Graphical Models

Course Webpage:
http://www.cs.cornell.edu/Courses/cs4786/2016sp/
Message Passing Example

Message to Parent X_j

$$\sum_{x, \text{all parents but } X_j} E_{X_i}(x) P(X_i = x | \text{Parent}(X_i) = u) \text{(product of all messages but one from } X_j)$$

Message to child X_j

$$\sum_{\text{all parents}} E_{X_i}(x) P(X_i = x | \text{Parent}(X_i) = u) \text{(product of all messages but one from } X_j)$$
$E_{X_1}(x) = 1$

$E_{X_2}(x) = 1$

$E_{X_3}(x) = 1 \{x = x_3\}$

$E_{X_4}(x) = 1$
Message Passing Example

Round 0: All messages are 1’s
Message Passing Example

Round 1: Leaves have exactly one neighbor

\[m_{3\rightarrow 2}(u_2) = P(X_3 = x_3 | X_2 = u_2) \]

\[m_{4\rightarrow 2}(u_2) = \sum_x P(X_3 = x | X_2 = u_2) = 1 \]
Message Passing Example

Message to Parent X_j

$$
\sum_{x, \text{all parents but } X_j} E_{X_i}(x) P(X_i = x | \text{Parent}(X_i) = u) \text{(product of all messages but one from } X_j)$$

$m_{2\rightarrow 1}(u_1) = \sum_x P(X_2 = x | X_1 = u_1) \left(m_{3\rightarrow 2}(x) \times m_{2\rightarrow 2}(x)\right)$

$$= \sum_x P(X_2 = x | X_1 = u_1) P(X_3 = x_3 | X_2 = x) = P(X_3 = x_3 | X_1 = u_1)$$
Message Passing Example

\[E_{X_1}(x) = 1 \]
\[E_{X_2}(x) = 1 \]
\[E_{X_3}(x) = 1\{x = x_3\} \]
\[E_{X_4}(x) = 1 \]

Message to Parent Xj

\[\sum_{x, \text{all parents but } X_j} E_{X_i}(x) P(X_i = x|\text{Parent}(X_i) = u) \text{(product of all messages but one from X}_j) \]

Round 2:

\[m_{2\rightarrow 1}(u_1) = \sum_x P(X_2 = x|X_1 = u_1) (m_{3\rightarrow 2}(x) \times m_{2\rightarrow 2}(x)) \]
\[= \sum_x P(X_2 = x|X_1 = u_1) P(X_3 = x_3|X_2 = x) = P(X_3 = x_3|X_1 = u_1) \]
Message Passing Example

Message to child X_j

$$\sum_{\text{all parents}} E_{X_i}(x) P(X_i = x | \text{Parent}(X_i) = u) \text{(product of all messages but one from } X_j)$$

Round 3:

$$m_{1 \rightarrow 2}(u_1) = P(X_1 = u_1)$$
Message Passing Example

![Message Passing Example Diagram]

- $E_{X_1}(x) = 1$
- $E_{X_2}(x) = 1$
- $E_{X_3}(x) = 1\{x = x_3\}$
- $E_{X_4}(x) = 1$

Round 3:

$m_{2\rightarrow 3}(u_2) = \sum_{x_1} P(X_2 = u_2|X_1 = x_1) (m_{1\rightarrow 2}(x_1) \times m_{2\rightarrow 4}(u_2))$

$$= \sum_{x_1} P(X_2 = u_2|X_1 = x_1) P(X_1 = x_1) = P(X_2 = u_2)$$

$m_{2\rightarrow 4}(u_2) = \sum_{x_1} P(X_2 = u_2|X_1 = x_1) (m_{1\rightarrow 2}(x_1) \times m_{2\rightarrow 3}(u_2))$

$$= \sum_{x_1} P(X_2 = u_2|X_1 = x_1) P(X_1 = x_1) P(X_3 = x_3|X_2 = u_2)$$

$$= P(X_2 = u_2, X_3 = x_3)$$
For any node X_i

- **Incoming message to node from children:**
 \[\lambda(x) = E_{X_i}(x) \prod_{j \in \text{children}(X_i)} \lambda_{X_j}(x) \]

- **Incoming message from Parents:**
 \[\pi(x) = \sum_u P(X_i = x \mid \text{Parent}(X_i) = u) \prod_{k \in \text{Parent}(X_i)} \pi_{X_i}(u_k) \]

- **Outgoing message to Parent X_j:**
 \[\lambda_{X_i}(u_i) \propto \sum_x \lambda(x) \sum_{u \setminus u_i} P(X_i = x \mid \text{Parent}(X_i) = u) \prod_{k \neq i} \pi_{X_i}(u_k) \]

- **Outgoing message to child X_j:**
 \[\pi_{X_j}(x) \propto \pi(x) E_{X_i}(x) \prod_{k \neq j} \lambda_{X_j}(x) \]
What are the parameters for a Bayesian Network?

- The conditional probability distributions/tables/density functions
MLE: n independent samples $(X^1_1, \ldots, X^1_N), \ldots, (X^N_1, \ldots, X^N_N)$ where each (X^t_1, \ldots, X^t_N) is drawn from the Bayesian network

$$\arg \max_{\theta} \sum_{t=1}^{n} \log(P_\theta(X^t_1, \ldots, X^t_N))$$

$$= \arg \max_{\theta} \sum_{t=1}^{n} \sum_{i=1}^{N} \log(P_\theta(X^t_i|\text{Parent}(X^t_i)))$$

If θ_i is the parameter only involving $P_\theta(X^t_i|\text{Parent}(X^t_i))$ then

$$\theta_i^{MLE} = \arg \max_{\theta_i} \sum_{i=1}^{n} \log(P_{\theta_i}(X^t_i|\text{Parent}(X^t_i)))$$
Simple case of finite outcomes

\[\theta_i^{MLE} = \text{empirical conditional probability table} \]
EM Algorithm: Initialize parameters randomly

For $j = 1$ to convergence

- E-step: For each of the Latent variable X_i, perform inference to compute

$$Q^{(j)}(\text{Latent variables}) = P_{\theta^{(j-1)}}(\text{Latent variables}|\text{Observation})$$

- M-step:

$$\theta^{(j)} = \arg \max_{\theta} \sum_{\text{Latent variables}} Q^{(j)}(\text{Latent variables}) \sum_{t=1}^{n} \log P_{\theta}(X_1^t, \ldots, X_N^t)$$

which can be simplified to:

$$\theta_i^{(j)} = \arg \max_{\theta_i} \sum_{\text{Latent}} Q^{(j)}(\text{Latent}) \sum_{t=1}^{n} \log P_{\theta_i}(X_i^t|\text{Parent}(X_i^t))$$
M-step for simple case of finite outcomes

\[\theta_i^{(j)} = \text{empirical conditional probability table weighted by } Q^{(j)} \]

For HMM this is called the Baum Welch algorithm
Inference is Computationally Hard!

- Belief propagation is exact on trees
- For general graphs, belief propagation need not work
- Inference for general graphs can be computationally hard

Can we perform inference approximately?
Sample from the generative model
Calculate empirical marginals
Might require many samples to be accurate
Not all distributions can be represented by Bayesian networks.

We also have undirected graphical models.

Undirected graph $G = (V, E)$ and a set of RV’s X_1, \ldots, X_N form a Markov network if

- Any two non adjacent variables are conditionally independent given all other variables
- Given its neighbors a variable is conditionally independent of all other variables
- Any two sets of variables are conditionally independent given a separating set