Machine Learning for Data Science (CS4786) Lecture 4

Canonical Correlation Analysis (CCA)

Course Webpage:

http://www.cs.cornell.edu/Courses/cs4786/2016sp/

PCA: VARIANCE MAXIMIZATION

- Start with the *d* dimensional space
- While we haven't yet found K directions,
 - Find first principal component direction
 - Remove this direction and consider data points in the remaining subspace after projecting to first component

End

• This solutions is given by W = Top K eigenvectors of Σ

WHEN TO USE PCA?

- When data naturally lies in a low dimensional linear subspace
- To minimize reconstruction error
- Find directions where data is maximally spread

COVARIANCE VS CORRELATION

	Bread A	Bread B	Bread C	Bread D	Butter	Margarine	Soda
Store 1	944	896	1109	1074	11	79	6008
Store 2	953	950	1106	1071	12	77	9117
Store 3	967	976	1101	1054	17	70	6805
Store 4	969	1008	1079	1052	21	69	7306
Store 5	977	1024	1057	1020	27	63	5550
Store 6	1007	1038	1050	996	28	62	8907
Store 7	1019	1040	1043	996	30	61	7267
Store 8	1053	1055	962	973	34	59	6485
Store 9	1071	1096	922	967	35	56	6792
Store 10	1074	1097	896	935	36	54	7412

COVARIANCE VS CORRELATION

• Covariance(A, B) = $\mathbb{E}[(A - \mathbb{E}[A]) \cdot (B - \mathbb{E}[B])]$

Depends on the scale of A and B. If B is rescaled, covariance shifts.

• Corelation(A, B) = $\frac{\mathbb{E}[(A - \mathbb{E}[A]) \cdot (B - \mathbb{E}[B])]}{\sqrt{\text{Var}(A)}\sqrt{\text{Var}(B)}}$

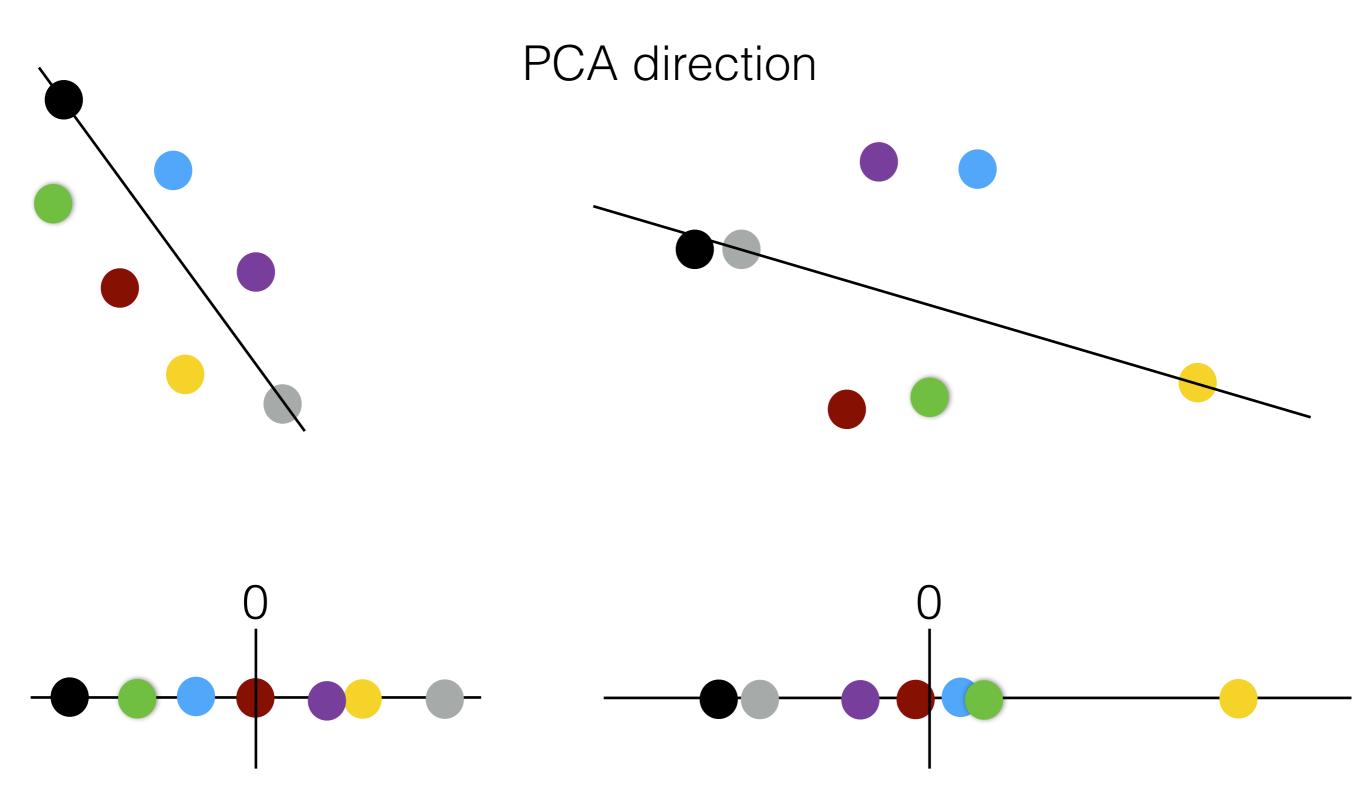
Scale free.

