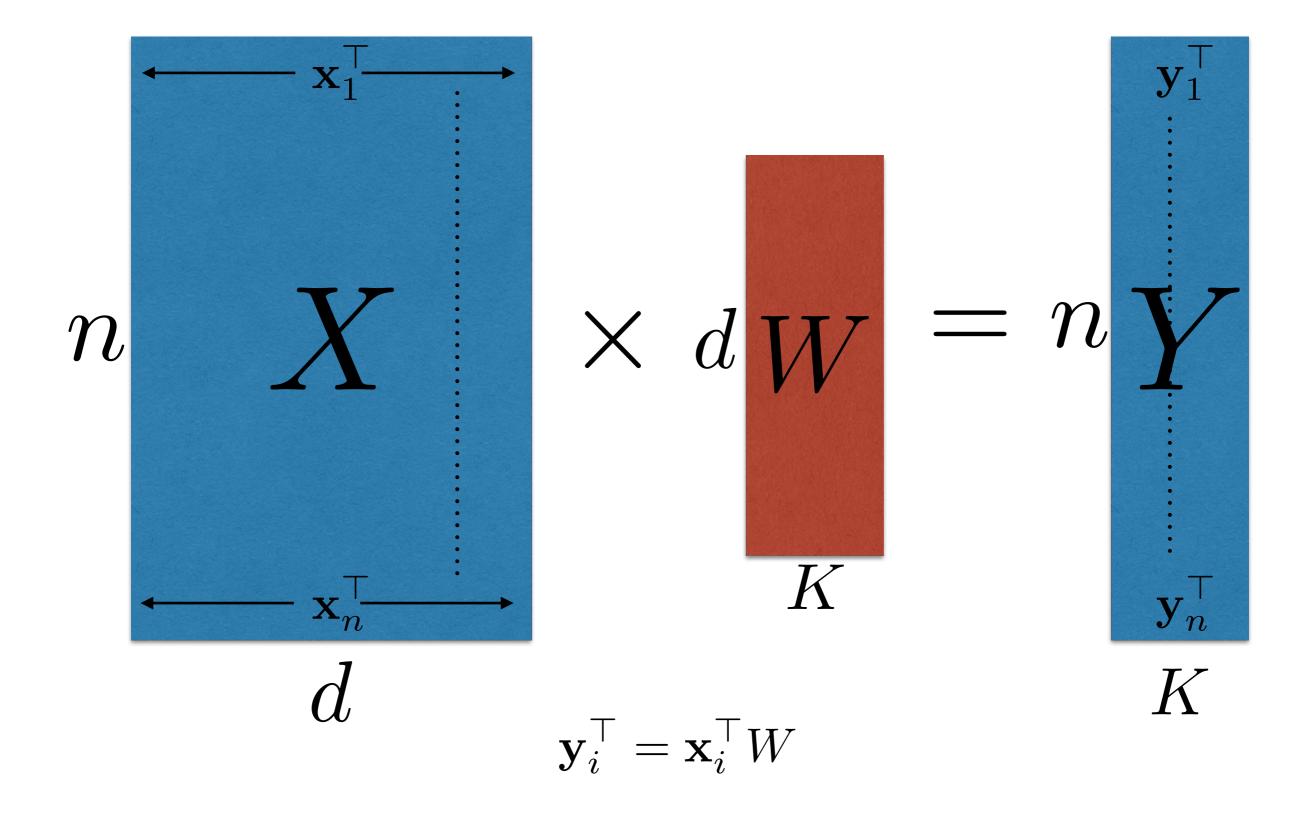
Machine Learning for Data Science (CS4786) Lecture 3

