Latent Dirchlet Allocation

Course Webpage:
http://www.cs.cornell.edu/Courses/cs4786/2016fa/
Data: x_1, \ldots, x_n

$\theta \in \Theta$

P_θ explains data
\[\begin{align*}
\pi_1 &= 0.5 \\
\Sigma_1 &
\end{align*}\]
Set of models Θ consists of parameters s.t. P_θ for each $\theta \in \Theta$ is a distribution over data.

Learning: Estimate $\theta^* \in \Theta$ that best models given data.
Maximum Likelihood Principal

Pick $\theta \in \Theta$ that maximizes probability of observation

$$\theta_{MLE} = \arg\max_{\theta \in \Theta} \log P_{\theta}(x_1, \ldots, x_n)$$

A priori all models are equally good, data could have been generated by any one of them
Pick $\theta \in \Theta$ that is most likely given data

Maximize a posteriori probability of model given data

$$\theta_{MAP} = \arg\max_{\theta \in \Theta} P(\theta | x_1, \ldots, x_n)$$

$$= \arg\max_{\theta \in \Theta} \log P(x_1, \ldots, x_n | \theta) + \log P(\theta)$$
Say \(c_1, \ldots, c_n \) are Latent variables. Eg. cluster assignments.

- Initialize \(\theta^{(0)} \) arbitrarily, repeat unit convergence:

 (E step) For every \(t \), define distribution \(Q_t \) over the latent variable \(c_t \) as:
 \[
 Q_t^{(i)}(c_t) = P(c_t|x_t, \theta^{(i-1)})
 \]

 (M step)
 \[
 \theta^{(i)} = \arg\max_{\theta \in \Theta} \sum_{t=1}^n \sum_{c_t} Q_t^{(i)}(c_t) \log P(x_t, c_t|\theta) \quad \text{if MLE}
 \]
 \[
 \theta^{(i)} = \arg\max_{\theta \in \Theta} \sum_{t=1}^n \sum_{c_t} Q_t^{(i)}(c_t) \log P(x_t, c_t|\theta) P(\theta) \quad \text{if MAP}
 \]
Mixture of Multinomials

\[\pi = \begin{align*}
\text{Party!} & : 10 & 10 & 5 & 2 & 0 & 0 & 0 & 0 & 5 \\
\text{HOME} & : 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 10 \\
\text{work} & : 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
\end{align*} \]

\[p_{\text{Party!}} \] ~
\[p_{\text{HOME}} \] ~
\[p_{\text{work}} \]

\[\pi \] ~
\[p \] ~
\[p \] ~
\[p \]
Multinomial Distribution

\[P(x|p) = \frac{m!}{x[1]! \cdots x[d]!} p[1]^{x_t[1]} \cdots p[d]^{x_t[d]} \]

Probability of purchase vector \(x \) while drawing products independently \(m \) times from \(p \)
What is missing in this story?

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10</td>
<td>5</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>15</td>
<td>10</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Everyone is a bit of party and a bit of work!
Generative story:
For $t = 1$ to n
 For each customer draw mixture of types $\pi_t \sim \text{Dirchlet}(\alpha)$
 For $i = 1$ to m
 For each item to purchase, first draw type $c_t[i] \sim \pi_t$
 Next, given the type draw $x_t[i] \sim p_{c_t[i]}$
 End For
End For

Parameters, α for the Dirichlet distribution and p_1, \ldots, p_K
Dirichlet Distribution

- It's a distribution over distributions!
- Parameters $\alpha_1, \ldots, \alpha_K$ s.t. $\alpha_k > 0$
- The density function is given as

$$p(\pi; \alpha) = \frac{1}{B(\alpha)} \prod_{k=1}^{K} \pi_k^{\alpha_k}$$

where $B(\alpha) = \prod_{k=1}^{K} \Gamma(\alpha_k)/\Gamma(\sum_{k=1}^{K} \alpha_k)$
Dirichlet Distribution

- Dirichlet(.5,.5,.5)
- Dirichlet(1,1,1)
- Dirichlet(5,10,8)
Say we didn’t have the Dir(\(\alpha\)), and we had one \(\pi\) for all customers. Two choices:

1. For each customer \(t\) draw customer type \(c_t\) from \(\pi\) and then draw all products \(i\) from 1 to \(m\), based on \(p_{c_t}\). What is this model?

2. For each customer \(t\) and each product \(i\) the customer buys, draw \(c_t[i] \sim \pi\) and then draw \(x_t[i] \sim p_{c_t[i]}\).
Next, say we didn’t have \(\text{Dir}(\alpha) \) but each customer separate \(\pi_t \)?

- This model is often called probabilistic latent semantic analysis
- Number of parameters is \(n \), grows with number of customers
- Since each customer gets her/his own mixture distribution without restriction, model can overfit easily.
- Further, since there are as many \(\pi \)'s as customers, when a new customer walks in there is no way of extending \(\pi_{n+1} \) is any meaningful way to use our model.

Dirichlet prior helps us get a model for new, unseen customers.
If we haven’t seen a customer type yet, that’s ok.
Generative Story:

For each customer type k from 1 to K,

Draw $p_k \sim \text{Dir}(\beta)$ (smooth p_k’s)

End

For each customer t from 1 to n

Draw $\pi_t \sim \text{Dir}(\alpha)$

For each purchase i from 1 to m for this customer,

Draw the customer type $c_t[i] \sim \pi_t$ for the purchase

Given customer type, draw the item $x_{t[i]} \sim p_{c_t[i]}$ purchased

End

End

Parameters: α a K-dimensional vector and β a d-dimensional vector.
Say z_1, \ldots, z_n are Latent variables. Eg. cluster assignments.

- Initialize $\theta^{(0)}$ arbitrarily, repeat unit convergence:

 (E step) For every t, define distribution Q_t over the latent variable c_t as:

 $$Q^{(i)}_t(z_t) = P(z_t|x_t, \theta^{(i-1)})$$

 (M step) $\theta^{(i)} = \arg\max_{\theta \in \Theta} \sum_{t=1}^{n} \sum_{z_t} Q^{(i)}_t(z_t) \log P(x_t, z_t|\theta)$ if MLE

 Latent variables $c_t[i]'s$, p_k's and π_t's.
EM Algorithm for LDA

- There are infinite possibilities for π'_t's and p'_k's
- Only think of $c_t[i]'s$ as latent variables
- E-step becomes intractable!
- Use approximate E-step (Variational approximation)
- M-step involves convex optimization
What was common between the various mixture models?
Abstract away the parameterization specifics

Focus on relationship between random variables
A graph whose nodes are variables X_1, \ldots, X_N

Graphs are an intuitive way of representing relationships between large number of variables

Allows us to abstract out the parametric form that depends on θ and the basic relationship between the random variables.
Graphical Models

- A graph whose nodes are variables X_1, \ldots, X_N
- Graphs are an intuitive way of representing relationships between large number of variables
- Allows us to abstract out the parametric form that depends on θ and the basic relationship between the random variables.

Draw a picture for the generative story that explains what generates what.
GAUSSIAN MIXTURE MODEL

\[\pi \rightarrow \mathcal{C}_n \]

\[\mu \sum \rightarrow \mathcal{X}_n \]
Mixture of Multinomials

\[\pi \rightarrow C_n \rightarrow X_n \rightarrow N \]