Machine Learning for Data Science (CS4786) Lecture 5

Random Projections

Course Webpage:

http://www.cs.cornell.edu/Courses/cs4786/2016sp/

Recap

DIMENSIONALITY REDUCTION

Given feature vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$, compress the data points into low dimensional representation $\mathbf{y}_1, \dots, \mathbf{y}_n \in \mathbb{R}^K$ where K << d

Principal Component Analysis:

- Find directions that maximize variance (spread)
- Find directions that minimize reconstruction error

PRINCIPAL COMPONENT ANALYSIS

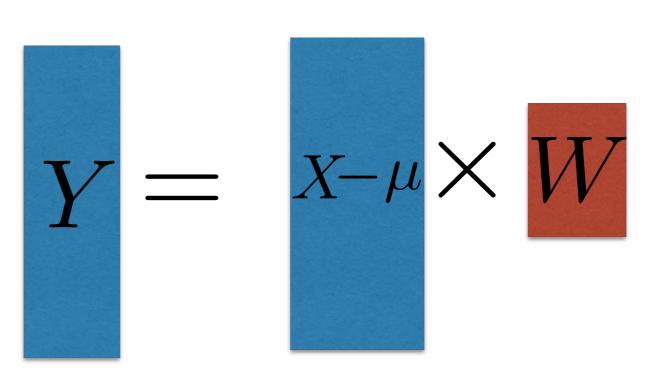
1.

$$\sum = \operatorname{cov}\left(X\right)$$

2.

$$W = eigs(\Sigma, K)$$

3.



RECONSTRUCTION

 $\widehat{X} = Y \times W^{\top} + \mu$

TWO VIEW DIMENSIONALITY REDUCTION

• Data can be split into pairs $(\mathbf{x}_1, \mathbf{x}'_1), \dots, (\mathbf{x}_n, \mathbf{x}'_n)$ where \mathbf{x}_t 's are d_1 dimensional and \mathbf{x}'_t 's are d_2 dimensional

- Goal: Compress $\mathbf{x}_1, \dots, \mathbf{x}_n$ into K dimensional vectors $\mathbf{y}_1, \dots, \mathbf{y}_n$ (or $\mathbf{x}'_1, \dots, \mathbf{x}'_n$ into $\mathbf{y}'_1, \dots, \mathbf{y}'_n$ or both)
 - Retain information redundant between the two views

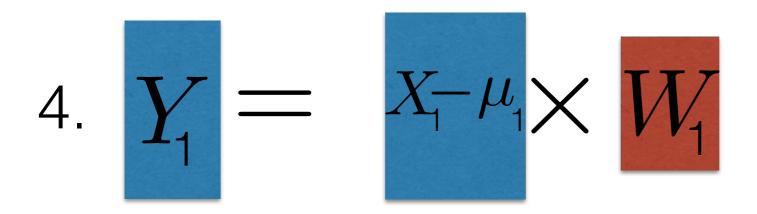
Canonical Correlation Analysis:

 Find directions that maximize correlations between the projections in the two views