Principal Component Analysis

Course Webpage:

http://www.cs.cornell.edu/Courses/cs4786/2016fa/

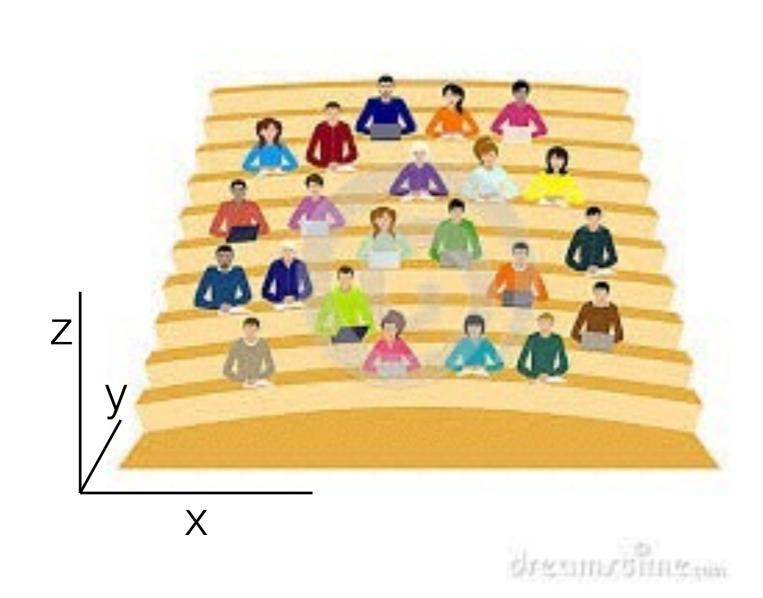
DIM REDUCTION: LINEAR TRANSFORMATION



QUESTIONS

- 1. Σ is (an $n \times n$) covariance matrix, how many eigenvectors does it have?
 - (a) 1 (b) n (c) As many as underlying dimensionality of data
- 2. X is an $n \times d$ data matrix such that each of the $j \in [d]$ variance on that coordinate is 1. Which of the following are true
 - (a) Covariance matrix is the identity matrix
 - (b) Covariance matrix can be any arbitrary symmetric matrix
 - (c) All diagonal elements of the covariance matrix are 1
 - (d) Off-diagonal elements can have magnitude at most 1
- 3. We have data matrix X and another matrix X' obtained by rotating X. Consider using PCA (say with K = 1).
 - (a) \mathbf{w}_1 the first component for X and \mathbf{w}_1' for X' are the same
 - (b) Y obtained from PCA(X) and Y' obtained from PCA(X') are same
 - (c) Both (a) and (b) are true
 - (d) Both (a) and (b) are false

Example: Students in classroom



Review

- Review covariance
- Review Eigen vectors

PCA: VARIANCE MAXIMIZATION

Covariance matrix:

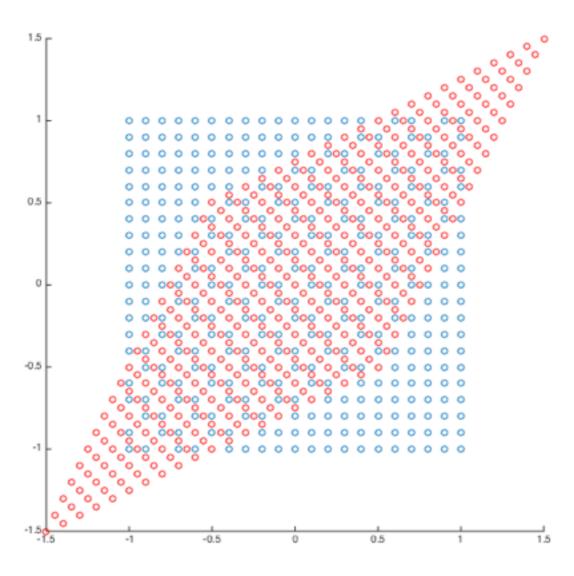
$$\Sigma = \frac{1}{n} \sum_{t=1}^{n} (\mathbf{x}_t - \boldsymbol{\mu}) (\mathbf{x}_t - \boldsymbol{\mu})^{\top}$$

• Its a $d \times d$ matrix, $\sum [i, j]$ measures "covariance" of features i and j

$$\Sigma[i,j] = \frac{1}{n} \sum_{t=1}^{n} (\mathbf{x}_t[i] - \mu[i]) (\mathbf{x}_t[j] - \mu[j])$$

