Latent Dirichlet Allocation & Intro to Graphical Models

Course Webpage:
http://www.cs.cornell.edu/Courses/cs4786/2016sp/
Announcements

- Assignment A2 is out.
- Due date: April 15th, 11:59pm
- Consists of two simple problems
- Group size: 1-4, groups not transferred from last time
- Competition I will begin soon and you will have 3 weeks.
Set Θ consists of parameters s.t. P_θ is the distribution over the random variables by each $\theta \in \Theta$

Data is generated by one of the $\theta \in \Theta$

Learning: Estimate value or distribution for $\theta^* \in \Theta$ given data (we saw MLE and talked about MAP)
\[
\theta_{MLE} = \arg\max_{\theta \in \Theta} \log P_\theta(x_1, \ldots, x_n)
\]

\[
\theta_{MAP} = \arg\max_{\theta \in \Theta} \log P(x_1, \ldots, x_n | \theta) + \log P(\theta)
\]
EM Algorithm

(E step) For every t, define distribution Q_t over the latent variable c_t as:

$$Q_t^{(i)}(c_t) = P(c_t|x_t, \theta^{(i-1)})$$

(M step)

$$\theta^{(i)} = \arg\max_{\theta \in \Theta} \sum_{t=1}^{n} \sum_{c_t} Q_t^{(i)}(c_t) \log P(x_t, c_t|\theta)$$

- x_t observation, c_t latent variable.
Mixture of Multinomials

- Eg. Model purchases of each customer

- K-types of customers, each designated with distribution over the d items to buy

- Generative model:
 - π is mixture distribution over the K-types of buyers
 - p_1, \ldots, p_K are the K distributions over the d items, one for each customer type
 - Generative process, each round draw customer type $c_t \sim \pi$
 - Next given c_t draw list of purchases as $x_t \sim \text{multinomial}(p_{c_t})$
What is missing in this story?

- Every customer could be a bit of every type, or at least a few types
- Another example is modeling documents based on words contained in them.
- A document could belong to multiple topics (unline clustering)
Each document has a mixture of topics

Every word in each document is assigned a specific topic

How do we model this?
Dirichlet Distribution

- It's a distribution over distributions!
- Parameters $\alpha_1, \ldots, \alpha_K$ s.t. $\alpha_k > 0$
- The density function is given as

$$p(\pi; \alpha) = \frac{1}{B(\alpha)} \prod_{k=1}^{K} \pi_k^{\alpha_k}$$

where $B(\alpha) = \prod_{k=1}^{K} \Gamma(\alpha_k)/\Gamma(\sum_{k=1}^{K} \alpha_k)$

- $K = 2$ its called β distribution
- For each document we draw π from a Dirichlet distribution (each customer is a mixture of the various types)
Dirichlet Distribution

Dirichlet(.5,.5,.5)

Dirichlet(1,1,1)

Dirichlet(5,10,8)
Generative story:

For $t = 1$ to n

For each customer draw mixture of types $\pi_t \sim \text{Dirchlet}(\alpha)$

For $i = 1$ to m

For each item to purchase, first draw type $c_t[i] \sim \pi_t$

Next, given the type draw $x_t[i] \sim p_{c_t[i]}$

End For

End For

Parameters, α for the Dirichlet distribution and p_1, \ldots, p_K the distributions for each time over the d items.
Latent Dirichlet Allocation

\[\alpha \]

\[\pi_t \]

\[c_t[i] \]

\[x_t[i] \]

\[p_1, \ldots, p_K \]