CCA ALGORITHM

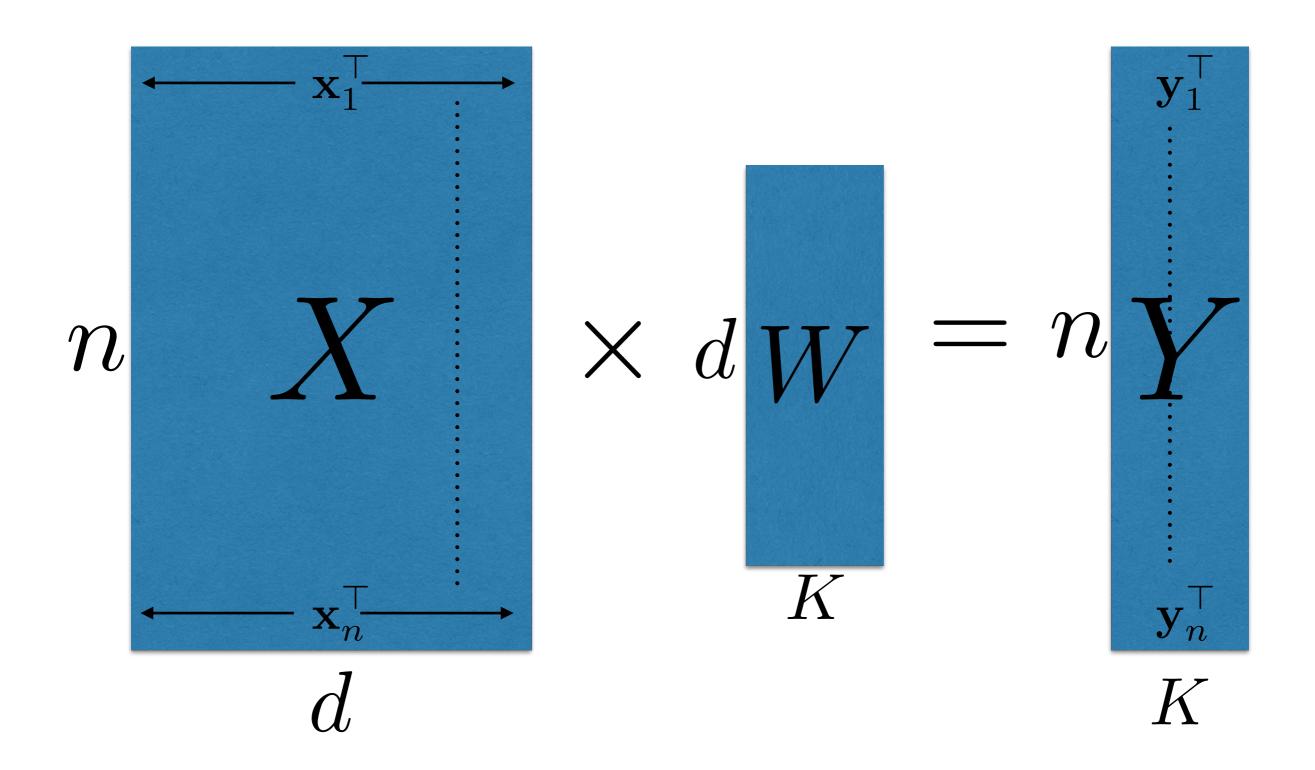
3.
$$W_1 = \operatorname{eigs}(\Sigma_{11}^{-1}\Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}, K)$$

CCA ALGORITHM

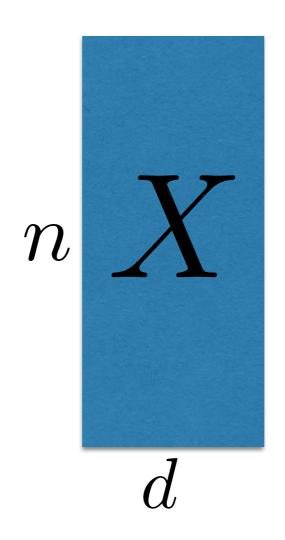


CCA DEMO REDO?