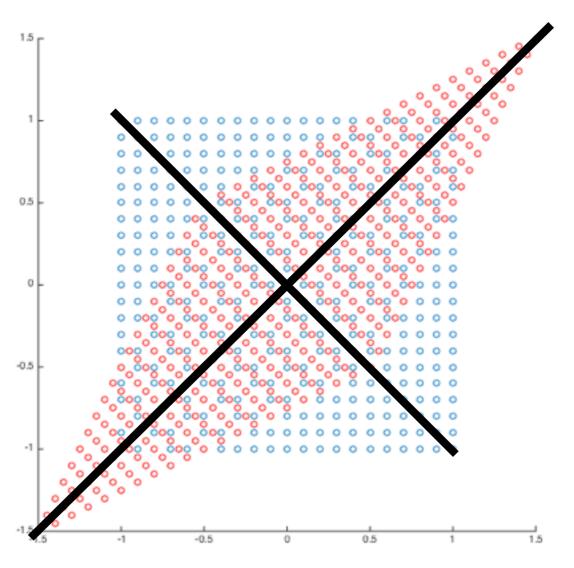
What are Eigen Vectors?

 $x \mapsto Ax$



What are Eigen Vectors?

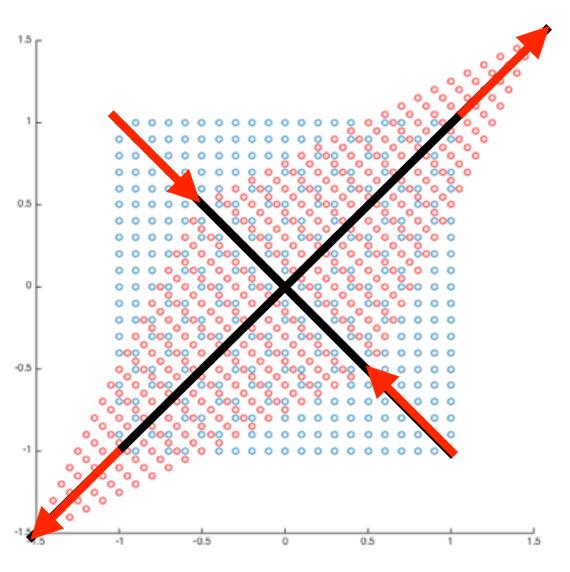
 $x \mapsto Ax$



$$A\mathbf{x} = \lambda \mathbf{x}$$

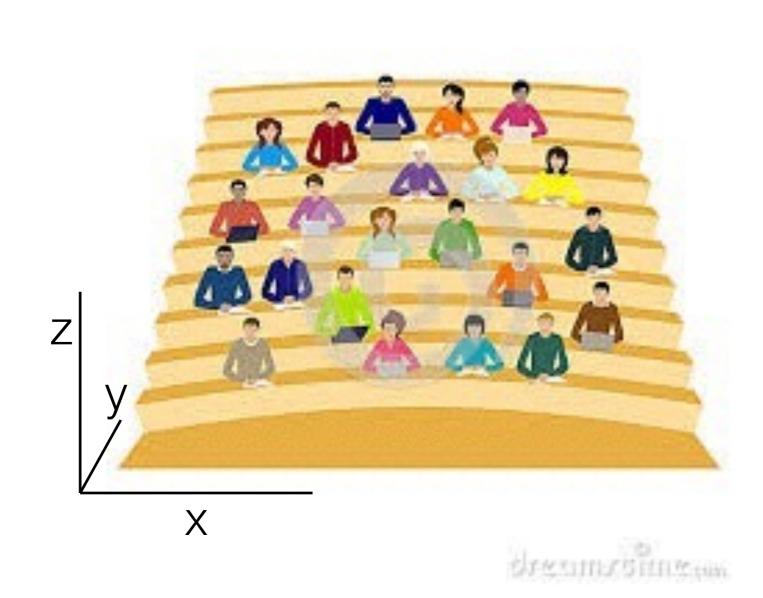
What are Eigen Vectors?