TWO VIEW DIMENSIONALITY REDUCTION

• Data comes in pairs $(\mathbf{x}_1, \mathbf{x}'_1), \dots, (\mathbf{x}_n, \mathbf{x}'_n)$ where \mathbf{x}_t 's are d dimensional and \mathbf{x}'_t 's are d' dimensional

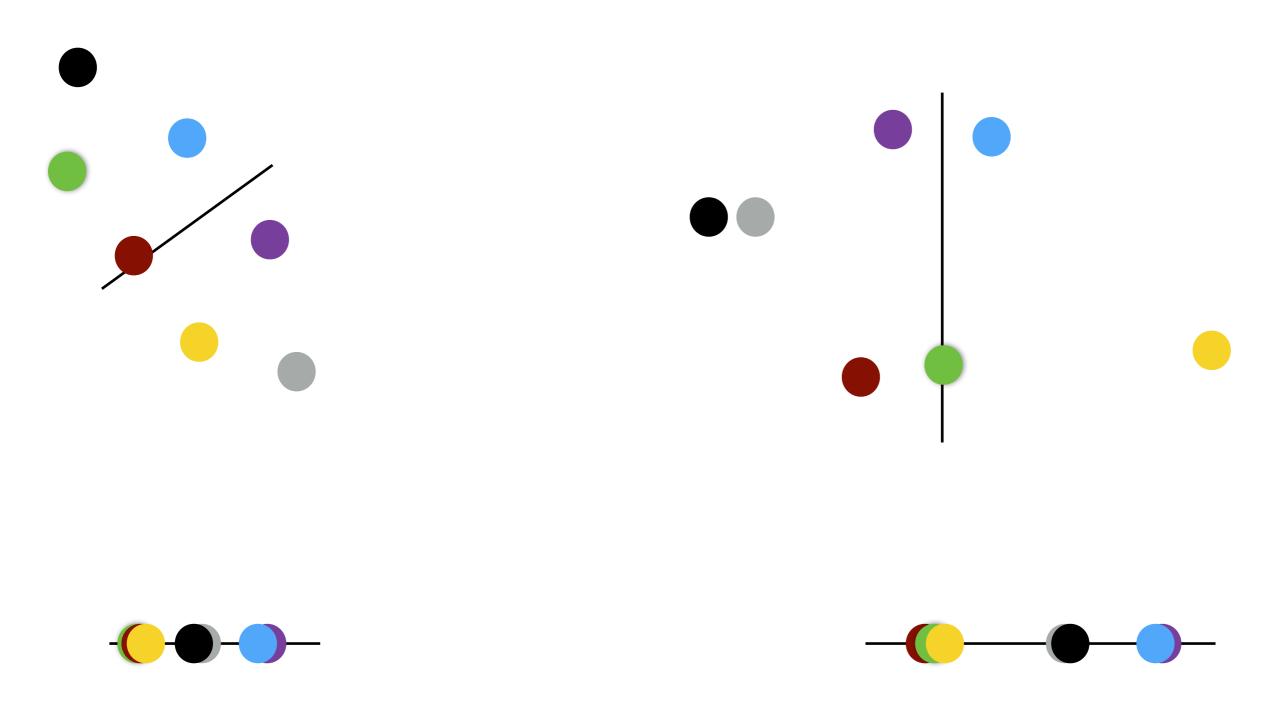
- Goal: Compress say view one into y_1, \ldots, y_n , that are K dimensional vectors
 - Retain information redundant between the two views
 - Eliminate "noise" specific to only one of the views

WHICH DIRECTION TO PICK?