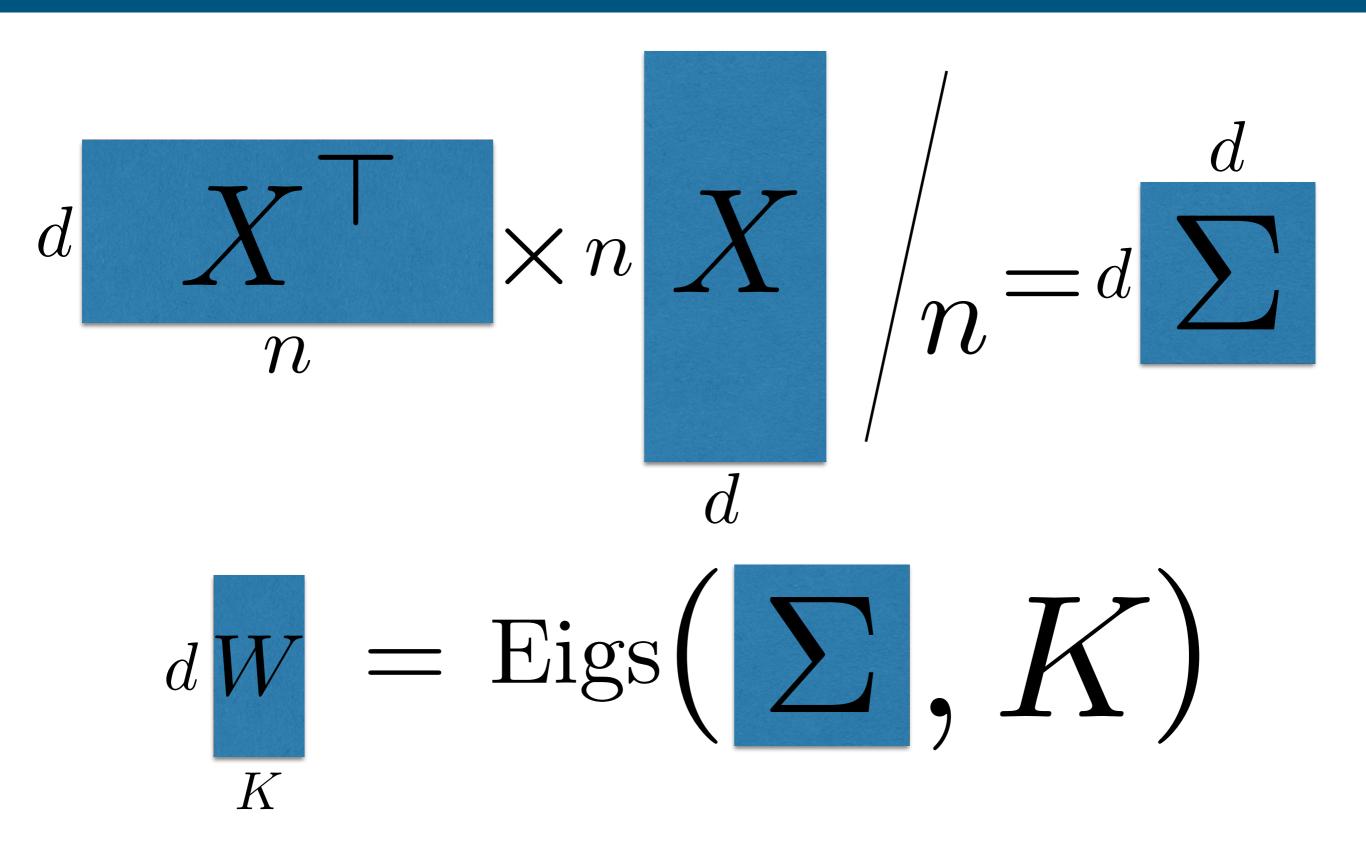
BACK TO SINGLE VIEW: RECAP



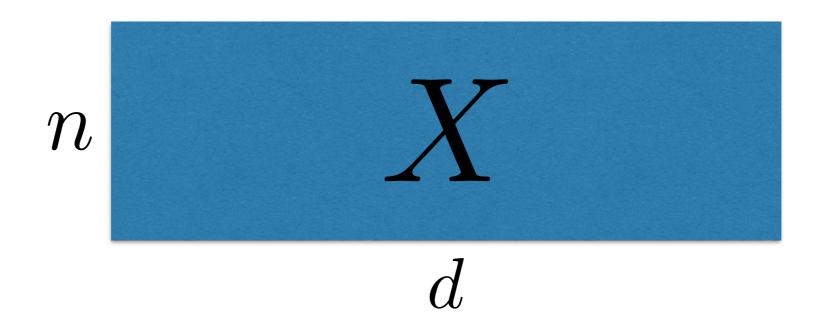
The Tall, THE FAT AND THE UGLY



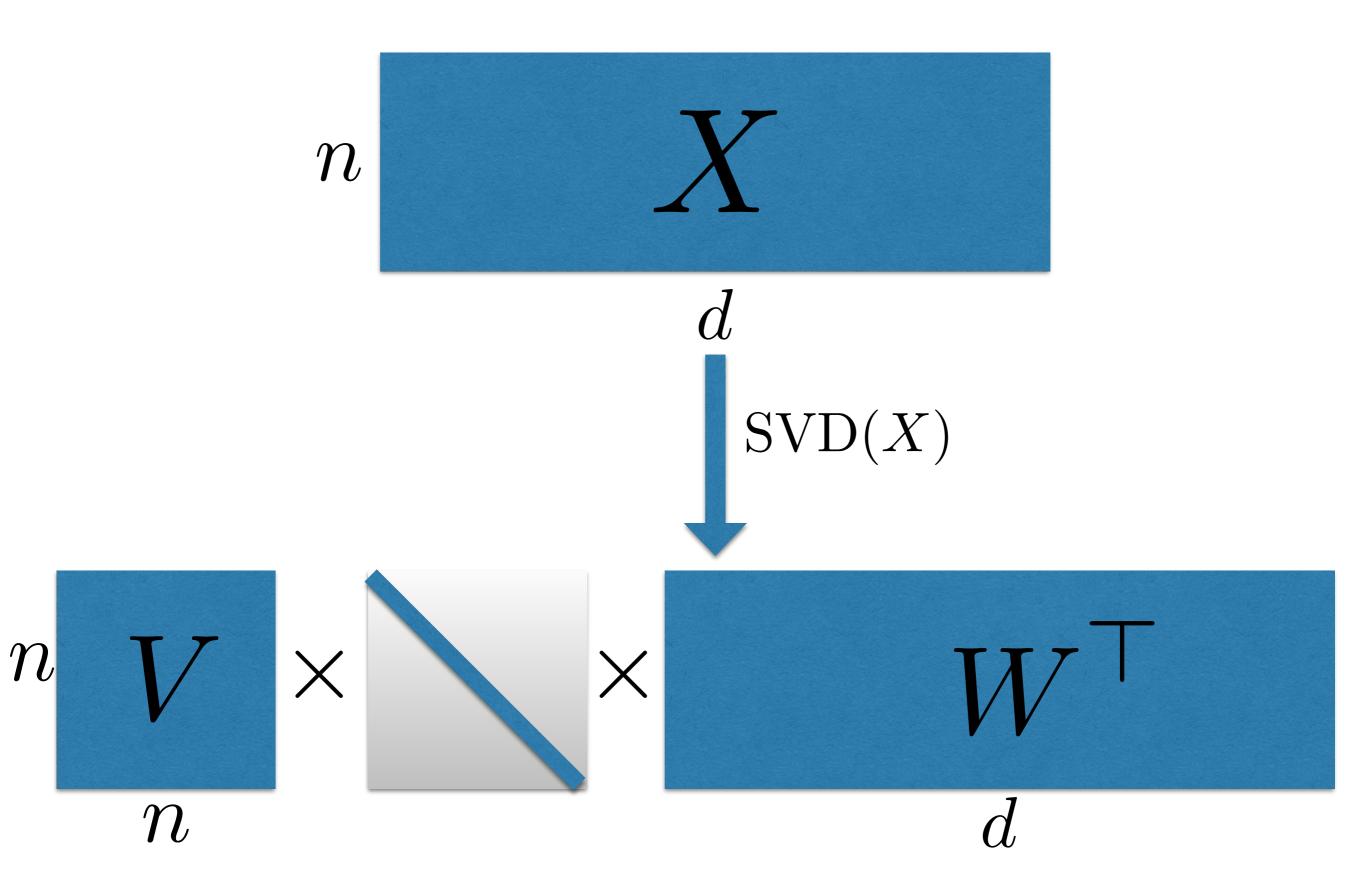
The Tall, THE FAT AND THE UGLY



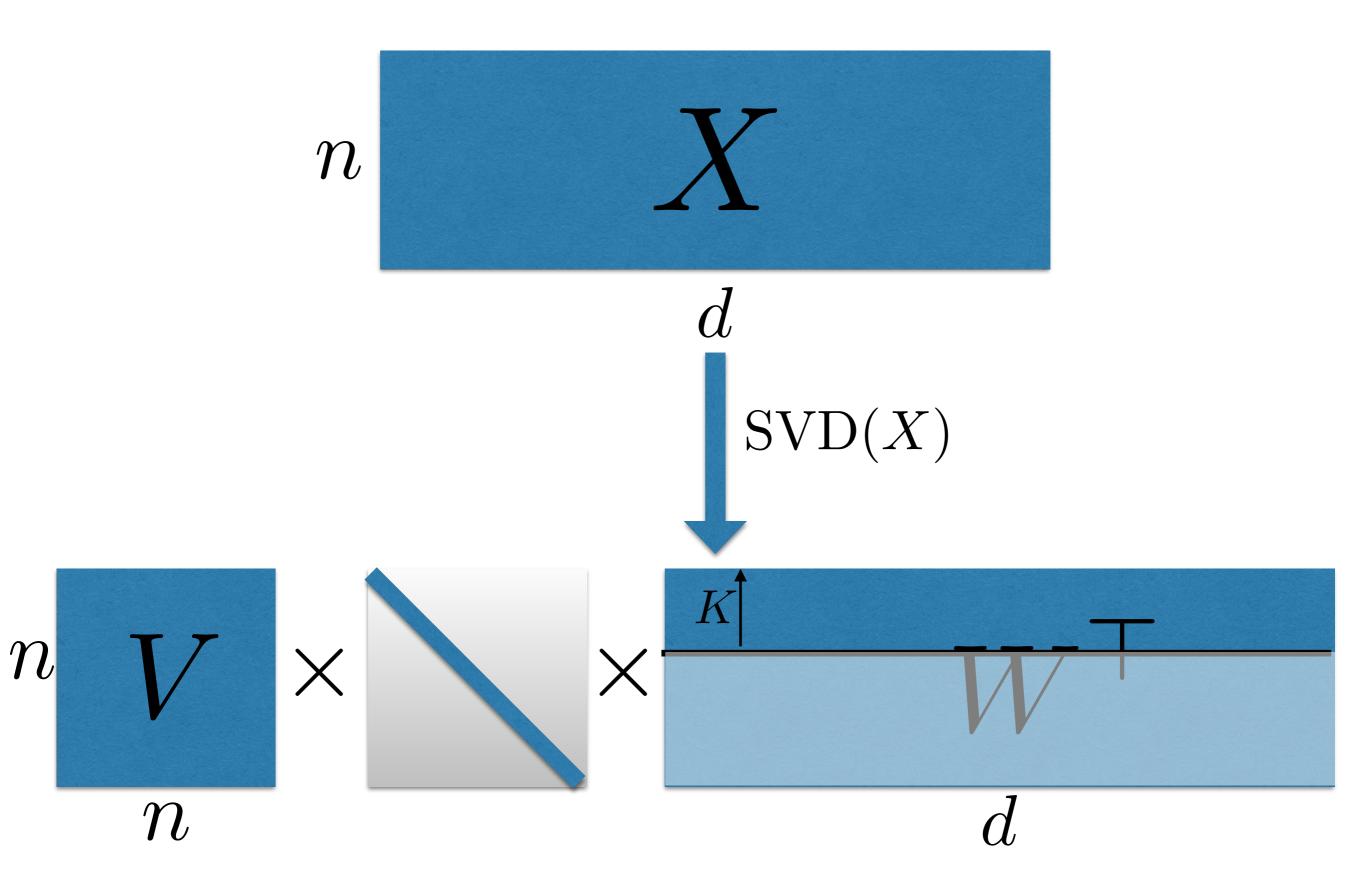
THE TALL, the Fat AND THE UGLY



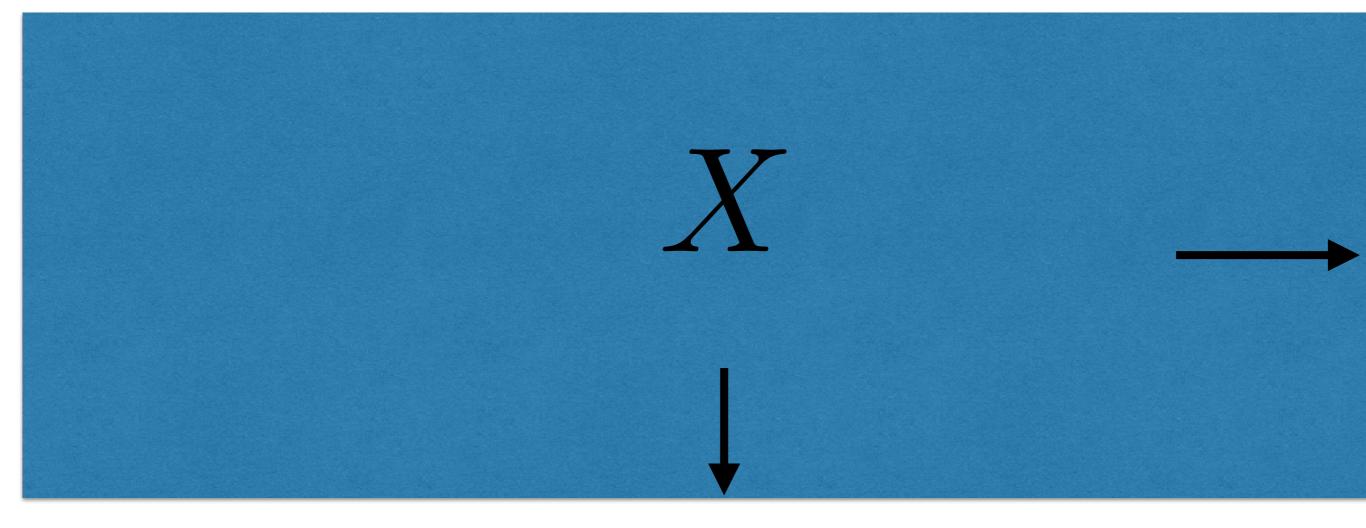
THE TALL, the Fat AND THE UGLY



THE TALL, the Fat AND THE UGLY