 $x \mapsto Ax$

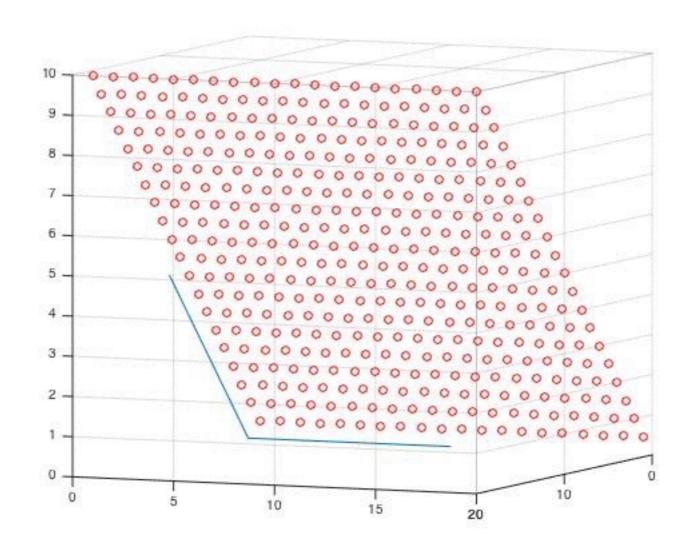


$$A\mathbf{x} = \lambda \mathbf{x}$$

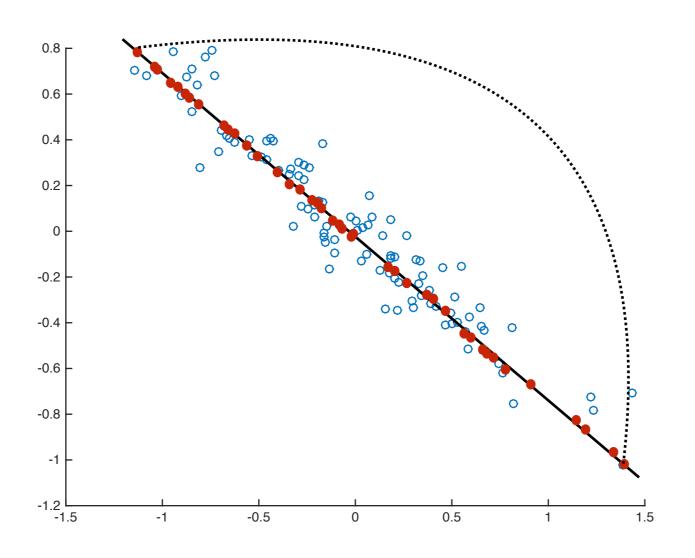
Example: Students in classroom



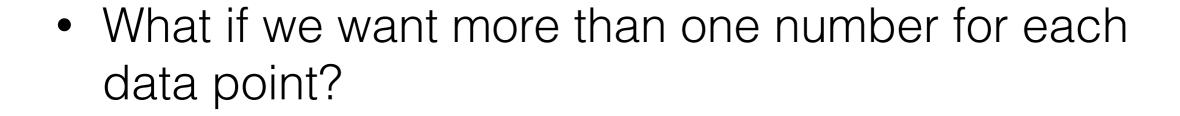
PCA on the Example



PCA: VARIANCE MAXIMIZATION



Work out variance on board

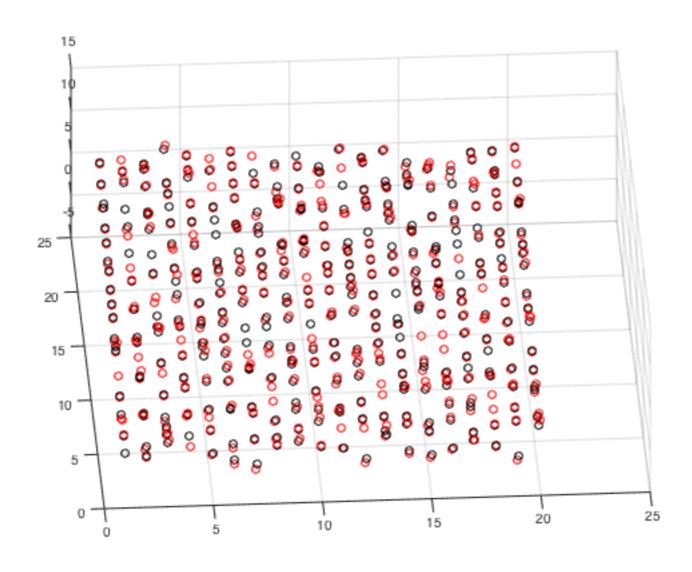


That is we want to reduce to K > 1 dimensions?

