Spectral Clustering

Course Webpage:
http://www.cs.cornell.edu/Courses/cs4786/2016fa/
Survey

• There will be 2 surveys and the final course eval
 • If overall class participation is above 90% on all 3 I will drop all your worst assignments

• Survey one posted on CMS due by 28th sep

• Surveys are all completely anonymous and will help me make the class more fun. So be open.
Spectral Clustering

- Cluster nodes in a graph.
- Analysis of social network data.
Spectral Clustering

Input: Similarity matrix

$$A_{i,j} = \begin{cases} 1 & \text{if } (i,j) \in E \\ 0 & \text{otherwise} \end{cases}$$

A is adjacency matrix of a graph
Example

Cut as few edges as possible
Spectral Clustering

Input: Similarity matrix $A_{i,j} = A_{j,i} > 0$ indicates similarity between elements x_i and x_j.

Example:

$$A_{i,j} = \exp(-d(x_i, x_j))$$

A is the adjacency matrix of a graph.

$$L = D - A$$

$$D_{i,i} = \sum_{j=1}^{n} A_{i,j}$$
Example
Graph Clustering: Cuts

- Partition nodes so that as few edges are cut (Mincut)
- What has this got to do with the Laplacian matrix?
Consider case when we have/want 2 clusters. Let $c_j = -1$ if x_j belongs to cluster 0 and $c_j = 1$ if x_j belongs to cluster 1

$$\text{CUT} = \sum_{(i,j) \in E} \mathbf{1}_{c_i \neq c_j} = \frac{1}{2} c^\top L c$$
Cuts and Laplacian

\[
\text{Cut}(c) = \sum_{(i,j) \in E} 1_{c_i \neq c_j} = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i,j} 1_{c_i \neq c_j}
\]

\[
\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i,j} \frac{1}{4} (c_i - c_j)^2
\]

\[
= \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i,j} \frac{1}{4} (c_i^2 + c_j^2 - 2c_i c_j)
\]

\[
= \frac{1}{4} \left(\sum_{i=1}^{n} \left(\sum_{j=1}^{n} A_{i,j} \right) c_i^2 + \sum_{j=1}^{n} \left(\sum_{i=1}^{n} A_{i,j} \right) c_j^2 - 2 \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i,j} c_i c_j \right)
\]

\[
= \frac{1}{4} \left(2 \sum_{i=1}^{n} D_{i,i} c_i^2 - 2 \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i,j} c_i c_j \right)
\]

\[
= \frac{1}{2} (c^\top Dc - c^\top Ac) = \frac{1}{2} c^\top Lc
\]
Hence to find the solution we need to solve for

\[
\text{Minimize } c^\top Lc \quad \text{ s.t. } \forall i \in [n], |c_i| = 1
\]

Since \(\forall i \in [n], |c_i| = 1 \), we have \(\|c\|_2 = \sqrt{n} \) and so relaxing (approximating) the optimization:

\[
\text{Minimize } c^\top Lc \quad \text{ s.t. } \|c\|_2 = \sqrt{n}
\]

Hence solution \(c \) to above is an Eigen vector, first smallest one is the all 1’s vector (for connected graph), second smallest one is our solution

To get clustering assignment we simply threshold at 0
Solution obtained by considering the second smallest up to K^{th} smallest eigenvectors

If instead of $c_i = \pm 1$ make for each $k \in [K]$, c_i^k to be indicator of whether point i belongs to cluster K or not, then

$$\text{Cut} = \sum_{k=1}^{K} (c^k)^\top Lc^k$$
Spectral Clustering Algorithm (Unnormalized)

1. Given matrix A calculate diagonal matrix D s.t. $D_{i,i} = \sum_{j=1}^{n} A_{i,j}$

2. Calculate the Laplacian matrix $L = D - A$

3. Find eigen vectors v_1, \ldots, v_n of L (ascending order of eigenvalues)

4. Pick the K eigenvectors with smallest eigenvalues to get $y_1, \ldots, y_n \in \mathbb{R}^K$

5. Use K-means clustering algorithm on y_1, \ldots, y_n

y_1, \ldots, y_n are called spectral embedding

Embeds the n nodes into $K-1$ dimensional vectors
Min-cut on a graph can be efficiently computed

Why bother with the approximate algorithm

Is cut even a good measure?
Why cut is perhaps not a good measure?

