1 Gaussian Mixture Models

Each $\theta \in \Theta$ consists of mixture distribution π which is a distribution over the choices of the K clusters, $\mu_1, \ldots, \mu_K \in \mathbb{R}^d$ the choices of the K means for the corresponding gaussians and $\Sigma_1, \ldots, \Sigma_K$ the choices of the K covariance matrices. The latent variables are c_1, \ldots, c_n the cluster assignments for the n points and x_1, \ldots, x_n are the n observations.

1.1 E-step

On iteration i, for each data point $t \in [n]$, set

$$Q_t^{(i)}(c_t) = P(c_t | x_t, \theta^{(i-1)})$$

Note that

$$Q_t^{(i)}(c_t) = P(c_t | x_t, \theta^{(i-1)}) = \frac{1}{\sqrt{(2\pi)^d | \Sigma_{c_t}|}} \exp \left(-\frac{(x_t - \mu_{c_t})^\top \Sigma_{c_t}^{-1}(x_t - \mu_{c_t})}{2} \right) \pi_{c_t}$$

1.2 M-step for GMM

For the M-step (for MLE) we would like to find

$$\theta = \arg\max_{\theta \in \Theta} \sum_{t=1}^n \sum_{c_t=1}^K Q_t^{(i)}(c_t) \log P(x_t, c_t | \theta)$$

To this end note that

$$\sum_{t=1}^n \sum_{c_t=1}^K Q_t^{(i)}(c_t) \log P(x_t, c_t | \theta) = \sum_{t=1}^n \sum_{k=1}^K Q_t^{(i)}(k) \left(\log \phi(x_t | \mu_k, \Sigma_k) + \log \pi_k \right)$$

$$= \sum_{t=1}^n \sum_{k=1}^K Q_t^{(i)}(k) \left(\frac{1}{2} \log \left(\frac{1}{(2\pi)^d | \Sigma_k|} \right) - \frac{1}{2} (x_t - \mu_k)^\top \Sigma_k^{-1} (x_t - \mu_k) + \log \pi_k \right)$$

$$= \sum_{t=1}^n \sum_{k=1}^K Q_t^{(i)}(k) \left(-\frac{1}{2} \log \det(\Sigma_k) - \frac{1}{2} (x_t - \mu_k)^\top \Sigma_k^{-1} (x_t - \mu_k) + \log \pi_k \right) + \text{constant terms}$$
For notational convenience define:

\[L(\mu_{1:K}, \Sigma_{1:K}, \pi) = \sum_{t=1}^{n} \sum_{k=1}^{K} Q_t^{(i)}(k) \left(-\frac{1}{2} \log \det(\Sigma_k) - \frac{1}{2} (x_t - \mu_k)^\top \Sigma_k^{-1} (x_t - \mu_k) + \log \pi_k \right) \]

Our goal is to find parameters that maximize \(L(\mu_{1:K}, \Sigma_{1:K}, \pi) \).

M-step for mean: To optimize with respect to mean we take derivative and equate to 0,

\[
\frac{\partial}{\partial \mu_k} L(\mu_{1:K}, \Sigma_{1:K}, \pi) = -\frac{1}{2} \frac{\partial}{\partial \mu_k} \left(\sum_{t=1}^{n} Q_t^{(i)}(k)(x_t - \mu_k)^\top \Sigma_k^{-1} (x_t - \mu_k) \right) \\
= -\sum_{t=1}^{n} Q_t^{(i)}(k) \Sigma_k^{-1} (x_t - \mu_k) = -\Sigma_k^{-1} \left(\sum_{t=1}^{n} Q_t^{(i)}(k)(x_t - \mu_k) \right)
\]

To maximize over \(\mu_k \) we set derivative equal to 0. Hence

\[
\sum_{t=1}^{n} Q_t^{(i)}(k)(x_t - \mu_k) = \sum_{t=1}^{n} Q_t^{(i)}(k)x_t - \mu_k \left(\sum_{t=1}^{n} Q_t^{(i)}(k) \right) = 0
\]