PCA: VARIANCE MAXIMIZATION

• How do we find the *K* components?

Ans: Maximize sum of spread in the K directions



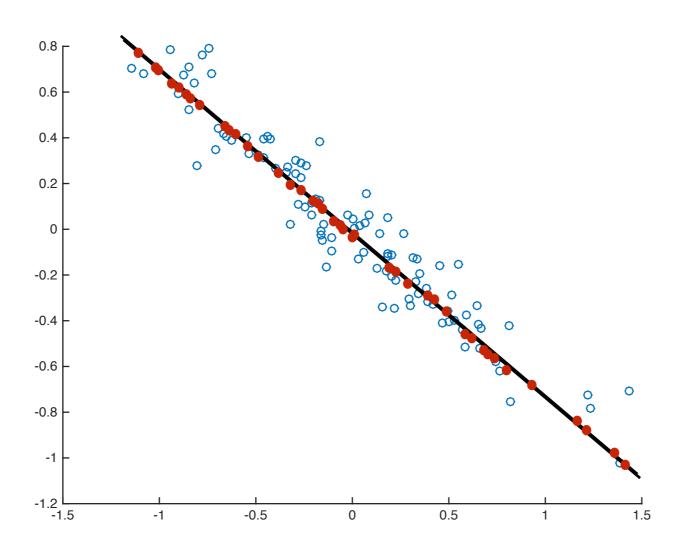
PCA: VARIANCE MAXIMIZATION

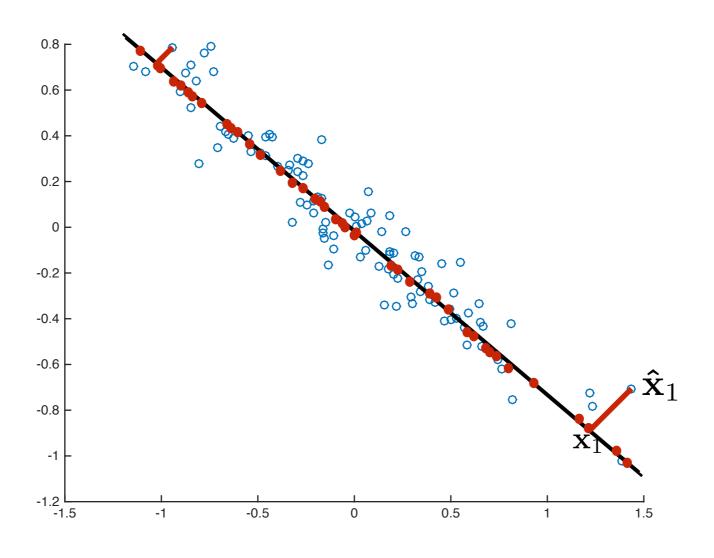
- How do we find the *K* components?
- We are looking for orthogonal directions that maximize total spread in each direction
- Find orthonormal W that maximizes $\sum_{k=1}^{d} \mathbf{w}_{i}[k] \mathbf{w}_{j}[k] = 0 \& \sum_{k=1}^{d} \mathbf{w}_{i}[k] = 1$ $\sum_{j=1}^{K} \frac{1}{n} \sum_{t=1}^{n} \left(\mathbf{y}_{t}[j] \frac{1}{n} \sum_{t=1}^{n} \mathbf{y}_{t}[j] \right)^{2} = \sum_{j=1}^{K} \frac{1}{n} \sum_{t=1}^{n} \left(\mathbf{w}_{j}^{\mathsf{T}} \left(\mathbf{x}_{t} \frac{1}{n} \sum_{t=1}^{n} \mathbf{x}_{t} \right) \right)^{2}$