Average dot product = covariance small

WHICH DIRECTION TO PICK?



Direction has large correlation

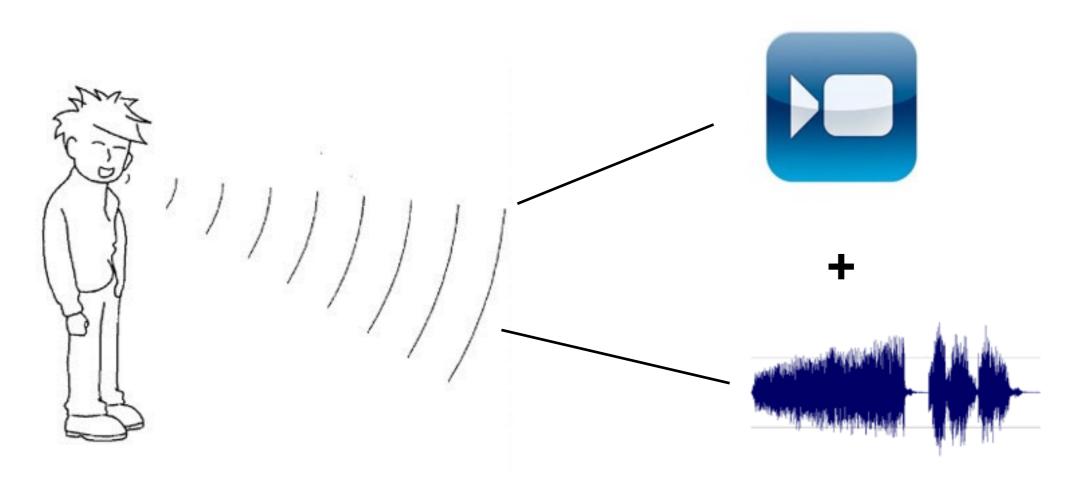
BASIC IDEA OF CCA

- Normalize variance in chosen direction to be constant (say 1)
- Then maximize covariance
- This is same as maximizing "correlation coefficient"

WHEN TO USE CCA?

- When we have redundancy in data.
- When the relevant information is part of the redundancy
- Same data point from two different view/sources

EXAMPLE I: SPEECH RECOGNITION



- Audio might have background sounds uncorrelated with video
- Video might have lighting changes uncorrelated with audio
- Redundant information between two views: the speech

EXAMPLE II: COMBINING FEATURE EXTRACTIONS

- Method A and Method B are both equally good feature extraction techniques
- Concatenating the two features blindly yields large dimensional feature vector with redundancy
- Applying techniques like CCA extracts the key information between the two methods
- Removes extra unwanted information

MAXIMIZING CORRELATION COEFFICIENT

• Say \mathbf{w}_1 and \mathbf{v}_1 are the directions we choose to project in views 1 and 2 respectively we want these directions to maximize,

$$\frac{1}{n} \sum_{t=1}^{n} \left(\mathbf{y}_{t}[1] - \frac{1}{n} \sum_{t=1}^{n} \mathbf{y}_{t}[1] \right) \cdot \left(\mathbf{y}_{t}'[1] - \frac{1}{n} \sum_{t=1}^{n} \mathbf{y}_{t}'[1] \right)$$

s.t.
$$\frac{1}{n} \sum_{t=1}^{n} \left(\mathbf{y}_{t}[1] - \frac{1}{n} \sum_{t=1}^{n} \mathbf{y}_{t}[1] \right)^{2} = \frac{1}{n} \sum_{t=1}^{n} \left(\mathbf{y}_{t}'[1] - \frac{1}{n} \sum_{t=1}^{n} \mathbf{y}_{t}'[1] \right) = 1$$

where
$$\mathbf{y}_t[1] = \mathbf{w}_1^\mathsf{T} \mathbf{x}_t$$
 and $\mathbf{y}_t'[1] = \mathbf{v}_1^\mathsf{T} \mathbf{x}_t'$