THE TALL, THE FAT AND the Ugly



- *d* and *n* so large we can't even store in memory
- Only have time to be linear in $size(X) = n \times d$

I there any hope?

PICK A RANDOM W

$$Y = X \times \begin{bmatrix} +1 & \dots & -1 \\ -1 & \dots & +1 \\ +1 & \dots & -1 \\ & \cdot & \\ & \cdot & \\ +1 & \dots & -1 \end{bmatrix} d / \sqrt{K}$$

RANDOM PROJECTION

• What does "it works" even mean?

Distances between all pairs of data-points in low dim. projection is roughly the same as their distances in the high dim. space.

That is, when K is "large enough", with "high probability", for all pairs of data points $i, j \in \{1, ..., n\}$,

$$(1 - \epsilon) \|\mathbf{y}_i - \mathbf{y}_j\|_2 \le \|\mathbf{x}_i - \mathbf{x}_j\|_2 \le (1 + \epsilon) \|\mathbf{y}_i - \mathbf{y}_j\|_2$$

Consider any vector $\tilde{\mathbf{x}} \in \mathbb{R}^d$ and let $\tilde{\mathbf{y}} = W^T \tilde{\mathbf{x}}$. Note that

$$\tilde{\mathbf{y}}[j]^{2} = \left(\sum_{i=1}^{d} W[i,j] \cdot \tilde{\mathbf{x}}[i]\right)^{2} = \sum_{i,i'} \left(W[i,j] \cdot \tilde{\mathbf{x}}[i]\right) \cdot \left(W[i',j] \cdot \tilde{\mathbf{x}}[i']\right) \\
= \sum_{i,i'} \left(W[i,j] \cdot W[i',j]\right) \cdot \left(\tilde{\mathbf{x}}[i] \cdot \tilde{\mathbf{x}}[i']\right)$$