Normalized Cut

\[\text{NCUT} = \sum_{j} \text{CUT}(C_j) \]

Example \(K = 2 \)

\[\text{CUT}(C_1, C_2) \]

Minimize \(\text{CUT}(C_1, C_2) \) s.t. \(\text{Edges}(C_1) = \text{Edges}(C_2) \)
Why cut is perhaps not a good measure?

Fixes?
Why cut is perhaps not a good measure?

Fixes? Perhaps \textbf{Ratio Cut}: \(\text{CUT}(C_1, C_2) \left(\frac{1}{|C_1|} + \frac{1}{|C_2|} \right) \)
• Normalized cut: Minimize sum of ratio of number of edges cut per cluster and number of edges within cluster

\[
\text{NCUT} = \sum_j \frac{\text{CUT}(C_j)}{\text{Edges}(C_j)}
\]

Example

\[
\text{CUT}(C_1, C_2) = \text{Edges}(C_1) + \text{Edges}(C_2)
\]

This is an NP hard problem! so relax

\[
\text{Edges}(C_i) = \text{degree}(C_i) = \sum_{t \in C_i} D_{t,t}
\]
Normalized cut: Minimize sum of ratio of number of edges cut per cluster and number of edges within cluster

\[\text{NCUT} = \sum_j \frac{\text{CUT}(C_j)}{\text{Edges}(C_j)} \]

- Example \(K = 2 \)

\[\text{CUT}(C_1, C_2) \left(\frac{1}{\text{Edges}(C_1)} + \frac{1}{\text{Edges}(C_2)} \right) \]

- This is an NP hard problem! … so relax
First note that \(\text{Edges} \left(C_i \right) = \sum_{k : x_k \in C_i} D_k \),

Set \(c_i = \begin{cases} \sqrt{\frac{\text{Edges}(C_2)}{\text{Edges}(C_1)}} & \text{if } i \in C_1 \\ -\sqrt{\frac{\text{Edges}(C_1)}{\text{Edges}(C_2)}} & \text{otherwise} \end{cases} \)

Verify that \(c^T L c = |E| \times \text{NCut} \) and \(c^T D c = |E| \) (and \(D c \perp 1 \))

Hence we relax Minimize \(\text{NCUT}(C) \) to

\[
\text{Minimize } \frac{c^T L c}{c^T D c} \quad \text{s.t. } D c \perp 1
\]

Solution: Find second smallest eigenvectors of \(\tilde{L} = I - D^{-1/2} A D^{-1/2} \)
Spectral Clustering Algorithm (Normalized)

1. Given matrix A calculate diagonal matrix D s.t. $D_{i,i} = \sum_{j=1}^{n} A_{i,j}$

2. Calculate the normalized Laplacian matrix $\tilde{L} = I - D^{-1/2} A D^{-1/2}$

3. Find eigen vectors v_1, \ldots, v_n of \tilde{L} (ascending order of eigenvalues)

4. Pick the K eigenvectors with smallest eigenvalues to get $y_1, \ldots, y_n \in \mathbb{R}^K$

5. Use K-means clustering algorithm on y_1, \ldots, y_n
Normalized Cut: Alternate View

- If we perform random walk on graph, its the partition of graph into group of vertices such that the probability of transiting from one group to another is minimized

- Transition matrix: \(D^{-1}A \)

- Largest eigenvalues and eigenvectors of above matrix correspond to smallest eigenvalues and eigenvectors of \(D^{-1}L = I - D^{-1}A \)

- For \(K \)-nearest neighbor graph (K-regular), same as normalized Laplacian