_\theta(x_1, \ldots, x_n)$
Let us consider the one dimensional case,

\[
\log P_\theta(x_1, \ldots, x_n) = \sum_{t=1}^{n} \log \left(\sum_{i=1}^{K} \pi_i \frac{1}{\sqrt{2 \times 3.1415 \sigma_i^2}} \exp \left(-\frac{(x_t - \mu_i)^2}{\sigma_i^2} \right) \right)
\]
Say by some magic you knew cluster assignments, then

\[
\log P_\theta((x_t, c_t)_{1,...,n}) = \sum_{t=1}^{n} \log \left(\frac{\pi_{c_t}}{\sqrt{2 \times 3.1415 \sigma_{c_t}^2}} \exp \left(- \frac{(x_t - \mu_{c_t})^2}{2\sigma_{c_t}^2} \right) \right)
\]

\[
= \sum_{t=1}^{n} \left(\log(\pi_{c_t}) - \log(2 \times 3.1415 \times \sigma_{c_t}^2) - \frac{(x_t - \mu_{c_t})^2}{2\sigma_{c_t}^2} \right)
\]
Latent Variables

We only observe x_1, \ldots, x_n, cluster assignments c_1, \ldots, c_n are not observed.

Finding $\theta \in \Theta$ (even for 1-d GMM) that directly maximizes Likelihood or A Posteriori given x_1, \ldots, x_n is hard!

Given latent variables c_1, \ldots, c_n, the problem of maximizing likelihood (or a posteriori) became easy.

Can we use latent variables to device an algorithm?
For demonstration we shall consider the problem of finding MLE (MAP version is very similar)
For demonstration we shall consider the problem of finding MLE (MAP version is very similar)

Initialize $\theta^{(0)}$ arbitrarily, repeat unit convergence:

(E step) For every t, define distribution Q_t over the latent variable c_t as:

$$Q_t^{(i)}(c_t) = P(c_t|x_t, \theta^{(i-1)})$$

(M step)

$$\theta^{(i)} = \arg\max_{\theta \in \Theta} \sum_{t=1}^{n} \sum_{c_t} Q_t^{(i)}(c_t) \log P(x_t, c_t|\theta)$$
E step: For every $k \in [K],$

$$Q_t^{(i)}(c_t = k) = P(c_t = k|x_t, \theta^{(i-1)}) = P(x_t|c_t = k, \theta^{(i-1)}) \times P(c_t = k|\theta^{(i-1)})$$

$$\propto \phi(x_t; \mu_k^{(i-1)}, \Sigma_k^{(i-1)}) \times \pi_k^{(i-1)}$$

gaussian p.d.f.
Example: EM for GMM

- **E step:** For every $k \in [K]$,

 $$Q_t^{(i)}(c_t = k) = P(c_t = k|x_t, \theta^{(i-1)}) = P(x_t|c_t = k, \theta^{(i-1)}) \times P(c_t = k|\theta^{(i-1)})$$

 $$\propto \phi(x_t; \mu_k^{(i-1)}, \Sigma_k^{(i-1)}) \times \pi_k^{(i-1)}$$

 [gaussian p.d.f.]

- **M step:** Given Q_1, \ldots, Q_n, we need to find

 $$\theta^{(i)} = \arg\max_{\theta \in \Theta} \sum_{t=1}^n \sum_{k=1}^K Q_t^{(i)}(k) \log P(x_t, c_t = k|\theta)$$

 $$= \arg\max_{\theta} \sum_{t=1}^n \sum_{k=1}^K Q_t^{(i)}(k) \left(\log P(x_t|c_t = k, \theta) + \log P(c_t = k|\theta) \right)$$

 $$= \arg\max_{\pi, \mu_1, \ldots, \mu_K, \Sigma_1, \ldots, \Sigma_K} \sum_{t=1}^n \sum_{c_t=1}^K Q_t^{(i)}(k) \left(\log \phi(x_t; \mu_k, \Sigma_k) + \log \pi_k \right)$$
Example: EM for GMM

For every $k \in [K]$, the maximization step yields,

$$
\mu_k^{(i)} = \frac{\sum_{t=1}^{n} Q_t^{(i)}(k)x_t}{\sum_{t=1}^{n} Q_t(k)} , \quad \Sigma_k^{(i)} = \frac{\sum_{t=1}^{n} Q_t^{(i)}(k) \left(x_t - \mu_k^{(i)} \right) \left(x_t - \mu_k^{(i)} \right) ^\top}{\sum_{t=1}^{n} Q_t(k)}
$$

$$
\pi_k^{(i)} = \frac{\sum_{t=1}^{n} Q_t^{(i)}(k)}{n}
$$
Why should EM work?

A very high level view:

- Performing E-step will never decrease log-likelihood (or log a posteriori)
A very high level view:

- Performing E-step will never decrease log-likelihood (or log a posteriori)
- Performing M-step will never decrease log-likelihood (or log a posteriori)
Steps to show that $\log \text{Lik}(\theta^{(i)}) \geq \log \text{Lik}(\theta^{(i-1)})$:

$$\log P_{\theta^{(i)}}(x_1, \ldots, x_n)$$
Why should EM work?

Steps to show that $\log \text{Lik}(\theta^{(i)}) \geq \log \text{Lik}(\theta^{(i-1)})$:

$$\log P_{\theta^{(i)}}(x_1, \ldots, x_n) \geq \sum_{t=1}^{n} \sum_{c_t=1}^{K} Q^{(i)}(c_t) \log \left(\frac{P_{\theta^{(i)}}(x_t, c_t)}{Q^{(i)}(c_t)} \right)$$
Why should EM work?

- Likelihood never decreases
- So whenever we converge we converge to a local optima
- However problem is non-convex and can have many local optimal
- In general no guarantee on rate of convergence
- In practice, do multiple random initializations and pick the best one!
There was nothing special about GMM or clustering problems.

EM can be used as a general strategy for any problem with latent/missing/unobserved variables.

The MAP version only involves an extra prior term over θ multiplied to the likelihood.

In general probabilistic models with observed and latent variables can be represented succinctly as graphical models.

Next time …