Hence,

$$\mathbb{E}\big[\tilde{\mathbf{y}}[j]^2\big] = \sum_{i,i'=1}^d \mathbb{E}\big[\big(W[i,j] \cdot W[i',j]\big)\big] \cdot \big(\tilde{\mathbf{x}}[i] \cdot \tilde{\mathbf{x}}[i']\big)$$

if $i \neq i'$, W[i,j] and W[i',j] are independent and so

$$= \sum_{i=1}^{d} \mathbb{E}[(W[i,j]^{2})]\tilde{\mathbf{x}}[i]^{2} + \sum_{i \neq i'} (\mathbb{E}[W[i,j]] \cdot \mathbb{E}[W[i',j]]) \cdot (\tilde{\mathbf{x}}[i] \cdot \tilde{\mathbf{x}}[i'])$$

$$= \sum_{i=1}^{d} \tilde{\mathbf{x}}[i]^{2} / \sqrt{K^{2}} = \|\tilde{\mathbf{x}}\|_{2}^{2} / K$$

Hence,

$$\mathbb{E}\left[\|\tilde{\mathbf{y}}\|_{2}^{2}\right] = \sum_{j=1}^{K} \mathbb{E}\left[\tilde{\mathbf{y}}[j]^{2}\right] = \sum_{j=1}^{K} \|\tilde{\mathbf{x}}\|_{2}^{2} / K = \|\tilde{\mathbf{x}}\|_{2}^{2}$$

If we let $\tilde{\mathbf{x}} = \mathbf{x}_s - \mathbf{x}_t$ then

$$\tilde{\mathbf{y}} = W^{\mathsf{T}} \tilde{\mathbf{x}} = W^{\mathsf{T}} \mathbf{x}_{S} - W^{\mathsf{T}} \mathbf{x}_{t} = \mathbf{y}_{S} - \mathbf{y}_{t}$$

Hence for any $s, t \in \{1, \ldots, n\}$,

$$\mathbb{E}\left[\left\|\mathbf{y}_{S}-\mathbf{y}_{t}\right\|_{2}^{2}\right]=\left\|\mathbf{x}_{S}-\mathbf{x}_{t}\right\|_{2}^{2}$$

Lets try this in Matlab ...

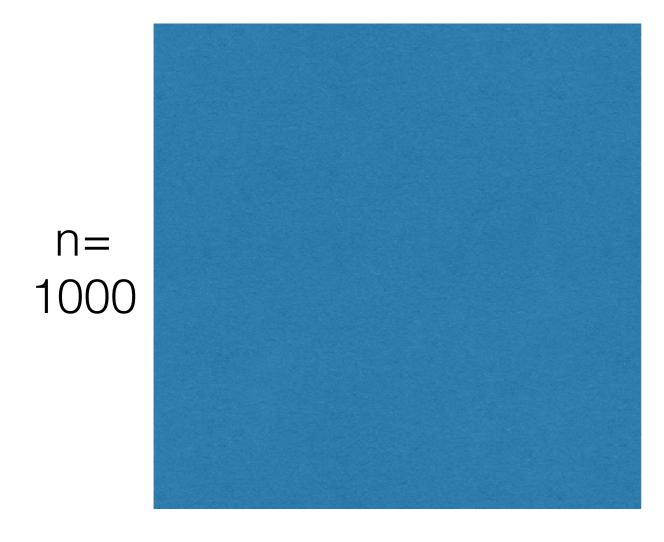
For large K, not only true in expectation but also with high probability

For any $\epsilon > 0$, if $K \approx \log(n/\delta)/\epsilon^2$, with probability $1 - \delta$ over draw of W, for all pairs of data points $i, j \in \{1, ..., n\}$,