Or equivalently:

\[\mu_k = \frac{\sum_{t=1}^{n} Q_t^{(i)}(k)x_t}{\sum_{t=1}^{n} Q_t^{(i)}(k)} \]

M-step for mixture distribution: Since we want to optimize over \(\pi \) subject to the constraint \(\sum_{k=1}^{K} \pi_k = 1 \) (i.e. it's a distribution), we do so by introducing Lagrange variables. That is we want to optimize the following term w.r.t. \(\pi_k \) and \(\lambda \)

\[L(\mu_{1:K}, \Sigma_{1:K}, \pi) + \lambda(1 - \sum_{k=1}^{K} \pi_k) \]

Hence taking derivative of above w.r.t. \(\pi \) we get,

\[
\frac{\partial}{\partial \pi_k} \left(L(\mu_{1:K}, \Sigma_{1:K}, \pi) + \lambda(1 - \sum_{k=1}^{K} \pi_k) \right) = \frac{\partial}{\partial \pi_k} L(\mu_{1:K}, \Sigma_{1:K}, \pi) - \lambda
\]

But,

\[
\frac{\partial}{\partial \pi_k} L(\mu_{1:K}, \Sigma_{1:K}, \pi) = \frac{\partial}{\partial \pi_k} \sum_{t=1}^{n} Q_t^{(i)}(k) \log(\pi_k) = \frac{\sum_{t=1}^{n} Q_t^{(i)}(k)}{\pi_k} \]

Hence,

\[
\frac{\partial}{\partial \pi_k} \left(L(\mu_{1:K}, \Sigma_{1:K}, \pi) + \lambda(1 - \sum_{k=1}^{K} \pi_k) + \sum_{i=1}^{K} \lambda_i \pi_i \right) = \frac{\sum_{t=1}^{n} Q_t^{(i)}(k)}{\pi_k} - \lambda
\]
Setting derivative to 0 we discover that

$$\pi_k \propto \sum_{t=1}^{n} Q_t^{(i)}(k)$$

Since π needs to be a valid distribution, this yields that

$$\pi_k = \frac{\sum_{t=1}^{n} Q_t^{(i)}(k)}{\sum_{k=1}^{K} \sum_{t=1}^{n} Q_t^{(i)}(k)}$$

However notice that since $Q_t^{(i)}$ is a distribution over K clusters, $\sum_{k=1}^{K} \sum_{t=1}^{n} Q_t^{(i)}(k) = \sum_{t=1}^{n} 1 = n$. Hence,

$$\pi_k = \frac{\sum_{t=1}^{n} Q_t^{(i)}(k)}{n}$$

M-step for Covariance: This one needs being able to take derivative w.r.t. matrices and so I will only sketch the proof here. Let us consider optimizing w.r.t. some Σ_k. It makes the problem easier if we instead think of the problem as optimizing over Σ_k^{-1} and then invert the solution.

Here are two facts that come in handy:

$$\frac{\partial}{\partial X} \log \det(X^{-1}) = -X^{-1}$$

and for any vector v,

$$\frac{\partial}{\partial X} v^\top X v = vv^\top$$

Now note that

$$\frac{\partial}{\partial \Sigma_k} L(\mu_{1:K}, \Sigma_{1:K}, \pi) = \frac{\partial}{\partial \Sigma_k} \left(\sum_{t=1}^{n} Q_t^{(i)}(k) \left(-\frac{1}{2} \log \det(\Sigma_k) - \frac{1}{2} (x_t - \mu_k)^\top \Sigma_k^{-1} (x_t - \mu_k) \right) \right)$$

$$= \left(\sum_{t=1}^{n} Q_t^{(i)}(k) \left(\frac{1}{2} (\Sigma_k^{-1})^{-1} - \frac{1}{2} (x_t - \mu_k)(x_t - \mu_k)^\top \right) \right)$$

Hence equating to 0 we get that

$$\Sigma_k = \frac{\sum_{t=1}^{n} Q_t^{(i)}(k)(x_t - \mu_k)(x_t - \mu_k)^\top}{\sum_{t=1}^{n} Q_t^{(i)}(k)}$$

that is the weighted sample variance. (there is a bit of a fudge here since μ_k is also an optimization variable. But we skip the details of this for now.)

