Gaussian Mixture Models

Course Webpage :
http://www.cs.cornell.edu/Courses/cs4786/2016fa/
Back to K-means

- Single link is sensitive to outliers

- We need a good clustering algorithm after spectral embedding: K-means?
Back to K-means

• Looks for spherical clusters
• Of same size
• And with roughly equal number of points
No Free Lunch
No Free Lunch

• When averaged across all possible situations, all algorithms perform equally well/badly
No Free Lunch

• When averaged across all possible situations, all algorithms perform equally well/badly

No Assumptions => No method
No Free Lunch

- When averaged across all possible situations, all algorithms perform equally well/badly

 No Assumptions => No method

Lets model our assumptions in a more principled way
How do we model the following?
Multivariate Gaussian

• Two parameters:

• Mean $\mu \in \mathbb{R}^d$

• Covariance matrix Σ of size $d \times d$
Multivariate Gaussian

• Two parameters:
 • Mean $\mu \in \mathbb{R}^d$
 • Covariance matrix Σ of size $d \times d$

$$p(x; \mu, \Sigma) = (2\pi)^{-d/2} \det(\Sigma)^{-1/2} \exp \left(-\frac{1}{2} (x - \mu)^\top \Sigma (x - \mu) \right)$$
Multivariate Gaussian

- Two parameters:
 - Mean $\mu \in \mathbb{R}^d$
 - Covariance matrix Σ of size $d \times d$

$$p(x; \mu, \Sigma) = \frac{1}{(2\pi)^{d/2} \det(\Sigma)^{1/2}} \exp \left(-\frac{1}{2} (x - \mu)^\top \Sigma (x - \mu) \right)$$
Each $\theta \in \Theta$ is a model.

- **Gaussian Mixture Model**
 - Each θ consists of mixture distribution $\pi = (\pi_1, \ldots, \pi_K)$, means $\mu_1, \ldots, \mu_K \in \mathbb{R}^d$ and covariance matrices $\Sigma_1, \ldots, \Sigma_K$
 - For each t, independently:
 $$c_t \sim \pi, \quad x_t \sim N(\mu_{c_t}, \Sigma_{c_t})$$
Probabilistic Models

- \(\Theta \) consists of set of possible parameters
- We have a distribution \(P_\theta \) over the data induced by each \(\theta \in \Theta \)
- Data is generated by one of the \(\theta \in \Theta \)
- Learning: Estimate value or distribution for \(\theta^* \in \Theta \) given data
Pick \(\theta \in \Theta \) that maximizes probability of observation

\[
\theta_{MLE} = \arg\max_{\theta \in \Theta} \log P_{\theta}(x_1, \ldots, x_n)
\]

Likelihood
Example: Gaussian Mixture Model

MLE: \(\theta = (\mu_1, \ldots, \mu_K), \pi, \Sigma \)

\[
P_\theta(x_1, \ldots, x_n) = \prod_{t=1}^{n} \left(\sum_{i=1}^{K} \pi_i \frac{1}{\sqrt{2 \times 3.1415}^2 |\Sigma_i|} \exp \left(- (x_t - \mu_i)^\top \Sigma_i (x_t - \mu_i) \right) \right)
\]

Find \(\theta \) that maximizes \(\log P_\theta(x_1, \ldots, x_n) \)
MLE FOR GMM

Let us consider the one dimensional case, assume variances are 1 and \(\pi \) is uniform

\[
\log P_\theta(x_1, \ldots, n) = \sum_{t=1}^{n} \log \left(\frac{1}{K} \sum_{i=1}^{K} \frac{1}{\sqrt{2 \times 3.1415}} \exp \left(-\frac{(x_t - \mu_i)^2}{2} \right) \right)
\]

Now consider the partial derivative w.r.t. \(\mu_1 \), we have:

\[
\frac{\partial \log P_\theta(x_1, \ldots, n)}{\partial \mu_1} = \sum_{t=1}^{n} -\frac{(x_t - \mu_1) \exp \left(-\frac{(x_t - \mu_1)^2}{2} \right)}{\sum_{i=1}^{K} \exp \left(-\frac{(x_t - \mu_i)^2}{2} \right)}
\]

Given all other parameters, optimizing w.r.t. even just \(\mu_1 \) is hard!
MLE for GMM

Say by some magic you knew cluster assignments, then

How would you compute parameters?
Say by some magic you knew cluster assignments, then

How would you compute parameters?
Latent Variables

We only observe x_1, \ldots, x_n, cluster assignments c_1, \ldots, c_n are not observed.

Finding $\theta \in \Theta$ (even for 1-d GMM) that directly maximizes Likelihood or A Posteriori given x_1, \ldots, x_n is hard!

Given latent variables c_1, \ldots, c_n, the problem of maximizing likelihood (or a posteriori) became easy.

Can we use latent variables to devise an algorithm?
Latent variables can help, but we have a chicken and egg problem.

Given all variables including latent variables, finding optimal parameters is easy.

Given model parameter, optimizing/find distribution over latent variables is easy.
1. Initialize model parameters $\pi^{(0)}, \mu_1^{(0)}, \ldots, \mu_K^{(0)}$ and $\Sigma_1^{(0)}, \ldots, \Sigma_K^{(0)}$

2. For $i = 1$ until convergence or bored
 1. Under current model parameters $\theta^{(i-1)}$, compute probability $Q_t^{(i)}(k)$ of each point x_t belonging to cluster k
 2. Given probabilities of each point belonging to the various clusters, compute optimal parameters $\theta^{(i)}$

3. End For
EM Algorithm for GMM

1. **Initialize model parameters** $\pi^{(0)}$, $\mu_1^{(0)}$, \ldots, $\mu_K^{(0)}$ and $\Sigma_1^{(0)}$, \ldots, $\Sigma_K^{(0)}$

2. **For** $i = 1$ **until convergence or bored**

 \[Q_t^{(i)}(k) \propto p(x_t; \mu_k^{(i-1)}, \Sigma_k^{(i-1)}) \cdot \pi_k^{(i-1)} \]

3. **For every** $k \in [K]$,

 \[
 \mu_k^{(i)} = \frac{\sum_{t=1}^n Q_t^{(i)}(k)x_t}{\sum_{t=1}^n Q_t(k)} , \quad \Sigma_k^{(i)} = \frac{\sum_{t=1}^n Q_t^{(i)}(k)(x_t - \mu_k^{(i)})(x_t - \mu_k^{(i)})^T}{\sum_{t=1}^n Q_t(k)}
 \]

 \[
 \pi_k^{(i)} = \frac{\sum_{t=1}^n Q_t^{(i)}(k)}{n}
 \]

4. **End For**
Demo