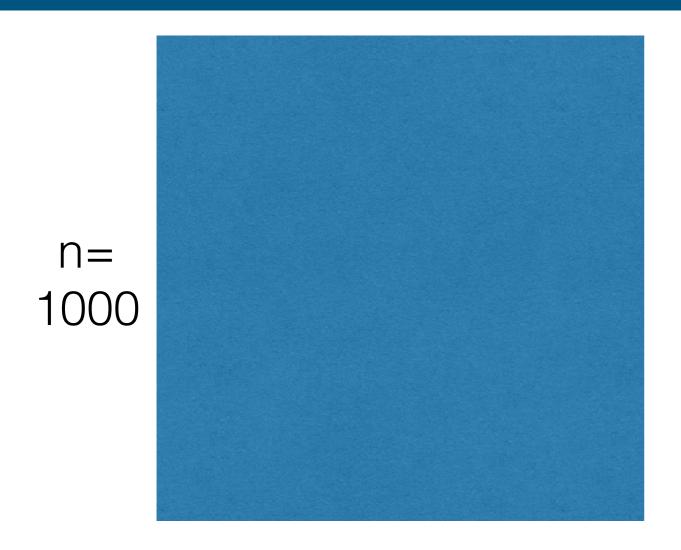
$$(1 - \epsilon) \|\mathbf{y}_i - \mathbf{y}_j\|_2 \le \|\mathbf{x}_i - \mathbf{x}_j\|_2 \le (1 + \epsilon) \|\mathbf{y}_i - \mathbf{y}_j\|_2$$

Lets try on Matlab ...

This is called the Johnson-Lindenstrauss lemma or JL lemma for short.

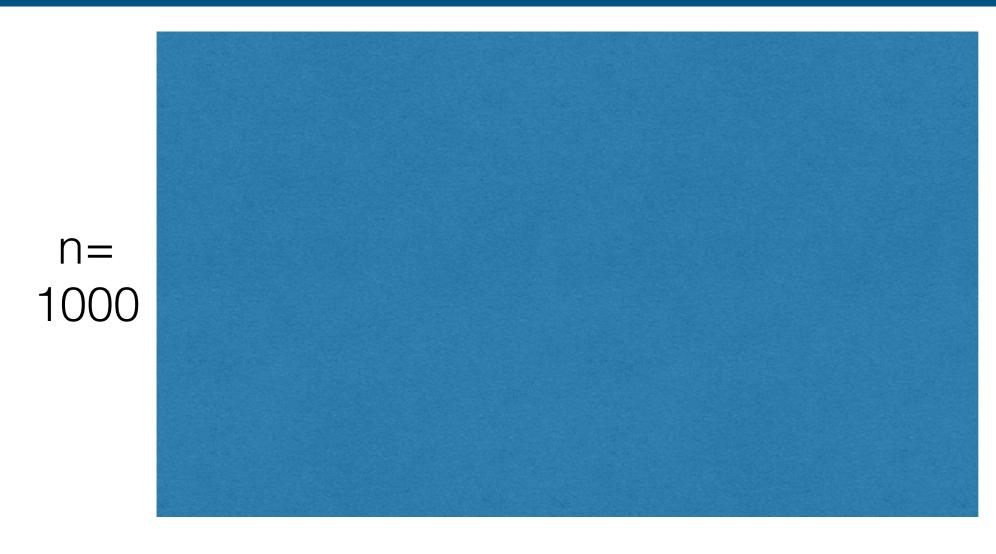


$$d = 1000$$



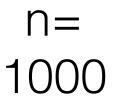
$$d = 1000$$

If we take $K = 69.1/\epsilon^2$, with probability 0.99 distances are preserved to accuracy ϵ



$$d = 10000$$

If we take $K = 69.1/\epsilon^2$, with probability 0.99 distances are preserved to accuracy ϵ



$$d = 1000000$$

If we take $K = 69.1/\epsilon^2$, with probability 0.99 distances are preserved to accuracy ϵ