- Assume data in both views are centered : $\frac{1}{n} \sum_{t=1}^{n} \mathbf{x}_{t} = \mathbf{0}$, $\frac{1}{n} \sum_{t=1}^{n} \mathbf{x}'_{t} = \mathbf{0}$ Hence $\frac{1}{n} \sum_{t=1}^{n} \mathbf{y}'_{t}[1] = \frac{1}{n} \sum_{t=1}^{n} \mathbf{y}_{t}[1] = 0$
- Hence we want to solve for projection vectors \mathbf{w}_1 and \mathbf{v}_1 that

maximize
$$\frac{1}{n} \sum_{t=1}^{n} \mathbf{y}_{t}[1] \cdot \mathbf{y}'_{t}[1]$$

subject to $\frac{1}{n} \sum_{t=1}^{n} (\mathbf{y}_{t}[1])^{2} = \frac{1}{n} \sum_{t=1}^{n} (\mathbf{y}'_{t}[1])^{2} = 1$

• Hence we want to solve for projection vectors \mathbf{w}_1 and \mathbf{v}_1 that

maximize
$$\frac{1}{n} \sum_{t=1}^{n} \mathbf{w}_{1}^{\mathsf{T}} \mathbf{x}_{t} \cdot \mathbf{v}_{1}^{\mathsf{T}} \mathbf{x}_{t}'$$

subject to $\frac{1}{n} \sum_{t=1}^{n} (\mathbf{w}_{1}^{\mathsf{T}} \mathbf{x}_{t})^{2} = \frac{1}{n} \sum_{t=1}^{n} (\mathbf{v}_{1}^{\mathsf{T}} \mathbf{x}_{t}')^{2} = 1$

• Hence we want to solve for projection vectors \mathbf{w}_1 and \mathbf{v}_1 that

maximize
$$\frac{1}{n} \sum_{t=1}^{n} \mathbf{w}_{1}^{\mathsf{T}} \mathbf{x}_{t} \mathbf{x}_{t}^{\mathsf{T}} \mathbf{v}_{1}$$

subject to $\frac{1}{n} \sum_{t=1}^{n} \mathbf{w}_{1}^{\mathsf{T}} \mathbf{x}_{t} \mathbf{x}_{t}^{\mathsf{T}} \mathbf{w}_{1} = \frac{1}{n} \sum_{t=1}^{n} \mathbf{v}_{1}^{\mathsf{T}} \mathbf{x}_{t}^{\mathsf{T}} \mathbf{x}_{t}^{\mathsf{T}} \mathbf{v}_{1} = 1$

• Hence we want to solve for projection vectors \mathbf{w}_1 and \mathbf{v}_1 that

maximize
$$\mathbf{w}_1^{\mathsf{T}} \boldsymbol{\Sigma}_{1,2} \mathbf{v}_1$$

subject to $\mathbf{w}_1^{\mathsf{T}} \boldsymbol{\Sigma}_{1,1} \mathbf{w}_1 = \mathbf{v}_1^{\mathsf{T}} \boldsymbol{\Sigma}_{2,2} \mathbf{v}_1 = 1$

Writing Lagrangian taking derivative equating to 0 we get

$$\Sigma_{1,2}\Sigma_{2,2}^{-1}\Sigma_{2,1}\mathbf{w}_1 = \lambda^2\Sigma_{1,1}\mathbf{w}_1 \quad \text{and} \quad \Sigma_{2,1}\Sigma_{1,1}^{-1}\Sigma_{1,2}\mathbf{v}_1 = \lambda^2\Sigma_{2,2}\mathbf{v}_1$$
 or equivalently

$$(\Sigma_{1,1}^{-1}\Sigma_{1,2}\Sigma_{2,2}^{-1}\Sigma_{2,1})\mathbf{w}_1 = \lambda^2\mathbf{w}_1$$
 and $(\Sigma_{2,2}^{-1}\Sigma_{2,1}\Sigma_{1,1}^{-1}\Sigma_{1,2})\mathbf{v}_1 = \lambda^2\mathbf{v}_1$

CCA ALGORITHM

1.
$$X = \begin{pmatrix} n & X_1 & X_2 \\ d_1 & d_2 \end{pmatrix}$$
2. $\sum_{=\sum_{11}\sum_{12}^{12}} = \text{cov}\left(\begin{array}{c} X \\ X \end{array}\right)$

3.
$$W_1 = \operatorname{eigs}(\Sigma_{11}^{-1}\Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}, K)$$

$$4. \quad Y_1 = X_1 - \mu_1 \times W_1$$

CCA DEMO