2 EM Algorithm: Why it works?

Log likelihood only decreases after one iteration of EM algorithm. Why?

We will show below that EM algorithm can never lead to a worsening of the objective in any step and can only improve likelihood.
\[
\log P(x_1, \ldots, x_n|\theta^{(i+1)}) = \sum_{t=1}^{n} \log P(x_t|\theta^{(i+1)}) \\
= \sum_{t=1}^{n} \log \left(\sum_{c_t=1}^{K} P(x_t, c_t|\theta^{(i+1)}) \right) \\
= \sum_{t=1}^{n} \log \left(\sum_{c_t=1}^{K} \frac{Q^{(i+1)}(c_t)}{Q^{(i+1)}(c_t)} P(x_t, c_t|\theta^{(i+1)}) \right)
\]

Logarithm is a concave function and by Jensen’s inequality \(\log(E[X]) \geq E[\log(X)]\) for any R.V. \(X\). Treat the term in red as the random variable and the probability distribution is specified by \(Q^{(i+1)}\), now using Jensen,

\[
\geq \sum_{t=1}^{n} \sum_{c_t=1}^{K} Q^{(i+1)}(c_t) \log \left(\frac{P(x_t, c_t|\theta^{(i+1)})}{Q^{(i+1)}(c_t)} \right) \\
= \sum_{t=1}^{n} \sum_{c_t=1}^{K} Q^{(i+1)}(c_t) \log \left(P(x_t, c_t|\theta^{(i+1)}) \right) - \sum_{t=1}^{n} \sum_{c_t=1}^{K} Q^{(i+1)}(c_t) \log \left(Q^{(i+1)}(c_t) \right)
\]

Since in M-step \(\theta^{(i+1)}\) is exactly the maximizer of \(\sum_{t=1}^{n} \sum_{c_t=1}^{K} Q^{(i+1)}(c_t) \log \left(P(x_t, c_t|\theta^{(i+1)}) \right)\), we conclude that this term is larger than \(\sum_{t=1}^{n} \sum_{c_t=1}^{K} Q^{(i+1)}(c_t) \log \left(P(x_t, c_t|\theta^{(i)}) \right)\) and so

\[
\geq \sum_{t=1}^{n} \sum_{c_t=1}^{K} Q^{(i+1)}(c_t) \log \left(P(x_t, c_t|\theta^{(i)}) \right) - \sum_{t=1}^{n} \sum_{c_t=1}^{K} Q^{(i+1)}(c_t) \log \left(Q^{(i+1)}(c_t) \right)
\]

Now note that \(P(x_t, c_t|\theta^{(i)}) = P(c_t|x_t, \theta^{(i)}) P(x_t|\theta^{(i)}) = Q^{(i+1)}(c_t) P(x_t|\theta^{(i)})\) and so,

\[
= \sum_{t=1}^{n} \sum_{c_t=1}^{K} Q^{(i+1)}(c_t) \log \left(P(x_t|\theta^{(i)}) \times Q^{(i+1)}(c_t) \right) - \sum_{t=1}^{n} \sum_{c_t=1}^{K} Q^{(i+1)}(c_t) \log \left(Q^{(i+1)}(c_t) \right)
\]

\[
= \sum_{t=1}^{n} \log P(x_t|\theta^{(i)}) \\
= \log P(x_1, \ldots, x_n|\theta^{(i)})
\]

Hence we have shown that running the EM algorithm yields, \(\log P(x_1, \ldots, x_n|\theta^{(i)}) \leq \log P(x_1, \ldots, x_n|\theta^{(i+1)})\), that is the Likelihood value never decreases and could only improve.