$$= \sum_{j=1}^{K} \mathbf{w}_{j}^{\mathsf{T}} \mathbf{\Sigma} \mathbf{w}_{j}$$

• This solutions is given by W = Top K eigenvectors of Σ

An Alternative View

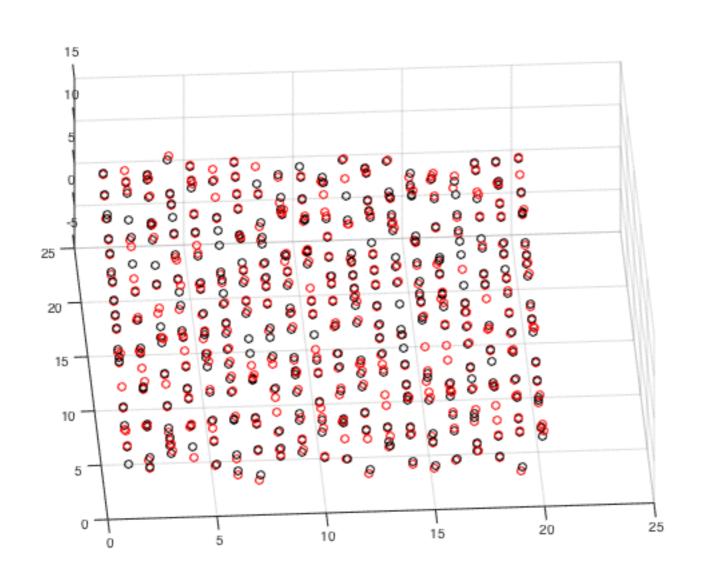


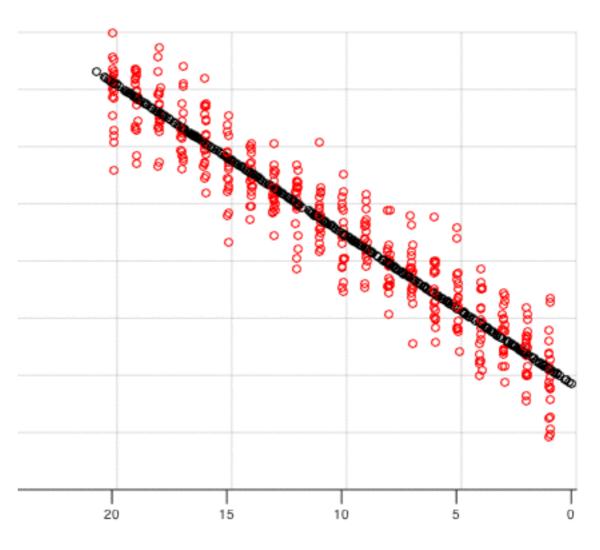


$$\sum_{t=1}^{n} \|\hat{\mathbf{x}}_t - \mathbf{x}_t\|^2$$

Maximize Spread

Minimize Reconstruction Error





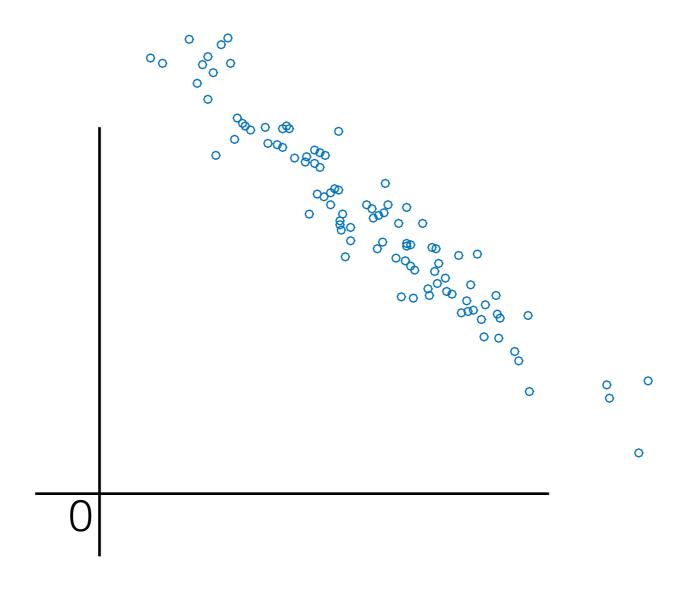
ORTHONORMAL PROJECTIONS

- Think of w_1, \ldots, w_K as coordinate system for PCA (in a K dimensional subspace)
- y values provide coefficients in this system
- Without loss of generality, $\mathbf{w}_1, \dots, \mathbf{w}_K$ can be orthonormal, i.e. $\mathbf{w}_i \perp \mathbf{w}_i \& \|\mathbf{w}_i\| = 1$.

