Machine Learning for Data Science (CS4786) Lecture 6

Compressed Sensing

Feb 18, 2016

Course Webpage:

http://www.cs.cornell.edu/Courses/cs4786/2016sp/

THE TALL, THE FAT AND the Ugly

- d and n so large we can't even store in memory
- Only have time to be linear in $size(X) = n \times d$

 \mathbf{X}_t^{\intercal}

PICK A RANDOM W

$$Y = X \times \begin{bmatrix} +1 & \dots & -1 \\ -1 & \dots & +1 \\ +1 & \dots & -1 \\ & \cdot & \\ & \cdot & \\ +1 & \dots & -1 \end{bmatrix} d / \sqrt{K}$$

RANDOM PROJECTIONS

JL Lemma:

For any $\epsilon > 0$, for K large enough, with high probability over draw of W, for all pairs of data points $i, j \in \{1, ..., n\}$,

$$(1 - \epsilon) \|\mathbf{y}_i - \mathbf{y}_j\|_2 \le \|\mathbf{x}_i - \mathbf{x}_j\|_2 \le (1 + \epsilon) \|\mathbf{y}_i - \mathbf{y}_j\|_2$$

$$K pprox \frac{\log(n)}{\epsilon^2}$$

Can we always recover \mathbf{x}_t 's form \mathbf{y}_t 's?

Answer: In general no. When d > n we have an underdetermined system of linear equations.

Can we always recover \mathbf{x}_t 's form \mathbf{y}_t 's if \mathbf{x}_t 's are sparse?

Answer: Yes!

SPARSE DATA-POINTS

 ℓ_0 (norm) of a vector $\mathbf{x} \in \mathbb{R}^d$ measures its "sparsity" and is given by

 $\|\mathbf{x}\|_0 = \#$ non-zero entries of \mathbf{x}

Examples:

RECOVERY FOR SPARSE DATA

- When x_t 's are sparse, recovery is possible through random projections.
- Random matrix transformations preserve distances of all sparse vectors!
- This is referred to as restricted isometry property.
- With this property one can successfully perform sparse recovery

RESTRICTED ISOMETRY PROPERTY

A projection matrix W of size $K \times d$ possesses (ϵ, s) -RIP, if for all pairs of $\mathbf{x}, \mathbf{x}' \in \mathbb{R}^d$ with $\|\mathbf{x}\|_0$, $\|\mathbf{x}'\|_0 \le s$,

$$(1 - \epsilon) \|\mathbf{y} - \mathbf{y}'\|_{2} \le \|\mathbf{x} - \mathbf{x}'\|_{2} \le (1 + \epsilon) \|\mathbf{y} - \mathbf{y}'\|_{2}$$

where $\mathbf{y} = \mathbf{x}^T W$ and $\mathbf{y'} = \mathbf{x'}^T W$.

• When $K > \frac{s \log d}{\epsilon^2}$, random matrix W satisfies (ϵ, s) -RIP with high probability.

RIP IMPLIES SPARSE RECOVERY

Algorithm for Recovery:

$$\tilde{\mathbf{x}}_t = \underset{\mathbf{x}: \mathbf{y}_t = \mathbf{x}^\top W}{\operatorname{argmin}} \|\mathbf{x}\|_0$$

Recall definition of RIP:

W possesses (ϵ, s) -RIP, if for all pairs of $\mathbf{x}, \mathbf{x}' \in \mathbb{R}^d$ with $\|\mathbf{x}\|_0$, $\|\mathbf{x}'\|_0 \le s$,

$$(1 - \epsilon) \|\mathbf{y} - \mathbf{y}'\|_{2} \le \|\mathbf{x} - \mathbf{x}'\|_{2} \le (1 + \epsilon) \|\mathbf{y} - \mathbf{y}'\|_{2}$$

This algorithm is computationally expensive!

SHAPE OF SPARSITY

$$B_0(1) = \{ \mathbf{x} \in \mathbb{R}^d : ||\mathbf{x}||_0 \le 1, \forall i \le d, |\mathbf{x}[i]| \le 1 \}$$

ℓ_1 Ball

$$B_1(1) = \left\{ \mathbf{x} \in \mathbb{R}^d : \sum_{i=1}^d |\mathbf{x}[i]| \le 1 \right\}$$

ℓ₁ Ball in High Dimensions

Most volume in the center with protruding tentacles reaching out.

Replace ℓ_0 by ℓ_1 .

COMPRESSED SENSING

- Perform random projections with large enough K
- ② For recovery compute the following:

$$\tilde{\mathbf{x}}_t = \underset{\mathbf{x}: \mathbf{y}_t = \mathbf{x}^T W}{\operatorname{argmin}} \|\mathbf{x}\|_1$$

This can be computed efficiently: linear programming problem

3 With high probability for all t's, $\tilde{\mathbf{x}}_t = \mathbf{x}_t$

COMPRESSED SENSING

• If W has (ϵ, s) -RIP then matrix

ΦW

has (ϵ', s) -RIP for invertible matrices Φ

- So if data is likely to be sparse under transformation Φ , i.e. $\mathbf{z}_t = \mathbf{x}_t^{\mathsf{T}} \Phi$ and \mathbf{z}_t is the image we see,
 - Compressed sensing part is the same, Simply project using random projection
 - While reconstructing, use ΦW instead
- Eg. JPEG we use Fourier Transformation, JPEG 2000 Discrete wavelet transformation. If golden standard changes, only minor change in reconstruction, sensing is the same.

COMPRESSED SENSING

- Used for image compression, instead of capturing image in large file and then compressing, directly capture low dimensional representation through random transform
- Allows fast sensing of signals without processing delays
- Random projection can be pushed to hardware level
- JPEG, JPEG 2000 techniques can be applied during sparse recovery.