$$\|\mathbf{w}_i\|_2^2 = \sum_{k=1}^d \mathbf{w}_i[k]^2$$

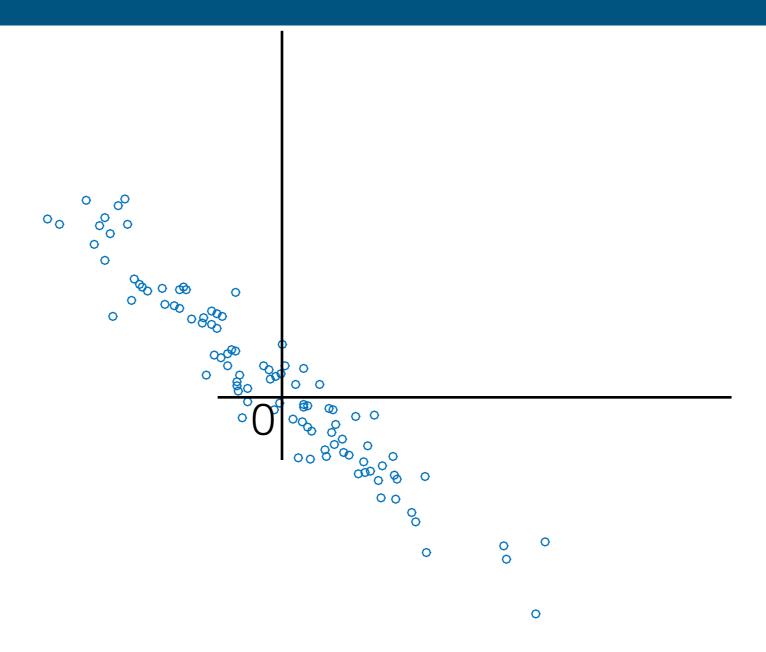
$$\mathbf{w}_i \perp \mathbf{w}_j \Rightarrow \sum_{k=1}^d \mathbf{w}_i[k]\mathbf{w}_j[k] = 0$$

CENTERING DATA



Compressing these data points...

CENTERING DATA



... is same as compressing these.

ORTHONORMAL PROJECTIONS

 (Centered) Data-points as linear combination of some orthonormal basis, i.e.

$$\mathbf{x}_t = \mu + \sum_{j=1}^d \mathbf{y}_t[j] \mathbf{w}_j$$

where $\mathbf{w}_1, \dots, \mathbf{w}_d \in \mathbb{R}^d$ are the orthonormal basis and $\mu = \frac{1}{n} \sum_{t=1}^n x_t$.

• Represent data as linear combination of just *K* orthonormal basis,

$$\hat{\mathbf{x}}_t = \mu + \sum_{j=1}^K \mathbf{y}_t[j] \mathbf{w}_j$$

Goal: find the basis that minimizes reconstruction error,

$$\sum_{t=1}^{n} \|\hat{\mathbf{x}}_{t} - \mathbf{x}_{t}\|_{2}^{2} = \sum_{t=1}^{n} \left\| \sum_{j=1}^{K} \mathbf{y}_{t}[j] \mathbf{w}_{j} + \mu - \mathbf{x}_{t} \right\|_{2}^{2}$$

$$= \sum_{t=1}^{n} \left\| \sum_{j=1}^{K} \mathbf{y}_{t}[j] \mathbf{w}_{j} + \mu - \sum_{j=1}^{d} \mathbf{y}_{t}[j] \mathbf{w}_{j} - \mu \right\|_{2}^{2}$$

$$= \sum_{t=1}^{n} \left\| \sum_{j=K+1}^{d} \mathbf{y}_{t}[j] \mathbf{w}_{j} \right\|_{2}^{2} \quad \text{(but } \|a + b\|_{2}^{2} = \|a\|_{2}^{2} + \|b\|_{2}^{2} + 2a^{T}b \text{)}$$

$$= \sum_{t=1}^{n} \left(\sum_{j=K+1}^{d} \mathbf{y}_{t}[j]^{2} \|\mathbf{w}_{j}\|_{2}^{2} + 2 \sum_{j=K+1}^{d} \sum_{i=j+1}^{d} \mathbf{y}_{t}[j] \mathbf{y}_{t}[i] \mathbf{w}_{j}^{T} \mathbf{w}_{i} \right)$$

$$= \sum_{t=1}^{n} \sum_{j=k+1}^{d} \mathbf{y}_{t}[j]^{2} \|\mathbf{w}_{j}\|_{2}^{2} \quad \text{(last step because } \mathbf{w}_{j} \perp \mathbf{w}_{i} \text{)}$$

$$\frac{1}{n} \sum_{t=1}^{n} \|\hat{\mathbf{x}}_{t} - \mathbf{x}_{t}\|_{2}^{2} = \frac{1}{n} \sum_{t=1}^{n} \sum_{j=k+1}^{d} \mathbf{y}_{t}[j]^{2} \|\mathbf{w}_{j}\|_{2}^{2} \quad \text{(but } \|\mathbf{w}_{j}\| = 1)$$

$$= \frac{1}{n} \sum_{t=1}^{n} \sum_{j=k+1}^{d} \mathbf{y}_{t}[j]^{2} \quad \text{(now } \mathbf{y}_{j} = \mathbf{w}_{j}^{\mathsf{T}}(\mathbf{x}_{t} - \mu))$$

$$= \frac{1}{n} \sum_{t=1}^{n} \sum_{j=k+1}^{d} (\mathbf{w}_{j}^{\mathsf{T}}(\mathbf{x}_{t} - \mu))^{2}$$

$$= \frac{1}{n} \sum_{t=1}^{n} \sum_{j=k+1}^{d} \mathbf{w}_{j}^{\mathsf{T}}(\mathbf{x}_{t} - \mu)(\mathbf{x}_{t} - \mu)^{\mathsf{T}} \mathbf{w}_{j}$$

$$= \sum_{j=k+1}^{d} \mathbf{w}_{j}^{\mathsf{T}} \Sigma \mathbf{w}_{j}$$

Minimize w.r.t. $\mathbf{w}_1, \dots, \mathbf{w}_K$'s that are orthonormal,

$$\underset{\forall j, \ \|\mathbf{w}_j\|_2 = 1}{\operatorname{argmin}} \sum_{j=k+1}^{d} \mathbf{w}_j^{\mathsf{T}} \mathbf{\Sigma} \mathbf{w}_j$$

- Solution, (discard) $\mathbf{w}_{K+1}, \dots, \mathbf{w}_d$ are bottom d K eigenvectors
- Hence $\mathbf{w}_1, \dots, \mathbf{w}_K$ are the top K eigenvectors

PRINCIPAL COMPONENT ANALYSIS

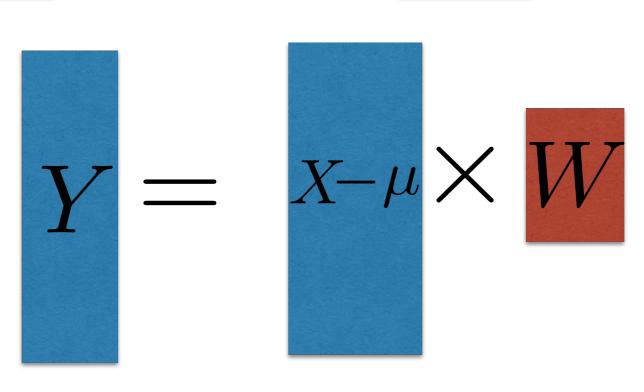
1.

$$\sum = \operatorname{cov}\left(X\right)$$

2.

$$W = eigs(\Sigma, K)$$

3.



RECONSTRUCTION

WHEN d >> n

- If d >> n then Σ is large
- But we only need top K eigen vectors.
- Idea: use SVD

$$X - \mu = UDV^{\mathsf{T}}$$

Then note that, $\Sigma = (X - \mu)^{T}(X - \mu) = VD^{2}V$

- Hence, matrix V is the same as matrix W got from eigen decomposition of Σ , eigenvalues are diagonal elements of D^2
- Alternative algorithm:

$$[U, V] = SVD(X - \mu, K)$$
 $W = V$

PRINCIPAL COMPONENT ANALYSIS: DEMO

